Search Results

Search found 3392 results on 136 pages for 'average joe'.

Page 113/136 | < Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >

  • What I should know about memory management?

    - by bua
    first of all: I don't use stackadmin or similar so please don't vote for moving there, I'm reading man top and paper "what every programmer should know about memory ..." I need really simple explanation like for retard ;) Having following top dump: top - 11:21:19 up 37 days, 21:16, 4 users, load average: 0.41, 0.75, 1.09 Tasks: 313 total, 5 running, 308 sleeping, 0 stopped, 0 zombie Cpu(s): 0.4%us, 0.6%sy, 0.9%ni, 96.2%id, 0.1%wa, 0.0%hi, 1.9%si, 0.0%st Mem: 132103848k total, 131916948k used, 186900k free, 54000k buffers Swap: 73400944k total, 73070884k used, 330060k free, 13931192k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 3305 tudb 25 10 144m 52m 940 R 6.0 0.0 1306:09 app 3011 tudb 15 0 71528 19m 604 S 3.3 0.0 171:57.83 app 3373 tudb 25 10 209m 93m 940 S 3.0 0.1 1074:53 app 3338 tudb 25 10 144m 47m 940 R 2.7 0.0 780:48.48 app 4227 tudb 25 10 208m 99m 904 S 1.3 0.1 198:56.01 app 8506 tudb 25 10 80.7g 49g 932 S 2.0 39.6 458:31.22 app I'm wondering what is: RES (my expl. physical memory consumption ? see 49GB) VIRT (memory mapped disk to cache? see 80GB) SHR (shared pages?) Swap: (is this cached label - for memory mapped disk into swap cache?) Should sum of RES give MEM: X used? or maybe sum of VIRT?

    Read the article

  • Linux Centos 6 becomes unavailable from time to time - OS&network issue

    - by adoado0
    I am encountering following problem. There is one server (DL160 G5) running Centos 6.3 with default kernel 2.6.32-220.2.1.el6.x86_64 - at this point I'd like to add that issue appeared also at older version - 6.1 and older kernel (do not remember exactly which version). There is cPanel installed and from time to time it becomes unavailable (network connection). What I've checked is (via KVMoIP): load average is completely normal it does not lack memory or disk space when problem occurs no console notifications checked all access logs and there is no sign that it can be caused by a client script cannot even access local interface (127.0.0.1) or main IP address running tcpdump I can only see packets arriving to server - no responses all services seem to be running properly (mail,sql,http,ssh) checked crontab and all clients' crontabs too network port utilisation is low ( up to several Mbits) arriving packet rate is low - hundreds per second (according to tcpdump) console (via kvmoip) works fine, no lags there is no conntrack at this server there is no ipv6 at this server flushing iptables, unloading modules does not resolve problem restarting network does not resolve problem, no errors appear it also occurs when two sepearate networks are configured (and multiple gateways) as well as one IP, one default gw and one network is configured - so it seems network configuration independent it seems to repeat randomly (load,packet rate,bandwith usage,load independent) checked server with different rootkit detection tools - it seems to be clean server has been rebooted, it did not change anything there are no interface errors it apperas randomly can be once a week or several times per day It usually works fine after 1-15 minutes. What I can also check? It is definitely OS issue - there is traffic at interface only in one direction when problem occurs, can not even ping loopback. Any ideas? Recommended checks? Anything I did not checked above.

    Read the article

  • Disk fragmentation when dealing with many small files

    - by Zorlack
    On a daily basis we generate about 3.4 Million small jpeg files. We also delete about 3.4 Million 90 day old images. To date, we've dealt with this content by storing the images in a hierarchical manner. The heriarchy is something like this: /Year/Month/Day/Source/ This heirarchy allows us to effectively delete days worth of content across all sources. The files are stored on a Windows 2003 server connected to a 14 disk SATA RAID6. We've started having significant performance issues when writing-to and reading-from the disks. This may be due to the performance of the hardware, but I suspect that disk fragmentation may be a culprit at well. Some people have recommended storing the data in a database, but I've been hesitant to do this. An other thought was to use some sort of container file, like a VHD or something. Does anyone have any advice for mitigating this kind of fragmentation? Additional Info: The average file size is 8-14KB Format information from fsutil: NTFS Volume Serial Number : 0x2ae2ea00e2e9d05d Version : 3.1 Number Sectors : 0x00000001e847ffff Total Clusters : 0x000000003d08ffff Free Clusters : 0x000000001c1a4df0 Total Reserved : 0x0000000000000000 Bytes Per Sector : 512 Bytes Per Cluster : 4096 Bytes Per FileRecord Segment : 1024 Clusters Per FileRecord Segment : 0 Mft Valid Data Length : 0x000000208f020000 Mft Start Lcn : 0x00000000000c0000 Mft2 Start Lcn : 0x000000001e847fff Mft Zone Start : 0x0000000002163b20 Mft Zone End : 0x0000000007ad2000

    Read the article

  • Plesk Uninstall Memory issue

    - by user115079
    I am trying to uninstall plesk from my VPS by running following command: yum remove sw-* psa-* plesk-* when i run this command i get following error: Running rpm_check_debug Running Transaction Test memory alloc (4 bytes) returned NULL. First time when i run above command, this mem alloc (4 bytes) was very big number like (67864987). then i googled it, got some clear/ulimit commands. executed them. rebooted my system. stopped all process and executed this command again. but still getting 4 byte issue. dont know how to get rid of it. I also tried ulimit after reboot but no success and Yes. No swap attached. these are stats of my system [root@vps ~]# free -m total used free shared buffers cached Mem: 384 67 316 0 0 0 -/+ buffers/cache: 67 316 Swap: 0 0 0 top - 21:01:07 up 3:12, 1 user, load average: 0.24, 0.08, 0.03 Tasks: 31 total, 2 running, 29 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 393216k total, 69832k used, 323384k free, 0k buffers Swap: 0k total, 0k used, 0k free, 0k cached is there any other alternative to achieve my goal to uninstall plesk? thanks.

    Read the article

  • Siege - running a stress test benchmark

    - by morgoth84
    I need to do a benchmark test of a HTTPS server using Siege, to see how it behaves under massive load. I'm initiating tests from another machine which is quite powerful and it is connected to the same physical switch the server is connected on. But when I initiate a test, I can't get it to make more than 170 requests per second. With this load the server's CPU usage is at 15-20% and the average response time for a request is approx. 0.03 seconds. Load of the client machine is approx. at 10%. So, I gradually increase the number of users in Siege (the number of worker threads) and request rate linearly increases up to 170 reqs/sec, but it never gets over it. No matter how many more worker threads I start, the load on the server is never more than 20% (and the client's load also doesn't increase any more). How can I overcome this? I've googled a bit and found out that after a request is completed, a socket associated with one ephermal port remains in WAIT_TIME state for some time during which it can't be reused. I tried to overcome this by doing these things: sysctl -w net.ipv4.ip_local_port_range="1024 65535" echo 1 > /proc/sys/net/ipv4/tcp_tw_recycle Oh, and the client machine is a Linux (RedHat, I think, but I'm not sure). Any help would be appreciated.

    Read the article

  • How to find out which process is hogging the linux server?

    - by user1149518
    We have a RHEL server. Today it suddenly became slow. Symptoms - It was responding slow to ping queries from other server. When I try to login using ssh, it was taking about 10 seconds to login. I was able to resolve the problem by doing some guess work. I killed one process which I thought was culprit. Which resolved the problem. Though I would like to know what's proper approach to detect the culprit in such kind of "slow server" situations. Le me know proper way to resolving such slowness issues and decting the process causing the slowness. These were the conditions when the server was slow - # vmstat 3 3 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 1 1 176 6730868 285052 4899676 0 0 3 4 0 0 1 1 97 1 0 0 0 176 6751576 285064 4899704 0 0 0 115 15307 37171 1 1 96 3 0 0 0 176 6751948 285068 4899700 0 0 0 23 14813 39559 1 1 98 1 0 # top top - 16:38:18 up 150 days, 19:36, 64 users, load average: 1.68, 1.46, 1.44 Tasks: 1287 total, 2 running, 1284 sleeping, 1 stopped, 0 zombie Cpu(s): 1.3%us, 1.7%sy, 0.1%ni, 95.9%id, 0.7%wa, 0.0%hi, 0.2%si, 0.0%st Mem: 16620824k total, 9867124k used, 6753700k free, 287424k buffers Swap: 8193140k total, 176k used, 8192964k free, 4898996k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 26258 khk 34 19 130m 47m 7088 S 11.2 0.3 385:32.42 edm Though I would like to know what's proper approach to detect the culprit in such kind of "slow server" situations. Le me know proper way to resolving such slowness issues and decting the process causing the slowness.

    Read the article

  • apache/httpd responds slower under EL6.1 than EL5.6 (centos)

    - by daniel
    I've read through other threads on performance differences between RHEL6 and RHEL5, but none seem a tight match to mine. My issue manifests itself in slightly slower average response time (20ms) per request. I have about 10/10 servers of the same hardware spec with Cent6.1 and Cent5.6. The issue is consistent across the group. I am running Ruby on Rails with Passenger. Apache config is identical (checked out from the same SVN repo) Ruby and Passenger are identical builds. Application is identical and being served traffic round robin. mod_worker An interesting clue from server-status: The Cent6.1 servers have a steady 20-40 threads in the "Reading Request" state while the Cent5.6 servers have around 1. I'm graphing this so I can see it trend over time. I also have a bunch of much newer machines that are significantly faster and are running Cent6.1. They dust all the older machines in response time, but I can see they also have a steady 20-40 threads in the "Reading Request" state. This makes me believe I can get their response time down, if I can figure out what is holding up these requests. My gut is telling me that I need to tune some network setting in sysctl, but I haven't figured it out yet. Help is appreciated.

    Read the article

  • memory usage setting

    - by user127610
    everybody,the memory usage is too much,what can i do? top - 12:54:37 up 7 days, 4:38, 1 user, load average: 0.00, 0.00, 0.00 Tasks: 18 total, 2 running, 16 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 1048800k total, 917424k used, 131376k free, 0k buffers Swap: 0k total, 0k used, 0k free, 0k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1 root 15 0 2840 1364 1204 S 0.0 0.1 0:02.17 init 1161 root 14 -4 2320 600 420 S 0.0 0.1 0:00.00 udevd 1391 root 18 0 35512 1288 948 S 0.0 0.1 0:03.53 rsyslogd 1409 root 15 0 8432 1164 700 S 0.0 0.1 0:03.87 sshd 1416 root 18 0 3156 868 692 S 0.0 0.1 0:00.00 xinetd 1423 root 18 0 8672 716 292 S 0.0 0.1 0:00.00 saslauthd 1424 root 18 0 8672 488 64 S 0.0 0.0 0:00.00 saslauthd 1431 root 15 0 7020 1168 616 S 0.0 0.1 0:00.99 crond 1450 root 25 0 6236 1444 1228 S 0.0 0.1 0:00.05 sh 3328 mysql 15 0 799m 42m 4892 S 0.0 4.1 0:02.07 mysqld 15479 root 15 0 11304 3332 2688 R 0.0 0.3 0:00.06 sshd 15482 root 15 0 6372 1688 1404 S 0.0 0.2 0:00.00 bash 15497 root 15 0 2536 1044 864 R 0.0 0.1 0:00.00 top 20137 www 15 0 20672 14m 864 S 0.0 1.4 0:00.87 nginx 22351 www 16 0 52324 26m 9244 S 0.0 2.6 0:13.94 php-fpm 24231 www 16 0 51928 25m 9260 S 0.0 2.5 0:13.52 php-fpm 32682 root 15 0 35832 3228 864 S 0.0 0.3 0:02.18 php-fpm 32686 root 18 0 7368 1616 888 S 0.0 0.2 0:00.00 nginx

    Read the article

  • Windows 7 misses keystrokes from internal keyboard after hibernation (on Acer Aspire 5820)

    - by ron
    I face a very strange symptom on my Acer Aspire laptop (with the factory default Win7 install and divers. Windows update running). After waking the computer from hibernation, it is a pain to type, since on average 5-10 keypresses are missing per 100 presses, using the laptop's keyboard. Steps to reproduce: 1) Power off 2) Power on, wait for system to become usable 3) Open notepad, for 5 times do hit 10x the same character. This gives a similar pattern of 50 chars total: xxxxxxxxxxyyyyyyyyyyaaaaaaaaaassssssssssdddddddddd 4) Optionally repeat. Everything is fine this far. 5) Hibernate. 6) Power on and resume. 7) Repeat steps 3)-4). This time approximately 3-5 character will be missing from each 50 characters. What I ruled out: putting to Sleep or just Locking and resuming from there does not cause problem battery / AC usage does not matter net connection does not matter running processes seem to be the same before and after hibernation key press speed doesn't really matter. For the test I use a nominal 3-5 strokes/second beat. plugging in an external USB keyboard works fine, but the built-in one still misbehaves What could be the problem? How could I diagnose if the keypresses arrive in, but get swallowed at some point? (maybe some nasty keyboard handler hook misbehaves?). Update: It seems that pushing the PowerSmart button and toggling to power saving state fixes the problem. Also, toggling it again back to the original state keeps it fixed. So this may be a fine workaround, but is not a conforming solution.

    Read the article

  • Windows 7 misses keystrokes from internal keyboard after hibernation (on Acer Aspire 5820)

    - by ron
    I face a very strange symptom on my Acer Aspire laptop (with the factory default Win7 install and divers. Windows update running). After waking the computer from hibernation, it is a pain to type, since on average 5-10 keypresses are missing per 100 presses, using the laptop's keyboard. Steps to reproduce: 1) Power off 2) Power on, wait for system to become usable 3) Open notepad, for 5 times do hit 10x the same character. This gives a similar pattern of 50 chars total: xxxxxxxxxxyyyyyyyyyyaaaaaaaaaassssssssssdddddddddd 4) Optionally repeat. Everything is fine this far. 5) Hibernate. 6) Power on and resume. 7) Repeat steps 3)-4). This time approximately 3-5 character will be missing from each 50 characters. What I ruled out: putting to Sleep or just Locking and resuming from there does not cause problem battery / AC usage does not matter net connection does not matter running processes seem to be the same before and after hibernation key press speed doesn't really matter. For the test I use a nominal 3-5 strokes/second beat. plugging in an external USB keyboard works fine, but the built-in one still misbehaves What could be the problem? How could I diagnose if the keypresses arrive in, but get swallowed at some point? (maybe some nasty keyboard handler hook misbehaves?). Update: It seems that pushing the PowerSmart button and toggling to power saving state fixes the problem. Also, toggling it again back to the original state keeps it fixed. So this may be a fine workaround, but is not a conforming solution.

    Read the article

  • Computer will freeze/ lock up after doing relatively stressful things

    - by GrowingCode247
    I'll first start off by saying that the issue GENERALLY doesn't occur unless I'm doing something remotely stressful for my computer. This issue used to occur whenever it felt it was necessary, however has not occurred completely randomly for a while now (thankfully) My computer's specs: CPU: AMD Phenom II X4 960T GPU: GeForce GTX 760 Memory: 16 GB RAM Resolution Used: 1680x1050, 59Hz (strange number for refresh rate?) res is highest for monitor Nvidia Driver version: 331.65 OS: Microsoft Windows 7 Ultimate (64-bit) Sometimes I will be able to go 2-3 games (about an hour, depending) and sometimes it will go maybe one game (20-30 minutes) and then my computer will run sluggishly and leave me unable to do much of anything. I can sometimes interact with programs at a very basic level (maximizing, minimizing), and I usually cannot close them in any way, not even through Task Manager. The highest temperature my GPU reaches is 76C, with the average being around 73C. During the time the temperatures are around 73C, my GPU's RAM usage is anywhere between 1250-1300 (out of 2GB). My CPU's temperature never goes over 60C, thankfully. The PSU should be fine. It's very mildly dusty but I feel as though that would not be causing this problem... I will clean it out as soon as everything else has been ruled out. Honestly I have no clue how to test the PSU for problems - same goes for my Motherboard. I cannot really think of what could be causing these freezes otherwise. Event Viewer details: EventID: 1 - VDS Basic Provider (I've no clue what this is) EventID: 3 - Kernel-EventTracing (Again, lost) EventID: 8003 - bowser (this seems fishy) and the one critical that I know others have been dealing with as I've browsed some other responses on the web: EventID: 41 - Kernel-Power any help to solve this problem would be GREATLY appreciated.

    Read the article

  • Windows XP VM on VMWare ESXi 4.1 "pausing" / blocked occasionally

    - by FelixD
    We have an issue with Windows XP SP3 VMs on VMWare ESXi 4.1.0 (the free version): They sometimes seem to "pause" for several minutes. This happens rarely (maybe once a month per VM, at least noticed only that often), but still is an issue for us. It happens for three different but similar VMs on three pretty different hosts (different hardware). I have the feeling that the "pausing" is not actually the CPU blocking, but probably the harddisks, but not 100% sure. The servers have one IDE disk (C:) and one SCSI (D:) and it might be either of the two. I have seen scheduled tasks simply not starting for up to 9 minutes and then running normally again with normal speed. They were totally blocked. This is not a load issue, the VMWare hosts have average load and the VMs in question already have reserved CPU resources plus high priorities for CPU and disk. The Windows boxes run mainly MySQL, Tomcat, FileZilla server, Cygwin stuff, Java + R applications, VMWare client, Elusiva Terminal Server pro, Nagios client. Not sure if this might be related with any of that software (e.g. Elusiva). Trying to debug this, there was nothing visible in Windows Event log, other logs in C:\Windows, VMWare events etc. Unfortunately the vmware.log file ends with "Log throttled". We found that we ran into 2 VMWare bugs there: The VMWare client writes lots on bogus messages in the vmware.log, which we now disabled (log level error setting) plus the bug that VMWare does not unthrottle the log (at least so far despite VM reboots). I know there is not much guidance and that may also be the reason why I so far didn't find anything related on the web or on ServerFault, but maybe some of this rings a bell with someone? Or please direct me to what more info to post. I hope that the vmware.logs get unthrottled eventually (can't easily restart the hosts at the moment). Thanks for any input!

    Read the article

  • Server high CPU load issue! ( Cpanel + CentOS 5)

    - by kenby
    Our server cpu load is high todays sometimes reaches to 560! .. We have the lastest Cpanel/whm and the kernel is update!while the load average is : Load Averages: 39.05 75.01 45.33 the apache log is: Current Time: Sunday, 30-Jan-2011 01:50:13 EST Restart Time: Saturday, 29-Jan-2011 21:51:20 EST Parent Server Generation: 2 Server uptime: 3 hours 58 minutes 53 seconds Total accesses: 149493 - Total Traffic: 2.4 GB CPU Usage: u9.17 s10.66 cu42.82 cs0 - .437% CPU load 10.4 requests/sec - 174.6 kB/second - 16.7 kB/request 121 requests currently being processed, 42 idle workers W_WWW.W_..W.W_W_WCWW..W...W.WWW.WWWW.WW.C_W_.W.WW.WC..W.WW.WW .W.W.W...WWWW...WW.CC.C.._W.WC.WW_WW._W....W.WWW.W.WWW.W..W WW.....WW.W_WWWWW..WCRW..WWCW.WWW__.WWWWCW_W._._WW_W...W...W _W..W..WW.W...._W..._WW.W.WWW.._W.WWW.WWW....WW_.C...W._ Scoreboard Key: "_" Waiting for Connection, "S" Starting up, "R" Reading Request, "W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup, "C" Closing connection, "L" Logging, "G" Gracefully finishing, "I" Idle cleanup of worker, "." Open slot with no current process What cause this high cpu load while the apache cpu load is fine? the mysql process is also fine.. the cpu load is still high even if I stop mail-http-mysql services!

    Read the article

  • How many guesses per second are possible against an encrypted disk? [closed]

    - by HappyDeveloper
    I understand that guesses per second depends on the hardware and the encryption algorithm, so I don't expect an absolute number as answer. For example, with an average machine you can make a lot (thousands?) of guesses per second for a hash created with a single md5 round, because md5 is fast, making brute force and dictionary attacks a real danger for most passwords. But if instead you use bcrypt with enough rounds, you can slow the attack down to 1 guess per second, for example. 1) So how does disk encryption usually work? This is how I imagine it, tell me if it is close to reality: When I enter the passphrase, it is hashed with a slow algorithm to generate a key (always the same?). Because this is slow, brute force is not a good approach to break it. Then, with the generated key, the disk is unencrypted on the fly very fast, so there is not a significant performance lose. 2) How can I test this with my own machine? I want to calculate the guesses per second my machine can make. 3) How many guesses per second are possible against an encrypted disk with the fastest PC ever so far?

    Read the article

  • Install Windows 8 on SSD and Program & Users on HDD

    - by Foe
    I have been dealing with a few problems while installing Windows 8 on my computer. On my old configuration, I had Windows 7 installed on my 60Go SSD, and my programs and user data on my 1To HDD, thanks to relative links. Yet, while installing Windows 8 on my SSD, he made a small partition on my HDD "System related". Plus, I'm afraid using only links is a bit cheap, and I saw lots of people messing with their registry when trying to put user data on another drive. I read a lot about optimizing Windows 8 for SSD, putting Users on another drive, and very similar situation that didn't quite correspond to what I was trying to achieve. Here's what I tried : http://www.eightforums.com/tutorials/4275-user-profiles-relocate-another-partition-disk.html Booting on Audit mode and using an XML to relocate Users didn't work as the specified version in the file is a test one, and I don't what to enter if I'm using the last release. Booting with the install DVD in repair mode to do a copy of the User and create a relative link, resulting in an error on the logon screen while entering my password saying that "The profile can't be load" (average translation of my error from french to english) Do anyone know how to do a clean separated install of Windows 8, with OS on a drive, and the other data on a second one ? Thanks.

    Read the article

  • Very high CPU and low RAM usage - is it possible to place some of swap some of the CPU usage to the RAM (with CloudLinux LVE Manager installed)?

    - by Chriswede
    I had to install CloudLinux so that I could somewhat controle the CPU ussage and more importantly the Concurrent-Connections the Websites use. But as you can see the Server load is way to high and thats why some sites take up to 10 sec. to load! Server load 22.46 (8 CPUs) (!) Memory Used 36.32% (2,959,188 of 8,146,632) (ok) Swap Used 0.01% (132 of 2,104,504) (ok) Server: 8 x Intel(R) Xeon(R) CPU E31230 @ 3.20GHz Memory: 8143680k/9437184k available (2621k kernel code, 234872k reserved, 1403k data, 244k init) Linux Yesterday: Total of 214,514 Page-views (Awstat) Now my question: Can I shift some of the CPU usage to the RAM? Or what else could I do to make the sites run faster (websites are dynamic - so SQL heavy) Thanks top - 06:10:14 up 29 days, 20:37, 1 user, load average: 11.16, 13.19, 12.81 Tasks: 526 total, 1 running, 524 sleeping, 0 stopped, 1 zombie Cpu(s): 42.9%us, 21.4%sy, 0.0%ni, 33.7%id, 1.9%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 8146632k total, 7427632k used, 719000k free, 131020k buffers Swap: 2104504k total, 132k used, 2104372k free, 4506644k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 318421 mysql 15 0 1315m 754m 4964 S 474.9 9.5 95300:17 mysqld 6928 root 10 -5 0 0 0 S 2.0 0.0 90:42.85 kondemand/3 476047 headus 17 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476055 headus 18 0 172m 18m 9.9m S 1.7 0.2 0:00.05 php 476056 headus 15 0 172m 19m 10m S 1.7 0.2 0:00.05 php 476061 headus 18 0 172m 19m 10m S 1.7 0.2 0:00.05 php 6930 root 10 -5 0 0 0 S 1.3 0.0 161:48.12 kondemand/5 6931 root 10 -5 0 0 0 S 1.3 0.0 193:11.74 kondemand/6 476049 headus 17 0 172m 19m 10m S 1.3 0.2 0:00.04 php 476050 headus 15 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 476057 headus 17 0 172m 18m 9.9m S 1.3 0.2 0:00.04 php 6926 root 10 -5 0 0 0 S 1.0 0.0 90:13.88 kondemand/1 6932 root 10 -5 0 0 0 S 1.0 0.0 247:47.50 kondemand/7 476064 worldof 18 0 172m 19m 10m S 1.0 0.2 0:00.03 php 6927 root 10 -5 0 0 0 S 0.7 0.0 93:52.80 kondemand/2 6929 root 10 -5 0 0 0 S 0.3 0.0 161:54.38 kondemand/4 8459 root 15 0 103m 5576 1268 S 0.3 0.1 54:45.39 lvest

    Read the article

  • Windows Server don't connect to network share

    - by user104775
    Windows Server don't connect to network share. Network share is work. Ping Blockquote Pinging 109.123.146.223 with 32 bytes of data: Reply from 109.123.146.223: bytes=32 time<1ms TTL=63 Reply from 109.123.146.223: bytes=32 time<1ms TTL=63 Reply from 109.123.146.223: bytes=32 time<1ms TTL=63 Ping statistics for 109.123.146.223: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms net view \shareaddress Blockquote System error 53 has occurred. The network path was not found. When network share was connected, I was got a error message: Blockquote \ "Mapped disk letter" refers to a location that is unavailable. It could be on a hard drive on this computer, or on a network. Check to make sure that the disk is properly inserted, or that you are connected to the Internet or your network, and then try again. If it still cannot be located, the information might have been moved to a different location Network share mounted via Group Policy. Any ideas?

    Read the article

  • java memory allocation under linux

    - by pstanton
    I'm running 4 java processes with the following command: java -Xmx256m -jar ... and the system has 8Gb memory under fedora 12. however it is apparently going into swap. how can that be if 4 x 256m = 1Gb ? EDIT: also, how can all 8Gb of memory be used with so little memory allocated to basically the only thing running? is it java not garbage collecting because the OS tells it it doesn't need to or what? TOP: top - 20:13:57 up 3:55, 6 users, load average: 1.99, 2.54, 2.67 Tasks: 251 total, 6 running, 245 sleeping, 0 stopped, 0 zombie Cpu(s): 50.1%us, 2.9%sy, 0.0%ni, 45.1%id, 1.1%wa, 0.0%hi, 0.8%si, 0.0%st Mem: 8252304k total, 8195552k used, 56752k free, 34356k buffers Swap: 10354680k total, 74044k used, 10280636k free, 6624148k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1948 xxxxxxxx 20 0 1624m 240m 4020 S 96.8 3.0 164:33.75 java 1927 xxxxxxxx 20 0 139m 31m 27m R 91.8 0.4 38:34.55 postgres 1929 xxxxxxxx 20 0 1624m 200m 3984 S 86.2 2.5 183:24.88 java 1969 xxxxxxxx 20 0 1624m 292m 3984 S 65.6 3.6 154:06.76 java 1987 xxxxxxxx 20 0 137m 29m 27m R 28.5 0.4 75:49.82 postgres 1581 root 20 0 159m 18m 4712 S 22.5 0.2 52:42.54 Xorg 2411 xxxxxxxx 20 0 309m 9748 4544 S 20.9 0.1 45:05.08 gnome-system-mo 1947 xxxxxxxx 20 0 137m 28m 27m S 13.3 0.4 44:46.04 postgres 1772 xxxxxxxx 20 0 135m 25m 25m S 4.0 0.3 1:09.14 postgres 1966 xxxxxxxx 20 0 137m 29m 27m S 3.0 0.4 64:27.09 postgres 1773 xxxxxxxx 20 0 135m 732 624 S 1.0 0.0 0:24.86 postgres 2464 xxxxxxxx 20 0 15028 1156 744 R 0.7 0.0 0:49.14 top 344 root 15 -5 0 0 0 S 0.3 0.0 0:02.26 kdmflush 1 root 20 0 4124 620 524 S 0.0 0.0 0:00.88 init 2 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kthreadd 3 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/0 4 root 15 -5 0 0 0 S 0.0 0.0 0:00.04 ksoftirqd/0

    Read the article

  • How to copy a large LVM volume (14TB) from one server to another?

    - by bruce
    I have to copy a very large LVM volume from server A to server B. Below is the filesystem of server A and server B Server A [root@AVDVD-Filer ~]# df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_avdvdfiler-lv_root 16T 14T 1.5T 91% / tmpfs 3.0G 0 3.0G 0% /dev/shm /dev/cciss/c0d0p1 194M 23M 162M 13% /boot /dev/mapper/vg_avdvdfiler-test 2.3T 201M 2.1T 1% /test /dev/sr0 3.3G 3.3G 0 100% /mnt server B [root@localhost ~]# df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/VolGroup-LogVol00 20G 2.5G 16G 14% / tmpfs 3.0G 0 3.0G 0% /dev/shm /dev/cciss/c0d0p1 194M 23M 162M 13% /boot /dev/mapper/VolGroup00-LogVol00 16T 133M 15T 1% /xiangao/lv1 /dev/mapper/VolGroup00-LogVol01 4.7T 190M 4.5T 1% /xiangao/lv2 I want to copy the LVM volume /dev/mapper/vg_avdvdfiler-lv_root on server A to LVM volume /dev/mapper/VolGroup00-LogVol00 on server B. Server A and server B are in the same IP segment. In the LVM volume on server A, there is all average 500M avi wmv mp4 etc. I tried mounting /dev/mapper/vg_avdvdfiler-lv_root on server A to server B through NFS, then use cp to copy. It is clear I failed. Because the LVM volume is too big, I do not have good idea why. I hope a good solution here.

    Read the article

  • Windows XP to remote server 2008 R2 shares - awful response times

    - by nick3216
    I have a network infrastructure of Windows XP clients (a mix of XP and 64-bit XP), that are accessing a network share on a Windows 2008 R2 server. Whenever users type the address of a folder into the address bar of Windows Explorer it's as snappy at determining the contents of the current folder and presenting them to you in the address bar as if you're working on a local drive. But if you open one of the subfolders users get the animated red torch and 'Searching for items...' dialog, typically for 45 seconds. Similarly when using the open folder dialog to try and select a subfolder on this share it takes, on average, 45 seconds for the dialog to expand each node and show the subfolders of each node. Also, while the Explorer instance accsesing the network share is running slowly users notice that the performance of all other Explorer windows suffers. So while Explorer is searching for files on the network share they can't switch to another task and navigate around their local drive using Explorer because it's now as slow as a dead dog at accessing anything. Are there any settings we can change which will improve the performance accessing network shares?

    Read the article

  • What is the potential for a FUSE mount to destabilize a Linux server?

    - by 200_success
    I'm a sysadmin for a multi-user server, where students in our department have shell accounts. One of our users has requested that we install sshfs on it. I'm debating whether it would be wise to install sshfs as suggested. My main concern is whether a FUSE mount could make our server less reliable. In my experience, bad things can happen to servers when an NFS server suddenly becomes unavailable — the load average shoots up, and you might not be able to unmount it cleanly, to the point where a hard reboot might be necessary. If a FUSE-mounted server suddenly disappears, how hard might it be to clean up the mess? Are there any other likely catastrophes or gotchas I should consider? At least with NFS, only root can mount, and we can choose to mount NFS servers that we consider to be reasonably reliable. Let's assume that our users have no hostile intentions, but might do stupid things accidentally. Also, I'm not really worried about the contents of the filesystems they might mount, since our users already have shell access and can copy anything they want to their home directory.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • httpd high cpu usage slowing down server response

    - by max
    my client has a image sharing website with about 100.000 visitor per day it has been slowed down considerably since this morning when i checked processes i've notice high cpu usage from http .... some has suggested ddos attack ... i'm not a webmaster and i've no idea whts going on top top - 20:13:30 up 5:04, 4 users, load average: 4.56, 4.69, 4.59 Tasks: 284 total, 3 running, 281 sleeping, 0 stopped, 0 zombie Cpu(s): 12.1%us, 0.9%sy, 1.7%ni, 69.0%id, 16.4%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16037152k total, 15875096k used, 162056k free, 360468k buffers Swap: 4194288k total, 888k used, 4193400k free, 14050008k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4151 apache 20 0 277m 84m 3784 R 50.2 0.5 0:01.98 httpd 4115 apache 20 0 210m 16m 4480 S 18.3 0.1 0:00.60 httpd 12885 root 39 19 4296 692 308 S 13.0 0.0 11:09.53 gzip 4177 apache 20 0 214m 20m 3700 R 12.3 0.1 0:00.37 httpd 2219 mysql 20 0 4257m 198m 5668 S 11.0 1.3 42:49.70 mysqld 3691 apache 20 0 206m 14m 6416 S 1.7 0.1 0:03.38 httpd 3934 apache 20 0 211m 17m 4836 S 1.0 0.1 0:03.61 httpd 4098 apache 20 0 209m 17m 3912 S 1.0 0.1 0:04.17 httpd 4116 apache 20 0 211m 17m 4476 S 1.0 0.1 0:00.43 httpd 3867 apache 20 0 217m 23m 4672 S 0.7 0.1 1:03.87 httpd 4146 apache 20 0 209m 15m 3628 S 0.7 0.1 0:00.02 httpd 4149 apache 20 0 209m 15m 3616 S 0.7 0.1 0:00.02 httpd 12884 root 39 19 22336 2356 944 D 0.7 0.0 0:19.21 tar 4054 apache 20 0 206m 12m 4576 S 0.3 0.1 0:00.32 httpd another top top - 15:46:45 up 5:08, 4 users, load average: 5.02, 4.81, 4.64 Tasks: 288 total, 6 running, 281 sleeping, 0 stopped, 1 zombie Cpu(s): 18.4%us, 0.9%sy, 2.3%ni, 56.5%id, 21.8%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 16037152k total, 15792196k used, 244956k free, 360924k buffers Swap: 4194288k total, 888k used, 4193400k free, 13983368k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4622 apache 20 0 209m 16m 3868 S 54.2 0.1 0:03.99 httpd 4514 apache 20 0 213m 20m 3924 R 50.8 0.1 0:04.93 httpd 4627 apache 20 0 221m 27m 4560 R 18.9 0.2 0:01.20 httpd 12885 root 39 19 4296 692 308 S 18.9 0.0 11:51.79 gzip 2219 mysql 20 0 4257m 199m 5668 S 18.3 1.3 43:19.04 mysqld 4512 apache 20 0 227m 33m 4736 R 5.6 0.2 0:01.93 httpd 4520 apache 20 0 213m 19m 4640 S 1.3 0.1 0:01.48 httpd 4590 apache 20 0 212m 19m 3932 S 1.3 0.1 0:00.06 httpd 4573 apache 20 0 210m 16m 3556 R 1.0 0.1 0:00.03 httpd 4562 root 20 0 15164 1388 952 R 0.7 0.0 0:00.08 top 98 root 20 0 0 0 0 S 0.3 0.0 0:04.89 kswapd0 100 root 39 19 0 0 0 S 0.3 0.0 0:02.85 khugepaged 4579 apache 20 0 209m 16m 3900 S 0.3 0.1 0:00.83 httpd 4637 apache 20 0 209m 15m 3668 S 0.3 0.1 0:00.03 httpd ps aux [root@server ~]# ps aux | grep httpd root 2236 0.0 0.0 207524 10124 ? Ss 15:09 0:03 /usr/sbin/http d -k start -DSSL apache 3087 2.7 0.1 226968 28232 ? S 20:04 0:06 /usr/sbin/http d -k start -DSSL apache 3170 2.6 0.1 221296 22292 ? R 20:05 0:05 /usr/sbin/http d -k start -DSSL apache 3171 9.0 0.1 225044 26768 ? R 20:05 0:17 /usr/sbin/http d -k start -DSSL apache 3188 1.5 0.1 223644 24724 ? S 20:05 0:03 /usr/sbin/http d -k start -DSSL apache 3197 2.3 0.1 215908 17520 ? S 20:05 0:04 /usr/sbin/http d -k start -DSSL apache 3198 1.1 0.0 211700 13000 ? S 20:05 0:02 /usr/sbin/http d -k start -DSSL apache 3272 2.4 0.1 219960 21540 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3273 2.0 0.0 211600 12804 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3279 3.7 0.1 229024 29900 ? S 20:06 0:05 /usr/sbin/http d -k start -DSSL apache 3280 1.2 0.0 0 0 ? Z 20:06 0:01 [httpd] <defun ct> apache 3285 2.9 0.1 218532 21604 ? S 20:06 0:04 /usr/sbin/http d -k start -DSSL apache 3287 30.5 0.4 265084 65948 ? R 20:06 0:43 /usr/sbin/http d -k start -DSSL apache 3297 1.9 0.1 216068 17332 ? S 20:06 0:02 /usr/sbin/http d -k start -DSSL apache 3342 2.7 0.1 216716 17828 ? S 20:06 0:03 /usr/sbin/http d -k start -DSSL apache 3356 1.6 0.1 217244 18296 ? S 20:07 0:01 /usr/sbin/http d -k start -DSSL apache 3365 6.4 0.1 226044 27428 ? S 20:07 0:06 /usr/sbin/http d -k start -DSSL apache 3396 0.0 0.1 213844 16120 ? S 20:07 0:00 /usr/sbin/http d -k start -DSSL apache 3399 5.8 0.1 215664 16772 ? S 20:07 0:05 /usr/sbin/http d -k start -DSSL apache 3422 0.7 0.1 214860 17380 ? S 20:07 0:00 /usr/sbin/http d -k start -DSSL apache 3435 3.3 0.1 216220 17460 ? S 20:07 0:02 /usr/sbin/http d -k start -DSSL apache 3463 0.1 0.0 212732 15076 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3492 0.0 0.0 207660 7552 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3493 1.4 0.1 218092 19188 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3500 1.9 0.1 224204 26100 ? R 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3501 1.7 0.1 216916 17916 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3502 0.0 0.0 207796 7732 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3505 0.0 0.0 207660 7548 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3529 0.0 0.0 207660 7524 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3531 4.0 0.1 216180 17280 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3532 0.0 0.0 207656 7464 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3543 1.4 0.1 217088 18648 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3544 0.0 0.0 207656 7548 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3545 0.0 0.0 207656 7560 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3546 0.0 0.0 207660 7540 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3547 0.0 0.0 207660 7544 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3548 2.3 0.1 216904 17888 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3550 0.0 0.0 207660 7540 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3551 0.0 0.0 207660 7536 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3552 0.2 0.0 214104 15972 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3553 6.5 0.1 216740 17712 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3554 6.3 0.1 216156 17260 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3555 0.0 0.0 207796 7716 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3556 1.8 0.0 211588 12580 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3557 0.0 0.0 207660 7544 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3565 0.0 0.0 207660 7520 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3570 0.0 0.0 207660 7516 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL apache 3571 0.0 0.0 207660 7504 ? S 20:08 0:00 /usr/sbin/http d -k start -DSSL root 3577 0.0 0.0 103316 860 pts/2 S+ 20:08 0:00 grep httpd httpd error log [Mon Jul 01 18:53:38 2013] [error] [client 2.178.12.67] request failed: error reading the headers, referer: http://akstube.com/image/show/27023/%D9%86%DB%8C%D9%88%D8%B4%D8%A7-%D8%B6%DB%8C%D8%BA%D9%85%DB%8C-%D9%88-%D8%AE%D9%88%D8%A7%D9%87%D8%B1-%D9%88-%D9%87%D9%85%D8%B3%D8%B1%D8%B4 [Mon Jul 01 18:55:33 2013] [error] [client 91.229.215.240] request failed: error reading the headers, referer: http://akstube.com/image/show/44924 [Mon Jul 01 18:57:02 2013] [error] [client 2.178.12.67] Invalid method in request [Mon Jul 01 18:57:02 2013] [error] [client 2.178.12.67] File does not exist: /var/www/html/501.shtml [Mon Jul 01 19:21:36 2013] [error] [client 127.0.0.1] client denied by server configuration: /var/www/html/server-status [Mon Jul 01 19:21:36 2013] [error] [client 127.0.0.1] File does not exist: /var/www/html/403.shtml [Mon Jul 01 19:23:57 2013] [error] [client 151.242.14.31] request failed: error reading the headers [Mon Jul 01 19:37:16 2013] [error] [client 2.190.16.65] request failed: error reading the headers [Mon Jul 01 19:56:00 2013] [error] [client 151.242.14.31] request failed: error reading the headers Not a JPEG file: starts with 0x89 0x50 also there is lots of these in the messages log Jul 1 20:15:47 server named[2426]: client 203.88.6.9#11926: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:47 server named[2426]: client 203.88.6.9#26255: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:48 server named[2426]: client 203.88.6.9#20093: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 20:15:48 server named[2426]: client 203.88.6.9#8672: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:07 server named[2426]: client 203.88.6.9#39352: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:08 server named[2426]: client 203.88.6.9#25382: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:08 server named[2426]: client 203.88.6.9#9064: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.23.9#35375: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.6.9#61932: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.23.9#4423: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:09 server named[2426]: client 203.88.6.9#40229: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#46128: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#62128: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#35240: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#36774: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#28361: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#14970: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#20216: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.10#31794: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#23042: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#11333: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.10#41807: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.23.9#20092: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:14 server named[2426]: client 203.88.6.10#43526: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.9#17173: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.9#62412: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#63961: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#64345: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:15 server named[2426]: client 203.88.23.10#31030: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#17098: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#17197: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#18114: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:16 server named[2426]: client 203.88.6.9#59138: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:45:17 server named[2426]: client 203.88.6.9#28715: query (cache) 'www.xxxmaza.com/A/IN' denied Jul 1 15:48:33 server named[2426]: client 203.88.23.9#26355: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#34473: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#62658: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:34 server named[2426]: client 203.88.23.9#51631: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:35 server named[2426]: client 203.88.23.9#54701: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:36 server named[2426]: client 203.88.6.10#63694: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:36 server named[2426]: client 203.88.6.10#18203: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:37 server named[2426]: client 203.88.6.10#9029: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:38 server named[2426]: client 203.88.6.10#58981: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:48:38 server named[2426]: client 203.88.6.10#29321: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:47 server named[2426]: client 119.160.127.42#42355: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:49 server named[2426]: client 119.160.120.42#46285: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:53 server named[2426]: client 119.160.120.42#30696: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:54 server named[2426]: client 119.160.127.42#14038: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:55 server named[2426]: client 119.160.120.42#33586: query (cache) 'xxxmaza.com/A/IN' denied Jul 1 15:49:56 server named[2426]: client 119.160.127.42#55114: query (cache) 'xxxmaza.com/A/IN' denied

    Read the article

  • DirectoryServicesCOMException when working with System.DirectoryServices.AccountManagement

    - by antik
    I'm attempting to determine whether a user is a member of a given group using System.DirectoryServices.AccountManagment. I'm doing this inside a SharePoint WebPart in SharePoint 2007 on a 64-bit system. Project targets .NET 3.5 Impersonation is enabled in the web.config. The IIS Site in question is using an IIS App Pool with a domain user configured as the identity. I am able to instantiate a PrincipalContext as such: PrincipalContext pc = new PrincipalContext(ContextType.Domain) Next, I try to grab a principal: using (PrincipalContext pc = new PrincipalContext(ContextType.Domain)) { GroupPrincipal group = GroupPrincipal.FindByIdentity(pc, "MYDOMAIN\somegroup"); // snip: exception thrown by line above. } Both the above and UserPrincipal.FindByIdentity with a user SAM throw a DirectoryServicesCOMException: "Logon failure: Unknown user name or bad password" I've tried passing in a complete SAMAccountName to either FindByIdentity (in the form of MYDOMAIN\username) or just the username with no change in behavior. I've tried executing the code with other credentials using both the HostingEnvironment.Impersonate and SPSecurity.RunWithElevatedPrivileges approaches and also experience the same result. I've also tried instantiating my context with the domain name in place: Principal Context pc = new PrincipalContext(ContextType.Domain, "MYDOMAIN"); This throws a PrincipalServerDownException: "The server could not be contacted." I'm working on a reasonably hardened server. I did not lock the system down so I am unsure exactly what has been done to it. If there are credentials I need to allocate to my pool identity's user or in the domain security policy in order for these to work, I can configure the domain accordingly. Are there any settings that would be preventing my code from running? Am I missing something in the code itself? Is this just not possible in a SharePoint web? EDIT: Given further testing, my code functions correctly when tested in a Console application targeting .NET 4.0. I targeted a different framework because I didn't have AccountManagement available to me in the console app when targeting .NET 3.5 for some reason. using (PrincipalContext pc = new PrincipalContext(ContextType.Domain)) using (UserPrincipal adUser = UserPrincipal.FindByIdentity(pc, "MYDOMAIN\joe.user")) using (GroupPrincipal adGroup = GroupPrincipal.FindByIdentity(pc, "MYDOMAIN\user group")) { if (adUser.IsMemberOf(adGroup)) { Console.WriteLine("User is a member!"); } else { Console.WriteLine("User is NOT a member."); } } What varies in my SharePoint environment that might prohibit this function from executing?

    Read the article

  • Can't checkin to Facebook Places by post to api?

    - by MarcusJoe
    Hey everybody, I am trying to build an app where I let my registered user be able to check in to places on Facebook Places. I however for some reason can't seem to make this work. I assumed this is possible with the Api as write functionality has been added to it, but I couldn't find an clear explanation on the web. this is what I currently have, after I have asked the user for permission to publish checkins and for user_checkins. <?php require("src/facebook.php"); $facebook = new Facebook(array( 'appId' => 'xxxxxxxxx', 'secret' => 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'cookie' => true )); # see if active session $session = $facebook->getSession(); if(!empty($session)) { try{ $uid = $facebook->getUser(); $api_call = array( 'method' => 'users.hasAppPermission', 'uid' => $uid, 'ext_perm' => 'publish_checkins' ); $can_post = $facebook->api($api_call); if($can_post){ $facebook->api('/'.$uid.'/checkins', 'POST', array( 'access_token' => $facebook->getAccessToken(), 'place' => 'place_id', 'message' =>'I went to placename today', 'picture' => 'http://www.place.com/logo.jpg', 'coordinates' => array( 'latitude' => 'lattiude', 'longitude' => 'lattitude', 'tags' => $uid, ) ) ); echo 'You were checked in'; } else { die('Permissions required!'); } } catch (Exception $e){} } else { # There's no active session,generate one $login_url = $facebook->getLoginUrl(); header("Location: ".$login_url); } ?> The code works when I change it 'checkins' to 'feed'. Is there something wrong with my code or am I trying to do somethign that isn't possible (or do it the wrong way). Any help will be greatly appreciated as I already spent quite a significant amount of time trying to fix this, but I just can't seem to make it work. Best regards, Marcus Joe

    Read the article

< Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >