Search Results

Search found 16218 results on 649 pages for 'compiler errors'.

Page 114/649 | < Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >

  • On developing deep programming knowledge

    - by Robert Harvey
    Occasionally I see questions about edge cases and other weirdness on Stack Overflow that are easily answered by the likes of Jon Skeet and Eric Lippert, demonstrating a deep knowledge of the language and its many intricacies, like this one: You might think that in order to use a foreach loop, the collection you are iterating over must implement IEnumerable or IEnumerable<T>. But as it turns out, that is not actually a requirement. What is required is that the type of the collection must have a public method called GetEnumerator, and that must return some type that has a public property getter called Current and a public method MoveNext that returns a bool. If the compiler can determine that all of those requirements are met then the code is generated to use those methods. Only if those requirements are not met do we check to see if the object implements IEnumerable or IEnumerable<T>. That's cool stuff to know. I can understand why Eric knows this; he's on the compiler team, so he has to know. But what about those who demonstrate such deep knowledge who are not insiders? How do mere mortals (who are not on the C# compiler team) find out about stuff like this? Specifically, are there methods these folks use to systematically root out such knowledge, explore it and internalize it (make it their own)?

    Read the article

  • How to fix legacy code that uses <string.h> unsafely?

    - by Snowbody
    We've got a bunch of legacy code, written in straight C (some of which is K&R!), which for many, many years has been compiled using Visual C 6.0 (circa 1998) on an XP machine. We realize this is unsustainable, and we're trying to move it to a modern compiler. Political issues have said that the most recent compiler allowed is VC++ 2005. When compiling the project, there are many warnings about the unsafe string manipulation functions used (sprintf(), strcpy(), etc). Reviewing some of these places shows that the code is indeed unsafe; it does not check for buffer overflows. The compiler warning recommends that we move to using sprintf_s(), strcpy_s(), etc. However, these are Microsoft-created (and proprietary) functions and aren't available on (say) gcc (although we're primarily a Windows shop we do have some clients on various flavors of *NIX) How ought we to proceed? I don't want to roll our own string libraries. I only want to go over the code once. I'd rather not switch to C++ if we can help it.

    Read the article

  • Cannot ping host stale ARP cache?

    - by gkchicago
    I am having a strange issue with a Debian (Lenny/Linux 2.6.26-2-amd64) that has been driving me nuts. On some machines within my network I can ping the host in question just fine, other times I have to manually hard-code the ARP ethernet address for the IP in order to establish connectivity. I've finally worked it down to somehow involving ARP. I just found how to fix it in a way that made it work but I'm looking for help explaining this issue and also I don't trust my fix to be permanent.. My thought process has been the following but I just can't make any sense out of it: Could it be the card? (Intel 82555 rev 4) Could it be because there are two network cards? (Default route is eth0) Could it be because of the network aliases? Lenny? AMD x86_64? Argh.. Thank you for any insight you might have // Ping doesn't go thru [gordon@ubuntu ~]$ ping 192.168.135.101 PING 192.168.135.101 (192.168.135.101) 56(84) bytes of data. --- 192.168.135.101 ping statistics --- 4 packets transmitted, 0 received, 100% packet loss, time 3014ms // Here's the ARP Table, sometimes the .151 address is good, sometimes it // also matches the Gateways MAC like .101 is doing right here. [gordon@ubuntu ~]$ cat /proc/net/arp IP address HW type Flags HW address Mask Device 192.168.135.15 0x1 0x2 00:0B:DB:2B:24:89 * eth0 192.168.135.151 0x1 0x2 00:0B:6A:3A:30:A6 * eth0 192.168.135.1 0x1 0x2 00:1A:A2:2D:2A:04 * eth0 192.168.135.101 0x1 0x2 00:1A:A2:2D:2A:04 * eth0 // Drop the bad arp table listing and set it manually based on /sbin/ifconfig [gordon@ubuntu ~]$ sudo arp -d 192.168.135.101 [gordon@ubuntu ~]$ sudo arp -s 192.168.135.101 00:0B:6A:3A:30:A6 // Ping starts going thru..?!? [gordon@ubuntu ~]$ ping 192.168.135.101 PING 192.168.135.101 (192.168.135.101) 56(84) bytes of data. 64 bytes from 192.168.135.101: icmp_seq=1 ttl=64 time=15.8 ms 64 bytes from 192.168.135.101: icmp_seq=2 ttl=64 time=15.9 ms 64 bytes from 192.168.135.101: icmp_seq=3 ttl=64 time=16.0 ms 64 bytes from 192.168.135.101: icmp_seq=4 ttl=64 time=15.9 ms --- 192.168.135.101 ping statistics --- 4 packets transmitted, 4 received, 0% packet loss, time 3012ms rtt min/avg/max/mdev = 15.836/15.943/16.064/0.121 ms The following is my network config on this. gordon@db01:~$ /sbin/ifconfig eth0 Link encap:Ethernet HWaddr 00:0b:6a:3a:30:a6 inet addr:192.168.135.151 Bcast:192.168.135.255 Mask:255.255.255.0 inet6 addr: fe80::20b:6aff:fe3a:30a6/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:15476725 errors:0 dropped:0 overruns:0 frame:0 TX packets:10030036 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:18565307359 (17.2 GiB) TX bytes:3412098075 (3.1 GiB) eth0:0 Link encap:Ethernet HWaddr 00:0b:6a:3a:30:a6 inet addr:192.168.135.150 Bcast:192.168.135.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 eth0:1 Link encap:Ethernet HWaddr 00:0b:6a:3a:30:a6 inet addr:192.168.135.101 Bcast:192.168.135.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 eth1 Link encap:Ethernet HWaddr 00:e0:81:2a:6e:d0 inet addr:10.10.62.1 Bcast:10.10.62.255 Mask:255.255.255.0 inet6 addr: fe80::2e0:81ff:fe2a:6ed0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:10233315 errors:0 dropped:0 overruns:0 frame:0 TX packets:19400286 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1112500658 (1.0 GiB) TX bytes:27952809020 (26.0 GiB) Interrupt:24 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:387 errors:0 dropped:0 overruns:0 frame:0 TX packets:387 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:41314 (40.3 KiB) TX bytes:41314 (40.3 KiB) gordon@db01:~$ sudo mii-tool -v eth0 eth0: negotiated 100baseTx-FD, link ok product info: Intel 82555 rev 4 basic mode: autonegotiation enabled basic status: autonegotiation complete, link ok capabilities: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD flow-control link partner: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD gordon@db01:~$ sudo route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface localnet * 255.255.255.0 U 0 0 0 eth0 10.10.62.0 * 255.255.255.0 U 0 0 0 eth1 default 192.168.135.1 0.0.0.0 UG 0 0 0 eth0

    Read the article

  • Why wireless adatper stop to work?

    - by AndreaNobili
    today I correctly installed the driver for the TP-LINK TL-WN725N USB wireless adapter on my RaspBerry Pi (I use RaspBian that is a Debian), then I setted up the wifi using the wpa-supplicant as explained in this tutorial: http://www.maketecheasier.com/setup-wifi-on-raspberry-pi/ This worked fine untill this evening. Then suddenly it stopped to work when I try to connect in SSH and the Raspberry is on the wireless (or rather it should be, as this is not in the list of my router's DHCP connected Client) The strange thing is that the USB wirless adapter blink so I think that this is not a driver problem. If I try to connect it by the ethernet I have no problem. It appear in my router's DHCP connected Client and I can connect to it by SSH. When I connect to it using ethernet if I perform an ifconfig command I obtain: pi@raspberrypi ~ $ ifconfig eth0 Link encap:Ethernet HWaddr b8:27:eb:2a:9f:b0 inet addr:192.168.1.9 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:48 errors:0 dropped:0 overruns:0 frame:0 TX packets:59 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:6006 (5.8 KiB) TX bytes:8268 (8.0 KiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:8 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1104 (1.0 KiB) TX bytes:1104 (1.0 KiB) wlan0 Link encap:Ethernet HWaddr e8:94:f6:19:80:4c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) So it seems that the wlan0 USB wireless adapter driver is correctly loaded. If I remove the USB wireless adapter and put it again into the USB port, the lasts lines of dmesg log is: [ 20.303172] smsc95xx 1-1.1:1.0 eth0: hardware isn't capable of remote wakeup [ 20.306340] RTL871X: set bssid:00:00:00:00:00:00 [ 20.306726] RTL871X: set ssid [g\xffffffc6isQ\xffffffffJ\xffffffec)\xffffffcd\xffffffba\xffffffba\xffffffab\xfffffff2\xfffffffb\xffffffe3F|\xffffffc2T\xfffffff8\x1b\xffffffe8\xffffffe7\xffffff8dvZ.c3\xffffff9f\xffffffc9\xffffff9a\xffffff9aD\xffffffa7\x1a\xffffffa0\x1a\xffffff8b] fw_state=0x00000008 [ 21.614585] RTL871X: indicate disassoc [ 21.908495] smsc95xx 1-1.1:1.0 eth0: link up, 100Mbps, full-duplex, lpa 0x45E1 [ 25.006282] Adding 102396k swap on /var/swap. Priority:-1 extents:1 across:102396k SSFS [ 26.247997] RTL871X: nolinked power save enter As you can see some of these line are related to the RTL871X that is my USB wireless adapter, but I don't know is that these line report an error or if it is all ok. Looking at the adapter status I obtain: pi@raspberrypi ~ $ ip link list dev wlan0 3: wlan0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN mode DORMANT qlen 1000 link/ether e8:94:f6:19:80:4c brd ff:ff:ff:ff:ff:ff As you can see the mode is DORMANT but I think that this is normal because now I am connected using ethernet. I tryied to set up the adapter but it seems that I obtain no result, infact: pi@raspberrypi ~ $ sudo ip link set dev wlan0 up pi@raspberrypi ~ $ ip link list dev wlan0 3: wlan0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN mode DORMANT qlen 1000 link/ether e8:94:f6:19:80:4c brd ff:ff:ff:ff:ff:ff pi@raspberrypi ~ $ sudo ip link set dev wlan0 up This is my /etc/network/interfaces file content and it is ok: auto lo iface lo inet loopback iface eth0 inet dhcp allow-hotplug wlan0 iface wlan0 inet manual wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf iface default inet dhcp and it is the /etc/wpa_supplicant/wpa_supplicant.conf that I think is ok (I did not change it compared to when it worked): ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev update_config=1 network={ ssid="MY-NETWORK" psk="mypassword" key_mgmt=WPA-PSK } and infact if I execute a network scan I correctly find MY-NETWORK in the network list,infact: pi@raspberrypi ~ $ sudo iwlist wlan0 scan | grep ESSID ESSID:"TeleTu_74888B0060AD" ESSID:"MY-NETWORK" ESSID:"FASTWEB-1-PT6NtjL4TOSe" ESSID:"DC" So I reboot the system and I remove the ethernet cable but when I try to connect again to my raspberry I obatin the following error message: andrea@andrea-virtual-machine:~$ sudo ssh [email protected] ssh: connect to host 192.168.1.9 port 22: No route to host It seems that it can't connect using wireless. What could be the problem? What am I missing? How can I solve this situation? Tnx

    Read the article

  • Unable to connect to OpenVPN server

    - by Incognito
    I'm trying to get a working setup of OpenVPN on my VM and authenticate into it from a client. I'm not sure but it looks to me like it's socket related, as it's not set to LISTEN, and localhost seems wrong. I've never set up VPN before. # netstat -tulpn | grep vpn Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name udp 0 0 127.0.0.1:1194 0.0.0.0:* 24059/openvpn I don't think this is set up correctly. Here's some detail into what I've done. I have a VPS from MediaTemple: These are my interfaces before starting openvpn: lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:39482 errors:0 dropped:0 overruns:0 frame:0 TX packets:39482 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:3237452 (3.2 MB) TX bytes:3237452 (3.2 MB) venet0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:127.0.0.1 P-t-P:127.0.0.1 Bcast:0.0.0.0 Mask:255.255.255.255 UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 RX packets:4885284 errors:0 dropped:0 overruns:0 frame:0 TX packets:4679884 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:835278537 (835.2 MB) TX bytes:1989289617 (1.9 GB) venet0:0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:205.[redacted] P-t-P:205.186.148.82 Bcast:0.0.0.0 Mask:255.255.255.255 UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 I've followed this guide on setting up a basic server and getting a .p12 file, however, I was receiving an error that stated /dev/net/tun was missing, so I created it mkdir -p /dev/net mknod /dev/net/tun c 10 200 chmod 600 /dev/net/tun This resolved the error preventing the service from launching, however, I am unable to connect. On the server I've set up the myserver.conf file (as per the tutorial) to indicate local 127.0.0.1 (I've also attempted with the public IP address, perhaps I don't understand what they mean by local IP?). The server launches without error, this is what the log looks like when it starts: Sun Apr 1 17:21:27 2012 OpenVPN 2.1.3 x86_64-pc-linux-gnu [SSL] [LZO2] [EPOLL] [PKCS11] [MH] [PF_INET6] [eurephia] built on Mar 11 2011 Sun Apr 1 17:21:27 2012 IMPORTANT: OpenVPN's default port number is now 1194, based on an official port number assignment by IANA. OpenVPN 2.0-beta16 and earlier used 5000 as the default port. Sun Apr 1 17:21:27 2012 NOTE: the current --script-security setting may allow this configuration to call user-defined scripts Sun Apr 1 17:21:27 2012 /usr/bin/openssl-vulnkey -q -b 1024 -m <modulus omitted> Sun Apr 1 17:21:27 2012 TUN/TAP device tun0 opened Sun Apr 1 17:21:27 2012 /sbin/ifconfig tun0 10.8.0.1 pointopoint 10.8.0.2 mtu 1500 Sun Apr 1 17:21:27 2012 GID set to openvpn Sun Apr 1 17:21:27 2012 UID set to openvpn Sun Apr 1 17:21:27 2012 UDPv4 link local (bound): [AF_INET]127.0.0.1:1194 Sun Apr 1 17:21:27 2012 UDPv4 link remote: [undef] Sun Apr 1 17:21:27 2012 Initialization Sequence Completed This creates a tun0 interface that looks like this: tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) And the netstat command still indicates the state is not set to LISTEN. On the client-side I've installed the p12 certs onto two devices (one is an android tablet, the other is an Ubuntu desktop). I don't see port 1194 as open either. Both clients install the cert files and then ask me for the L2TP secret (which was set on the file), but then they oddly ask me for a username and a password, which I don't know where I could possibly get those from. I attempted all of my logins, and some whacky guesses that were frantically pulling at straws. If there's any more information I could provide let me know.

    Read the article

  • VirtualBox - Public Static IP for a Debian Guest on a Dedicated Server

    - by user86296
    Goal: I want to run a Debian-squeeze-Guest in VirtualBox and it's own public static ip. I found tons of threads about this topic, but all in all I'm now trying for 10 hours (reading the manual, the forums, trying to learn about networking concepts & commands) to give a Guest his own public static ip (so that the Guest is similar to a vServer you can order from a hosting company), but wasn't able to. Since I'm a big noob as far as networking stuff is concerned, I'm probably doing something wrong.(please bear with me :-) ) Situation: VirtualBox 4.0.10 (headless no gui) is running on a dedicated Debian-Server, the Guest OS is Debian as well. The server has a static ip and I ordered an additional ip for a VM. Problem description: Upto now I was able to use NAT to access the VM from the outside and to setup an internal network between several Guests and all of this worked very well. When setting NIC 1 to bridged and configuring a public static ip on the guest, the guest was unpingable. (neither from outside, nor from the host) I could connect to the guest via the internal network, from another vm, though. ( VBoxManage controlvm VMGuest nic1 bridged eth0 ) ( configuration attempt of static-ip on the guest '/etc/network/interfaces' is below) Please let me know what I'm doing wrong, or what I can try to get it to work, or if you need more info. I think I've read that with a current VirtualBox-version for bridged networking no special host-configuration is necessary, is that accurate, or might that be the problem? Additional Info Info I got from the hosting company about the additional IP Please note that you can use the IP address only for this server. IP: 46.4.xx.xx Gateway: 46.4.xx.xx Mask: 255.255.255.248 VBoxManage showvminfo VMGuest |less ... NIC 1: MAC: 080027D72F7B, Attachment: Bridged Interface 'eth0', Cable connected: on, Trace: off (file: none), Type: 82540EM, Reported speed: 0 Mbps, Boot priority: 0 NIC 2: MAC: 080027B03B75, Attachment: Internal Network 'InternalNet1', Cable connected: on, Trace: off (file: none), Type: Am79C973, Reported speed: 0 Mbps, Boot priority: 0 NIC 3: disabled (...rest is disabled) cat /etc/network/interfaces on the Host-machine # Loopback device: auto lo iface lo inet loopback # device: eth0 auto eth0 iface eth0 inet static address 46.4.xx.xx broadcast 46.4.xx.xx netmask 255.255.255.224 gateway 46.4.xx.xx post-up mii-tool -F 100baseTx-FD eth0 # default route to access subnet up route add -net 46.4.xx.xx netmask 255.255.255.224 gw 46.4.xx.xx eth0 cat /etc/network/interfaces on the Guest-VM # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface allow-hotplug eth0 auto eth0 iface eth0 inet static address 46.4.xx.xx netmask 255.255.255.248 gateway 46.4.xx.xx auto eth1 iface eth1 inet dhcp ifconfig -a on the Guest shows the correct static ip for eth0 but the Guest is unreachable "over eth0" eth0 Link encap:Ethernet HWaddr 08:00:27:d7:2f:7b inet addr:46.4.xx.xx Bcast:46.4.xx.xx Mask:255.255.255.248 inet6 addr: fe80::a00:27ff:fed7:2f7b/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:21 errors:0 dropped:0 overruns:0 frame:0 TX packets:69 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1260 (1.2 KiB) TX bytes:3114 (3.0 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:b0:3b:75 inet addr:192.168.10.3 Bcast:192.168.10.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:feb0:3b75/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:142 errors:0 dropped:0 overruns:0 frame:0 TX packets:92 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:15962 (15.5 KiB) TX bytes:14540 (14.1 KiB) Interrupt:16 Base address:0xd240 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:123 errors:0 dropped:0 overruns:0 frame:0 TX packets:123 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:25156 (24.5 KiB) TX bytes:25156 (24.5 KiB)

    Read the article

  • Have to dhclient each restart to access internet

    - by Zeophlite
    So each time I restart my ubuntu server (virtual 10.04, via Xencenter), I have to call dhclient before I can access the internet: http://img813.imageshack.us/i/dhclient.png/ What do I need to change to get internet access automatically? Apologies for posting images, I'm using Xencenter, so I can't copy/paste the console output EDIT:: daniel@workwork:~$ cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet static address 192.168.69.136 netmask 255.255.255.0 network 192.168.69.0 broadcast 192.168.69.255 gateway 192.168.69.1 # dns-* options are implemented by the resolvconf package, if installed dns-nameservers 192.168.69.120 dns-search workwork.com.au daniel@workwork:~$ ifconfig eth0 Link encap:Ethernet HWaddr ae:11:14:22:0a:03 inet6 addr: fe80::ac11:14ff:fe22:a03/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:32 errors:0 dropped:0 overruns:0 frame:0 TX packets:85 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:10496 (10.4 KB) TX bytes:13086 (13.0 KB) Interrupt:32 Base address:0x6000 eth1 Link encap:Ethernet HWaddr b2:2c:40:f2:a0:fa inet addr:192.168.69.167 Bcast:192.168.69.255 Mask:255.255.255.0 inet6 addr: fe80::b02c:40ff:fef2:a0fa/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:13448 errors:0 dropped:0 overruns:0 frame:0 TX packets:3100 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7679428 (7.6 MB) TX bytes:282286 (282.2 KB) Interrupt:36 Base address:0xa100 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:179 errors:0 dropped:0 overruns:0 frame:0 TX packets:179 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:36905 (36.9 KB) TX bytes:36905 (36.9 KB) daniel@workwork:/var/lib/dhcp3$ cat dhclient.leases lease { interface "eth1"; fixed-address 192.168.69.167; filename "boot\\x86\\wdsnbp.com"; option subnet-mask 255.255.255.0; option routers 192.168.69.1; option dhcp-lease-time 28800; option dhcp-message-type 5; option domain-name-servers 192.168.69.120,192.168.69.121; option dhcp-server-identifier 192.168.69.120; option dhcp-renewal-time 14400; option dhcp-rebinding-time 25200; option domain-name "workwork.com.au"; renew 5 2011/03/18 07:36:53; rebind 5 2011/03/18 11:35:39; expire 5 2011/03/18 12:35:39; } lease { interface "eth1"; fixed-address 192.168.69.167; filename "boot\\x86\\wdsnbp.com"; option subnet-mask 255.255.255.0; option routers 192.168.69.1; option dhcp-lease-time 28800; option dhcp-message-type 5; option domain-name-servers 192.168.69.120,192.168.69.121; option dhcp-server-identifier 192.168.69.120; option dhcp-renewal-time 14400; option dhcp-rebinding-time 25200; option domain-name "workwork.com.au"; renew 5 2011/03/18 08:51:58; rebind 5 2011/03/18 12:24:16; expire 5 2011/03/18 13:24:16; } daniel@workwork:/var/lib/dhcp3$ cat dhclient.eth0.leases daniel@workwork:/var/lib/dhcp3$ ifconfig eth1 before and after dhclient http://img692.imageshack.us/i/prepost.png/

    Read the article

  • PHP.ini does not load

    - by Jonathan Park
    Ok this is probably just me not knowing enough about php but here it goes. I'm on Ubuntu Hardy. I have a custom compiled version of PHP which I have compiled with these parameters. ./configure --enable-soap --with-zlib --with-mysql --with-apxs2=[correct path] --with-config-file-path=[correct path] --with-mysqli --with-curlwrappers --with-curl --with-mcrypt I have used the command pecl install pecl_http to install the http.so extension. It is in the correct module directory for my php.ini. My php.ini is loading and I can change things within the ini and effect php. I have included the extension=http.so line in my php.ini. That worked fine. Until I added these compilation options in order to add imap --with-openssl --with-kerberos --with-imap --with-imap-ssl Which failed because I needed the c-client library which I fixed by apt-get install libc-client-dev After which php compiles fine and I have working imap support, woo. HOWEVER, now all my calls to HttpRequest which is part of the pecl_http extention in http.so result in Fatal error: Class 'HttpRequest' not found errors. I figure the http.so module is no longer loading for one reason or another but I cannot find any errors showing the reason. You might say "Have you tried undoing the new imap setup?" To which I will answer. Yes I have. I directly undid all my config changes and uninstalled the c-client library and I still can't get it to work. I thought that's weird... I have made no changes that would have resulted in this issue. After looking at that I have also discovered that not only is the http extension no longer loading but all my extensions loaded via php.ini are no longer loading. Can someone at least give me some further debugging steps? So far I have tried enabling all errors including startup errors in my php.ini which works for other errors, but I'm not seeing any startup errors either on command line or via apache. And yet again the php.ini appears to be being parsed given that if I run php_info() I get settings that are in the php.ini. Edit it appears that only some of the php.ini settings are being listened to. Is there a way to test my php.ini? Edit Edit It appears I am mistaken again and the php.ini is not being loaded at all any longer. However, If I run php_info() I get that it's looking for my php.ini in the correct location. Edit Edit Edit My config is at the config file path location below but it says no config file loaded. WTF Permission issue? It is currently 644 so everyone should be able to read it if not write it. I tried making it 777 and that didn't work. Configuration File (php.ini) Path /etc/php.ini Loaded Configuration File (none) Edit Edit Edit Edit By loading the ini on the command line using the -c command I am able to run my files and using -m shows that my modules load So nothing is wrong with the php.ini

    Read the article

  • vagrant fails to bring up additional adapter for centos vm using virtual box provider

    - by Anadi Misra
    this is in continuation of the question asked here about host only adapter on dhcp I upgraded to vagrant 1.6.3 and the updated Vagrantfile to following setting for multiple adapters # add additional adapter for inter machine networking dev.vm.network :private_network, :type => "dhcp", :adapter => "2", :netmask => "255.255.255.0" it goes through creating adapters but then fails bringing up the mic on vm Anadis-MacBook-Pro:full-stack-env anadi$ vagrant up Bringing machine 'full-stack-env' up with 'virtualbox' provider... ==> full-stack-env: Clearing any previously set forwarded ports... ==> full-stack-env: Clearing any previously set network interfaces... ==> full-stack-env: Preparing network interfaces based on configuration... full-stack-env: Adapter 1: nat full-stack-env: Adapter 2: hostonly ==> full-stack-env: Forwarding ports... full-stack-env: 22 => 4223 (adapter 1) full-stack-env: 8080 => 8090 (adapter 1) ==> full-stack-env: Running 'pre-boot' VM customizations... ==> full-stack-env: Booting VM... ==> full-stack-env: Waiting for machine to boot. This may take a few minutes... full-stack-env: SSH address: 127.0.0.1:4223 full-stack-env: SSH username: vagrant full-stack-env: SSH auth method: private key full-stack-env: Warning: Connection timeout. Retrying... full-stack-env: Warning: Connection timeout. Retrying... full-stack-env: Warning: Remote connection disconnect. Retrying... ==> full-stack-env: Machine booted and ready! ==> full-stack-env: Checking for guest additions in VM... ==> full-stack-env: Setting hostname... ==> full-stack-env: Configuring and enabling network interfaces... The following SSH command responded with a non-zero exit status. Vagrant assumes that this means the command failed! ARPCHECK=no /sbin/ifup eth 2> /dev/null Stdout from the command: Device eth does not seem to be present, delaying initialization. Stderr from the command: how ever when I log in to the environment I see two network interfaces as expected Anadis-MacBook-Pro:full-stack-env anadi$ vagrant ssh Last login: Wed Jun 4 12:54:47 2014 from 10.0.2.2 [vagrant@full-stack-env ~]$ ifconfig eth0 Link encap:Ethernet HWaddr 08:00:27:BD:39:57 inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:febd:3957/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:511 errors:0 dropped:0 overruns:0 frame:0 TX packets:360 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:54574 (53.2 KiB) TX bytes:46675 (45.5 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:A3:86:C9 inet addr:172.28.128.3 Bcast:172.28.128.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fea3:86c9/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1360 (1.3 KiB) TX bytes:894 (894.0 b) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) I am bit confused here on why it is trying to add another mic (eth2)? In the VM I used for creating this vagrant box, I had added two NICs already.

    Read the article

  • Ubuntu Server, 2 Ethernet Devices, Same Gateway - Want to force internet traffic through 1 device (or at least allow it to work!)

    - by Chris Drumgoole
    I have a Ubuntu 10.04 Server with 2 ethernet devices, eth0 and eth1. eth0 has a static IP of 192.168.1.210 eth1 has a static IP if 192.168.1.211 The DHCP server (which also serves as the internet gateway) sits at 192.168.1.1. The issue I have right now is when I have both plugged in, I can connect to both IPs over SSH internally, but I can't connect to the internet from the server. If I unplug one of the devices (e.g. eth1), then it works, no problem. (Also, I get the same result when I run sudo ifconfig eth1 down). Question, how can I configure it so that I can have both devices eth0 and eth1 play nice on the same network, but allow internet access as well? (I am open to either enforcing all inet traffic going through a single device, or through both, I'm flexible). From my google searching, it seems I could have a unique (or not popular) problem, so haven't been able to find a solution. Is this something that people generally don't do? The reason I want to make use of both ethernet devices is because I want to run different local traffic services on on both to split the load, so to speak... Thanks in advance. UPDATE Contents of /etc/network/interfaces: # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp # The secondary network interface #auto eth1 #iface eth1 inet dhcp (Note: above, I commented out the last 2 lines because I thought that was causing issues... but it didn't solve it) netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 192.168.1.1 255.255.255.0 UG 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 UPDATE 2 I made a change to the /etc/network/interfaces file as suggested by Kevin. Before I display the file contents and the route table, when I am logged into the server (through SSH), I can not ping an external server, so this is the same issue I was experiencing that led to me posting this question. I ran a /etc/init.d/networking restart after making the file changes. Contents of /etc/network/interfaces: # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp address 192.168.1.210 netmask 255.255.255.0 gateway 192.168.1.1 # The secondary network interface auto eth1 iface eth1 inet dhcp address 192.168.1.211 netmask 255.255.255.0 ifconfig output eth0 Link encap:Ethernet HWaddr 78:2b:cb:4c:02:7f inet addr:192.168.1.210 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::7a2b:cbff:fe4c:27f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:6397 errors:0 dropped:0 overruns:0 frame:0 TX packets:683 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:538881 (538.8 KB) TX bytes:85597 (85.5 KB) Interrupt:36 Memory:da000000-da012800 eth1 Link encap:Ethernet HWaddr 78:2b:cb:4c:02:80 inet addr:192.168.1.211 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::7a2b:cbff:fe4c:280/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5799 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:484436 (484.4 KB) TX bytes:1184 (1.1 KB) Interrupt:48 Memory:dc000000-dc012800 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:635 errors:0 dropped:0 overruns:0 frame:0 TX packets:635 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:38154 (38.1 KB) TX bytes:38154 (38.1 KB) netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

    Read the article

  • Including configuration files while compiling a Flex application with MXMLC

    - by Daniel
    Hello there, I'm using: - Flex SDK 3.5.0 - Parsley 2.2.2. - Flash Builder 4 Down in my src folder (which is configured as part of the source path in the Flash Builder), I have a logging.xml which I configure via Parsley: FlexLoggingXmlSupport.initialize(); XmlContextBuilder.build("com/company/product/util/log/logging.xml"); When I run my application through Flash Builder, the XmlContentBuilder seems to locate the logging.xml (the implementation is a regular URLLoader one). When I compile my application using MXMLC (whether in Ant or command-line), and then run the swf, I get the following error: Cause(0): Error loading com/company/product/util/log/logging.xml: Error in URLLoader - cause: Error #2032: Stream Error. URL: file:///C|/workspace/folder01/product/target/com/company/product/util/log/logging.xml - cause: Error #2032: Stream Error. URL: file:///C|/workspace/folder01/product/target/com/company/product/util/log/logging.xml Here is the MXMLC tag in Ant: <mxmlc file="${product.src.dir}/com/company/product/view/Main.mxml" output="${product.target.dir}/${product.release.filename}" keep-generated-actionscript="false"> <load-config filename="${FLEX_HOME}/frameworks/flex-config.xml" /> <!-- source paths --> <source-path path-element="${FLEX_HOME}/frameworks" /> <compiler.source-path path-element="${product.src.dir}" /> <compiler.source-path path-element="${product.locale.dir}/{locale}" /> <compiler.library-path dir="${product.basedir}" append="true"> <include name="libs" /> </compiler.library-path> <warnings>false</warnings> <debug>false</debug> </mxmlc> And here is the command line: \mxmlc.exe -output "C:\temp\Rap.swf" -load-config "C:\Program Files\Adobe\Adobe Flash Builder 4 Plug-in\sdks\3.5.0\frameworks\flex-config.xml" -source-path "C:\Program Files\Adobe\Adobe Flash Builder 4 Plug-in\sdks\3.5.0\frameworks" C:\workspace\folder01\product\src C:\workspace\folder01\product\locale\en_US -library-path+=C:\workspace\folder01\product\libs -file-specs C:\workspace\folder01\product\src\com\company\product\view\main.mxml Now perhaps I don't get this correctly, but as far as I understand the SWF should be compiled with all of the resources in the paths I give MXMLC as source-paths. For some reason it seems that the XML file is not compiled into the SWF, hence the relative path of the XmlContentBuilder isn't located successfully. I could not find any argument to provide the MXMLC with that might solve this. I tried using the -dump-config option with the Flash Builder's compiler, then giving that configuration to MXMLC, but it didn't work either. I tried providing the XmlContentBuilder with an absolute path. That worked fine when I compiled with MXMLC via Ant, but still didn't work when I used MXMLC in the command-line... I'd be happy to be enlightened here, regarding all subjects - using MXMLC, accessing resources with relative paths, configuring logging in Parsley, etc. Many thanks in advance, Daniel

    Read the article

  • compile AMR-nb codec with RVCT for WinCE/Window Mobile

    - by pps
    Hello everybody, I'm working on amr speech codec (porting/optimization) I have an arm (for WinCE) optimized version from voiceage and I use it as a reference in performance testing. So far, binary produced with my lib beats the other one by around 20-30%! I use Vs2008 and I have limited access to ARM instruction set I can generate with Microsoft compiler. So I tried to look for alternative compiler to see what would be performance difference. I have RVCT compiler, but it produces elf binaries/object files. However, I run my test on a wince mobile phone (TyTn 2) so I need to find a way to run code compiled with RVCT on WinCE. Some of the options are 1) to produce assembly listing (-S option of armcc), and try to assemble with some other assembler that can create COFF (MS assembler for arm) 2) compile and convert generated ELF object file to COFF object (seems like objcopy of gnu binutils could help me with that) 3) using fromelf utility supplied by RVCT create BIN file and somehow try to mangle the bits so I can execute them ;) My first attempt is to create a simple c++ file with one exported function, compile it with RVCT and then try to run that function on the smartphone. The emitted assembly cannot be assembled by the ms assembler (not only they are not compatible, but also ms assembler rejects some of the instructions generated with RVCT compiler; ASR opcode in my case) Then I tried to convert ELF object to coff format and I can't find any information on that. There is a gcc port for ce and objcopy from that toolset is supposed to be able to do the task. However, I can't get it working. I tried different switches, but I have no idea what exactly I need to specify as bfdname for input and output format. So, I couldn't get it working either. Dumping with fromelf and using generated bin file seems to be overkill, so I decided to ask you guys if there is anything I should try to do or maybe someone has already done similar task and could help me. Basically, all I want to do is to compile my code with RVCT compiler and see what's the performance difference. My code has zero dependencies on any c runtime functions. thanks!

    Read the article

  • Another C datatypes question

    - by b-gen-jack-o-neill
    Hello. Well, I completely get the most basic datatypes of C, like short, int, long, float, to be exact, all numerical types.These types are needed to be known perform right operations with right numbers. For example to use FPU to add two float numbers. So the compiler must know what the type is. But, when it comes to characters I am little bit off. I know that basic C datatype char is there for ASCII characters coding. But what I don´t know is, why you even need another datatype for characters. Why could not you just use 1 byte integer value to store ASCII character. If you call printf, you apecify the datatype in the call, so you could say to printf that the integer represents ASCII character. I dont know how cout resolves datatype, but I guess you could just specify it somehow. Another thing is, when you want to use Unicode, you must use datatype wchar. But, what if I would like to use some another, for example ISO, or Windows coding instead of UTF? Becouse wchar codes characters as UTF-16 or UTF-32 (I read its compiler specific). And, what if I would want to use for example some imaginary new 8 byte text coding? What datatype should I use for it? I am actually pretty confused of this, becouse I always expected that if I want to use UTF-32 instead of ASCII, I just tell compiler "get UTF-32 value of the character I typed and save it into 4 char field." I thought that text coding is to be dealt with by the end, print function for example. That I just need to specify the coding for the compiler to use, since Windows doesent use ASCII in win32 apps, I guess C compiler must convert the char I typed to ASCII from whatever the type is that windows sends to the C editor. And the last thing is, what if I want to use for example 25 Byte integer for some high math operations? C has no specify-yourself datatype. Yes, I know that this would be difficult since all the math operations would need to be changed, becouse CPU can not add 25 Bytes numbers together. But is there a way to do it? Or is there some math library for it? What if I want to compute Pi to 1000000000000000 digits? :) I know my question is pretty long, but I just wanted to explain my thoughts the best I can in English, since its not my native language it is difficult. And I believe there is simple answer to my question(s), something I missed that explains everything. I read lot about text coding, C tutorials, but nothing about his. Thank you for your time.

    Read the article

  • Why i disconnect every few seconds? using USB wireless adapter

    - by Rev3rse
    i know it's for ubuntu questions..but mint and ubuntu are very similiar and i had the same problem with linux ubuntu too..so i think this is the right place for my question anyway i don't have experience with drivers and other things,after installing Linux on my machine( i did dist-upgrade btw) everything seem to be great because i didn't have to install any driver, after a while i realized that my connection stop after few minutes(actually it shows that I'm connected but it's not) so i have to reconnect and after few minutes it disconnect again. I'm using Alfa USB wireless adapter AWS036H, and my Linux version is 11 i think the driver i'm using is Realtek i searched in the Internet and i found nothing. these are some outputs of few things people usually ask for: Note: I'm NOT using a laptop. dmsg: [19445.604448] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.174.220.77 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=104 ID=10466 DF PROTO=TCP SPT=55150 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19448.164050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=41982 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=7566 DF PROTO=TCP INCOMPLETE [8 bytes] ] [19465.079565] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.128.216.31 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=5100 DF PROTO=TCP SPT=50169 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19486.270328] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.130.13.122 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=22207 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19497.480522] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [19497.593276] cfg80211: All devices are disconnected, going to restore regulatory settings [19497.593282] cfg80211: Restoring regulatory settings [19497.593346] cfg80211: Calling CRDA to update world regulatory domain [19497.638740] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [19497.638745] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638749] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [19497.638753] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638756] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [19497.638760] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638763] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [19497.638766] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638770] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [19497.638773] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638776] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [19497.638780] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638783] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [19497.638787] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638790] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [19497.638794] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638797] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [19497.638801] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638804] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [19497.638807] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638811] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [19497.638814] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638817] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [19497.638821] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638824] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [19497.638828] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638831] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [19497.638835] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638838] cfg80211: World regulatory domain updated: [19497.638841] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [19497.638845] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638848] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638852] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638855] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638859] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19513.145150] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [19513.146910] wlan0: authenticated [19513.252775] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [19513.255149] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [19513.255154] wlan0: associated [19515.675091] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=42720 DF PROTO=TCP SPT=1945 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19525.684312] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=49890 DF PROTO=TCP SPT=53401 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19551.856766] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=85.228.39.93 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=103 ID=1162 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19564.623005] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.202.21.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=17881 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19584.855364] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.49.151.87 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=117 ID=31716 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19604.688647] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.225.124.155 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=6656 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19626.362529] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.184.50.41 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=23241 DF PROTO=TCP SPT=1416 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19645.040906] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=92.250.245.244 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=51 ID=0 DF PROTO=TCP SPT=50061 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19665.212659] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.183.3.18 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=111 ID=1689 DF PROTO=TCP SPT=62817 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19685.036415] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=50638 DF PROTO=TCP SPT=49624 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19705.487915] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.122.17.82 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=112 ID=19070 DF PROTO=TCP SPT=54795 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19726.779185] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.88.116.239 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=32168 DF PROTO=TCP SPT=57330 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19744.755673] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.124.5.43 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=2288 DF PROTO=TCP SPT=6475 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19764.449183] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.216.35.19 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4281 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19784.456189] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.82.25.149 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=1866 DF PROTO=TCP SPT=59507 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19804.836687] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.56.199.3 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=14749 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19824.812685] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=186.28.7.159 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=44686 PROTO=UDP SPT=23418 DPT=6881 LEN=28 [19847.683314] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=63046 DF PROTO=TCP SPT=52192 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19884.711455] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=27914 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19884.983589] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.107.130.61 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=7742 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19905.681078] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=95.21.11.121 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=31775 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19926.035707] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.76.132.55 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=28140 DF PROTO=TCP SPT=51905 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19945.668326] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=188.92.0.197 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=7865 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19967.200339] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.102.172 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=105 ID=28408 DF PROTO=TCP SPT=63505 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19999.752732] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.166.171.200 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=36405 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20007.928719] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.235.59.16 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=46415 DF PROTO=TCP SPT=4537 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [20026.181726] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.182.169.36 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=106 ID=25126 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20048.845358] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.66.118.104 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=111 ID=18068 DF PROTO=TCP SPT=49928 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20064.341857] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=77.2.63.153 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=7242 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20090.093490] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=93.16.17.210 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=894 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20104.443995] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=89.83.235.99 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=17295 DF PROTO=TCP SPT=58979 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20128.625374] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.62.91.79 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=21793 DF PROTO=TCP SPT=51446 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20151.055506] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.135.217.213 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=112 ID=32452 DF PROTO=TCP SPT=55136 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20164.618874] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=47784 DF PROTO=TCP SPT=2422 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20184.337745] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.212.71 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=14544 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20205.007512] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.62.158.247 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=21562 DF PROTO=TCP SPT=3933 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20225.204018] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=113 ID=15045 DF PROTO=TCP SPT=49630 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20244.842290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=82.82.190.168 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=23741 DF PROTO=TCP SPT=50766 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20266.701649] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=88.153.108.124 DST=192.168.1.6 LEN=48 TOS=0x02 PREC=0x00 TTL=111 ID=206 DF PROTO=TCP SPT=2451 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20286.305414] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.240.86.73 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=107 ID=325 DF PROTO=TCP SPT=65184 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20294.293989] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43133 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56899 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297015] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43134 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12080 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297242] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43135 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25195 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20295.478338] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [20295.552735] cfg80211: All devices are disconnected, going to restore regulatory settings [20295.552742] cfg80211: Restoring regulatory settings [20295.552748] cfg80211: Calling CRDA to update world regulatory domain [20295.680635] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [20295.680641] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680644] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [20295.680648] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680652] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [20295.680655] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680658] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [20295.680662] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680665] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [20295.680669] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680672] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [20295.680676] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680679] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [20295.680683] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680687] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [20295.680690] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680693] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [20295.680697] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680700] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [20295.680704] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680708] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [20295.680711] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680715] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [20295.680718] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680722] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [20295.680725] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680728] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [20295.680732] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680736] cfg80211: World regulatory domain updated: [20295.680738] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [20295.680742] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680745] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680749] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680752] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680756] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20306.009341] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [20306.011225] wlan0: authenticated [20306.118095] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [20306.120963] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [20306.120967] wlan0: associated [20307.364427] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.91.101.130 DST=192.168.1.6 LEN=64 TOS=0x00 PREC=0x00 TTL=49 ID=36839 DF PROTO=TCP SPT=62492 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20310.914290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43180 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56900 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.936634] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43181 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12081 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.939017] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43182 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25196 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20325.941050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.118.78.99 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4407 PROTO=UDP SPT=2970 DPT=6881 LEN=28 [20328.801724] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43196 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56901 DF PROTO=TCP INCOMPLETE [8 bytes] ] ... inxi -N Network: Card-1 Realtek RTL8101E/RTL8102E PCI Express Fast Ethernet controller driver r8169 Card-2 Realtek RTL-8139/8139C/8139C+ driver 8139too /usr/lib/linuxmint/mintWifi/mintWifi.py ------------------------- * I. scanning WIFI PCI devices... ------------------------- * II. querying ndiswrapper... ------------------------- * III. querying iwconfig... lo no wireless extensions. eth0 no wireless extensions. eth1 no wireless extensions. wlan0 IEEE 802.11bg ESSID:"Home" Mode:Managed Frequency:2.437 GHz Access Point: 00:24:C8:4B:46:E0 Bit Rate=54 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=68/70 Signal level=-42 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:1132 Missed beacon:0 ------------------------- * IV. querying ifconfig... eth0 Link encap:Ethernet HWaddr 00:1f:d0:c9:b8:8e UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:43 Base address:0x4000 eth1 Link encap:Ethernet HWaddr 00:0e:2e:77:88:16 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0xd000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:10696 errors:0 dropped:0 overruns:0 frame:0 TX packets:10696 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:3823011 (3.8 MB) TX bytes:3823011 (3.8 MB) wlan0 Link encap:Ethernet HWaddr 00:c0:ca:44:62:d1 inet addr:192.168.1.6 Bcast:255.255.255.255 Mask:255.255.255.0 inet6 addr: fe80::2c0:caff:fe44:62d1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:90424 errors:0 dropped:0 overruns:0 frame:0 TX packets:65201 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:98024465 (98.0 MB) TX bytes:10345450 (10.3 MB) ------------------------- * V. querying DHCP... lspci 00:00.0 Host bridge: Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller (rev 10) 00:01.0 PCI bridge: Intel Corporation 82G33/G31/P35/P31 Express PCI Express Root Port (rev 10) 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01) 00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01) 00:1d.0 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 (rev 01) 00:1d.1 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 (rev 01) 00:1d.2 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 (rev 01) 00:1d.3 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 (rev 01) 00:1d.7 USB Controller: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller (rev 01) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1) 00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01) 00:1f.2 IDE interface: Intel Corporation N10/ICH7 Family SATA IDE Controller (rev 01) 00:1f.3 SMBus: Intel Corporation N10/ICH 7 Family SMBus Controller (rev 01) 01:00.0 VGA compatible controller: nVidia Corporation G96 [GeForce 9400 GT] (rev a1) 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 02) 04:01.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) lsmod Module Size Used by ipt_REJECT 12512 1 ipt_LOG 12784 5 xt_limit 12541 7 xt_tcpudp 12531 8 ipt_addrtype 12535 4 xt_state 12514 7 ip6table_filter 12711 1 ip6_tables 22545 1 ip6table_filter nf_nat_irc 12542 0 nf_conntrack_irc 13138 1 nf_nat_irc nf_nat_ftp 12548 0 nf_nat 24827 2 nf_nat_irc,nf_nat_ftp nf_conntrack_ipv4 19024 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13106 1 nf_nat_ftp nf_conntrack 69744 7 xt_state,nf_nat_irc,nf_conntrack_irc,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18125 1 iptable_filter x_tables 21907 10 ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,ipt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables nls_utf8 12493 10 udf 83795 1 crc_itu_t 12627 1 udf usb_storage 43946 1 uas 17676 0 snd_seq_dummy 12686 0 cryptd 19801 0 aes_i586 16956 1 aes_generic 38023 1 aes_i586 binfmt_misc 13213 1 dm_crypt 22463 0 vesafb 13449 1 nvidia 9766978 44 arc4 12473 2 rtl8187 56206 0 mac80211 257001 1 rtl8187 cfg80211 156212 2 rtl8187,mac80211 ppdev 12849 0 snd_hda_codec_realtek 255882 1 parport_pc 32111 1 psmouse 73312 0 eeprom_93cx6 12653 1 rtl8187 snd_hda_intel 24113 5 snd_hda_codec 90901 2 snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13274 1 snd_hda_codec snd_pcm 80042 3 snd_hda_intel,snd_hda_codec snd_seq_midi 13132 0 snd_rawmidi 25269 1 snd_seq_midi snd_seq_midi_event 14475 1 snd_seq_midi snd_seq 51291 3 snd_seq_dummy,snd_seq_midi,snd_seq_midi_event snd_timer 28659 2 snd_pcm,snd_seq snd_seq_device 14110 4 snd_seq_dummy,snd_seq_midi,snd_rawmidi,snd_seq joydev 17322 0 snd 55295 18 snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device serio_raw 12990 0 soundcore 12600 1 snd snd_page_alloc 14073 2 snd_hda_intel,snd_pcm lp 13349 0 parport 36746 3 ppdev,parport_pc,lp usbhid 41704 0 hid 77084 1 usbhid dm_raid45 88410 0 xor 21860 1 dm_raid45 btrfs 527388 0 zlib_deflate 26594 1 btrfs libcrc32c 12543 1 btrfs 8139too 23208 0 8139cp 22497 0 r8169 42534 0 floppy 60032 0

    Read the article

  • How to get SQL Railroad Diagrams from MSDN BNF syntax notation.

    - by Phil Factor
    pre {margin-bottom:.0001pt; font-size:8.0pt; font-family:"Courier New"; margin-left: 0cm; margin-right: 0cm; margin-top: 0cm; } On SQL Server Books-On-Line, in the Transact-SQL Reference (database Engine), every SQL Statement has its syntax represented in  ‘Backus–Naur Form’ notation (BNF)  syntax. For a programmer in a hurry, this should be ideal because It is the only quick way to understand and appreciate all the permutations of the syntax. It is a great feature once you get your eye in. It isn’t the only way to get the information;  You can, of course, reverse-engineer an understanding of the syntax from the examples, but your understanding won’t be complete, and you’ll have wasted time doing it. BNF is a good start in representing the syntax:  Oracle and SQLite go one step further, and have proper railroad diagrams for their syntax, which is a far more accessible way of doing it. There are three problems with the BNF on MSDN. Firstly, it is isn’t a standard version of  BNF, but an ancient fork from EBNF, inherited from Sybase. Secondly, it is excruciatingly difficult to understand, and thirdly it has a number of syntactic and semantic errors. The page describing DML triggers, for example, currently has the absurd BNF error that makes it state that all statements in the body of the trigger must be separated by commas.  There are a few other detail problems too. Here is the offending syntax for a DML trigger, pasted from MSDN. Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) CREATE TRIGGER [ schema_name . ]trigger_name ON { table | view } [ WITH <dml_trigger_option> [ ,...n ] ] { FOR | AFTER | INSTEAD OF } { [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] } [ NOT FOR REPLICATION ] AS { sql_statement [ ; ] [ ,...n ] | EXTERNAL NAME <method specifier [ ; ] > }   <dml_trigger_option> ::=     [ ENCRYPTION ]     [ EXECUTE AS Clause ]   <method_specifier> ::=  This should, of course, be /* Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) */ CREATE TRIGGER [ schema_name . ]trigger_name ON { table | view } [ WITH <dml_trigger_option> [ ,...n ] ] { FOR | AFTER | INSTEAD OF } { [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] } [ NOT FOR REPLICATION ] AS { {sql_statement [ ; ]} [ ...n ] | EXTERNAL NAME <method_specifier> [ ; ] }   <dml_trigger_option> ::=     [ ENCRYPTION ]     [ EXECUTE AS CLAUSE ]   <method_specifier> ::=     assembly_name.class_name.method_name I’d love to tell Microsoft when I spot errors like this so they can correct them but I can’t. Obviously, there is a mechanism on MSDN to get errors corrected by using comments, but that doesn’t work for me (*Error occurred while saving your data.”), and when I report that the comment system doesn’t work to MSDN, I get no reply. I’ve been trying to create railroad diagrams for all the important SQL Server SQL statements, as good as you’d find for Oracle, and have so far published the CREATE TABLE and ALTER TABLE railroad diagrams based on the BNF. Although I’ve been aware of them, I’ve never realised until recently how many errors there are. Then, Colin Daley created a translator for the SQL Server dialect of  BNF which outputs standard EBNF notation used by the W3C. The example MSDN BNF for the trigger would be rendered as … /* Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) */ create_trigger ::= 'CREATE TRIGGER' ( schema_name '.' ) ? trigger_name 'ON' ( table | view ) ( 'WITH' dml_trigger_option ( ',' dml_trigger_option ) * ) ? ( 'FOR' | 'AFTER' | 'INSTEAD OF' ) ( ( 'INSERT' ) ? ( ',' ) ? ( 'UPDATE' ) ? ( ',' ) ? ( 'DELETE' ) ? ) ( 'NOT FOR REPLICATION' ) ? 'AS' ( ( sql_statement ( ';' ) ? ) + | 'EXTERNAL NAME' method_specifier ( ';' ) ? )   dml_trigger_option ::= ( 'ENCRYPTION' ) ? ( 'EXECUTE AS CLAUSE' ) ?   method_specifier ::= assembly_name '.' class_name '.' method_name Colin’s intention was to allow anyone to paste SQL Server’s BNF notation into his website-based parser, and from this generate classic railroad diagrams via Gunther Rademacher's Railroad Diagram Generator.  Colin's application does this for you: you're not aware that you are moving to a different site.  Because Colin's 'translator' it is a parser, it will pick up syntax errors. Once you’ve fixed the syntax errors, you will get the syntax in the form of a human-readable railroad diagram and, in this form, the semantic mistakes become flamingly obvious. Gunter’s Railroad Diagram Generator is brilliant. To be able, after correcting the MSDN dialect of BNF, to generate a standard EBNF, and from thence to create railroad diagrams for SQL Server’s syntax that are as good as Oracle’s, is a great boon, and many thanks to Colin for the idea. Here is the result of the W3C EBNF from Colin’s application then being run through the Railroad diagram generator. create_trigger: dml_trigger_option: method_specifier:   Now that’s much better, you’ll agree. This is pretty easy to understand, and at this point any error is immediately obvious. This should be seriously useful, and it is to me. However  there is that snag. The BNF is generally incorrect, and you can’t expect the average visitor to mess about with it. The answer is, of course, to correct the BNF on MSDN and maybe even add railroad diagrams for the syntax. Stop giggling! I agree it won’t happen. In the meantime, we need to collaboratively store and publish these corrected syntaxes ourselves as we do them. How? GitHub?  SQL Server Central?  Simple-Talk? What should those of us who use the system  do with our corrected EBNF so that anyone can use them without hassle?

    Read the article

  • eth0:0 is configured but not listed in ifconfig output

    - by FractalizeR
    Hello. I have the following problem: My server was given two IPs from [b]different[/b] subnets. Now I am trying to configure the system to work properly. I have created [root@server ~]# cat /etc/sysconfig/network-scripts/ifcfg-eth0 # Intel Corporation 80003ES2LAN Gigabit Ethernet Controller (Copper) HWADDR=00:30:48:DA:B1:0E DEVICE=eth0 BOOTPROTO=none BROADCAST=79.174.69.255 IPADDR=79.174.69.241 NETMASK=255.255.254.0 NETWORK=79.174.68.0 ONBOOT=yes GATEWAY=79.174.68.1 TYPE=Ethernet [root@server ~]# cat /etc/sysconfig/network-scripts/ifcfg-eth0:0 # Intel Corporation 80003ES2LAN Gigabit Ethernet Controller (Copper) HWADDR=00:30:48:DA:B1:0E DEVICE=eth0 BOOTPROTO=none BROADCAST=79.174.69.255 IPADDR=79.174.71.74 NETMASK=255.255.255.0 NETWORK=79.174.71.1 ONBOOT=yes GATEWAY=79.174.71.1 TYPE=Ethernet But both after "service network restart" and after "reboot" [root@server ~]# ifconfig eth0 Link encap:Ethernet HWaddr 00:30:48:DA:B1:0E inet addr:79.174.71.74 Bcast:79.174.71.255 Mask:255.255.255.0 inet6 addr: fe80::230:48ff:feda:b10e/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:910284 errors:0 dropped:0 overruns:0 frame:0 TX packets:2924 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:257964879 (246.0 MiB) TX bytes:232450 (227.0 KiB) Memory:df220000-df240000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:27 errors:0 dropped:0 overruns:0 frame:0 TX packets:27 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:6976 (6.8 KiB) TX bytes:6976 (6.8 KiB) Device eth0:0 is not shown as active. If I try [root@server ~]# ifconfig eth0:0 eth0:0 Link encap:Ethernet HWaddr 00:30:48:DA:B1:0E UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Memory:df220000-df240000 It is shown as up and running, but IP is not assigned to it. Also it is strange, that IP address assigned to eth0:0 in config file is used by eth0. /var/log/messages shows nothing about network configuration errors on either eth0 or eth0:0. system-config-network seem to understand all settings correctly and resaves them ok also. "ifup eth0:0" executes ok, but ifconfig afterwards shows no eth0:0 device after that. What did I do wrong? May be the problem is that IPs are from different subnets?

    Read the article

  • Error on installing SVN extension with pecl

    - by thedp
    Hello, I'm trying to install the following PHP extension: http://php.net/manual/en/book.svn.php But when I do pecl install svn-beta I receive an error message that it can't locate the svn_client.h file. I searched the net but couldn't find any useful reference to this error. Thank you for your help. Installation result: root@myUbuntu:/home/thedp# pecl install svn-beta downloading svn-0.5.1.tgz ... Starting to download svn-0.5.1.tgz (23,563 bytes) .....done: 23,563 bytes 4 source files, building running: phpize Configuring for: PHP Api Version: 20041225 Zend Module Api No: 20060613 Zend Extension Api No: 220060519 1. Please provide the prefix of Subversion installation : autodetect 1-1, 'all', 'abort', or Enter to continue: 1. Please provide the prefix of the APR installation used with Subversion : autodetect 1-1, 'all', 'abort', or Enter to continue: building in /var/tmp/pear-build-root/svn-0.5.1 running: /tmp/pear/temp/svn/configure --with-svn --with-svn-apr checking for grep that handles long lines and -e... /bin/grep checking for egrep... /bin/grep -E checking for a sed that does not truncate output... /bin/sed checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ISO C89... none needed checking whether gcc and cc understand -c and -o together... yes checking for system library directory... lib checking if compiler supports -R... no checking if compiler supports -Wl,-rpath,... yes checking build system type... i686-pc-linux-gnu checking host system type... i686-pc-linux-gnu checking target system type... i686-pc-linux-gnu checking for PHP prefix... /usr checking for PHP includes... -I/usr/include/php5 -I/usr/include/php5/main -I/usr/include/php5/TSRM -I/usr/include/php5/Zend -I/usr/include/php5/ext -I/usr/include/php5/ext/date/lib -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 checking for PHP extension directory... /usr/lib/php5/20060613+lfs checking for PHP installed headers prefix... /usr/include/php5 checking for re2c... no configure: WARNING: You will need re2c 0.12.0 or later if you want to regenerate PHP parsers. checking for gawk... no checking for nawk... nawk checking if nawk is broken... no checking for svn support... yes, shared checking for specifying the location of apr for svn... yes, shared checking for svn includes... configure: error: failed to find svn_client.h ERROR: `/tmp/pear/temp/svn/configure --with-svn --with-svn-apr' failed

    Read the article

  • Custom Error, 404, 401 pages in SharePoint&hellip;

    - by Shawn Cicoria
    In WSS 3.0/MOSS 2007 we had to resort to things like HttpModules [1] for errors, access denied, or for 404 errors updating the WebApp properties [2] Well, in 2010, thanks to Andrew Connell for pointing this out, Todd Carter blogs about what we now have in SPS 2010 here: http://todd-carter.com/post/2010/04/07/An-Expected-Error-Has-Occurred.aspx    [1] http://blogs.msdn.com/ketaanhs/archive/2009/03/16/moss-sharepoint-2007-custom-error-page-and-access-denied-page.aspx [2] http://blogs.msdn.com/jingmeili/archive/2007/04/08/how-to-create-your-own-custom-404-error-page-and-handle-redirect-in-sharepoint-2007-moss.aspx

    Read the article

  • CVE-2011-3192 and CVE-2011-0419 affect Oracle Secure Global Desktop

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-0419 Resource Management Errors vulnerability 4.3 Apache HTTP Server Oracle Secure Global Desktop 4.62 CVE-2011-3192 Resource Management Errors vulnerability 7.8 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Does hiding images on 404 error affect SEO?

    - by Question Overflow
    I have a dynamic website that allows registered users to upload and display images on the their profile page. As each user may upload less than the maximum limit of 20 images, there would be some "empty" images on the page. I am using javascript to hide these empty images. The loading of the profile page would generate a series of 404 errors depending on the number of empty images. Would these 404 errors affect the SEO of the page and the website?

    Read the article

  • What is the best Apache logs Analyzer?

    - by Evgeny
    What real-time log analyzer can you suggest for Apache access and error logs? There is a list of web analytics software on wikipedia, but it would be great to hear opinions from people with experience without having to try all of them. Please don't suggest Google Analytics or any other hosted/javascript analytics suites, already using them, GA is not real-time and it is missing some data that the logs show. For example 404 errors, script errors, the full query-string of the referral, IP addresses, visitor path through the website, etc ...

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Creating my first F# program in my new &ldquo;Expert F# Book&rdquo;

    - by MarkPearl
    So I have a brief hour or so that I can dedicate today to reading my F# book. It’s a public holiday and my wife’s birthday and I have a ton of assignments for UNISA that I need to complete – but I just had to try something in F#. So I read chapter 1 – pretty much an introduction to the rest of the book – it looks good so far. Then I get to chapter 2, called “Getting Started with F# and .NET”. Great, there is a code sample on the first page of the chapter. So I open up VS2010 and create a new F# console project and type in the code which was meant to analyze a string for duplicate words… #light let wordCount text = let words = Split [' '] text let wordset = Set.ofList words let nWords = words.Length let nDups = words.Length - wordSet.Count (nWords, nDups) let showWordCount text = let nWords,nDups = wordCount text printfn "--> %d words in text" nWords printfn "--> %d duplicate words" nDups   So… bad start - VS does not like the “Split” method. It gives me an error message “The value constructor ‘Split’ is not defined”. It also doesn’t like wordSet.Count telling me that the “namespace or module ‘wordSet’ is not defined”. ??? So a bit of googling and it turns out that there was a bit of shuffling of libraries between the CTP of F# and the Beta 2 of F#. To have access to the Split function you need to download the F# PowerPack and hen reference it in your code… I download and install the powerpack and then add the reference to FSharp.Core and FSharp.PowerPack in my project. Still no luck! Some more googling and I get the suggestions I got were something like this…#r "FSharp.PowerPack.dll";; #r "FSharp.PowerPack.Compatibility.dll";; So I add the code above to the top of my Program.fs file and still no joy… I now get an error message saying… Error    1    #r directives may only occur in F# script files (extensions .fsx or .fsscript). Either move this code to a script file, add a '-r' compiler option for this reference or delimit the directive with '#if INTERACTIVE'/'#endif'. So what does that mean? If I put the code straight into the F# interactive it works – but I want to be able to use it in a project. The C# equivalent I would think would be the “Using” keyword. The #r doesn’t seem like it should be in the FSharp code. So I try what the compiler suggests by doing the following…#if INTERACTIVE #r "FSharp.PowerPack.dll";; #r "FSharp.PowerPack.Compatibility.dll";; #endif No luck, the Split method is still not recognized. So wait a second, it mentioned something about FSharp.PowerPack.Compatibility.dll – I haven’t added this as a reference to my project so I add it and remove the two lines of #r code. Partial success – the Split method is now recognized and not underlined, but wordSet.Count is still not working. I look at my code again and it was a case error – the original wordset was mistyped comapred to the wordSet. Some case correction and the compiler is no longer complaining. So the code now seems to work… listed below…#light let wordCount text = let words = String.split [' '] text let wordSet = Set.ofList words let nWords = words.Length let nDups = words.Length - wordSet.Count (nWords, nDups) let showWordCount text = let nWords,nDups = wordCount text printfn "--> %d words in text" nWords printfn "--> %d duplicate words" nDups  So recap – if I wanted to use the interactive compiler then I need to put the #r code. In my mind this is the equivalent of me adding the the references to my project. If however I want to use the powerpack in a project – I just need to make sure that the correct references are there. I feel like a noob once again!

    Read the article

  • A Generic, IDisposable WCF Service Client

    - by Steve Wilkes
    WCF clients need to be cleaned up properly, but as they're usually auto-generated they don't implement IDisposable. I've been doing a fair bit of WCF work recently, so I wrote a generic WCF client wrapper which effectively gives me a disposable service client. The ServiceClientWrapper is constructed using a WebServiceConfig instance, which contains a Binding, an EndPointAddress, and whether the client should ignore SSL certificate errors - pretty useful during testing! The Binding can be created based on configuration data or entirely programmatically - that's not the client's concern. Here's the service client code: using System; using System.Net; using System.Net.Security; using System.ServiceModel; public class ServiceClientWrapper<TService, TChannel> : IDisposable     where TService : ClientBase<TChannel>     where TChannel : class {     private readonly WebServiceConfig _config;     private TService _serviceClient;     public ServiceClientWrapper(WebServiceConfig config)     {         this._config = config;     }     public TService CreateServiceClient()     {         this.DisposeExistingServiceClientIfRequired();         if (this._config.IgnoreSslErrors)         {             ServicePointManager.ServerCertificateValidationCallback =                 (obj, certificate, chain, errors) => true;         }         else         {             ServicePointManager.ServerCertificateValidationCallback =                 (obj, certificate, chain, errors) => errors == SslPolicyErrors.None;         }         this._serviceClient = (TService)Activator.CreateInstance(             typeof(TService),             this._config.Binding,             this._config.Endpoint);         if (this._config.ClientCertificate != null)         {             this._serviceClient.ClientCredentials.ClientCertificate.Certificate =                 this._config.ClientCertificate;         }         return this._serviceClient;     }     public void Dispose()     {         this.DisposeExistingServiceClientIfRequired();     }     private void DisposeExistingServiceClientIfRequired()     {         if (this._serviceClient != null)         {             try             {                 if (this._serviceClient.State == CommunicationState.Faulted)                 {                     this._serviceClient.Abort();                 }                 else                 {                     this._serviceClient.Close();                 }             }             catch             {                 this._serviceClient.Abort();             }             this._serviceClient = null;         }     } } A client for a particular service can then be created something like this: public class ManagementServiceClientWrapper :     ServiceClientWrapper<ManagementServiceClient, IManagementService> {     public ManagementServiceClientWrapper(WebServiceConfig config)         : base(config)     {     } } ...where ManagementServiceClient is the auto-generated client class, and the IManagementService is the auto-generated WCF channel class - and used like this: using(var serviceClientWrapper = new ManagementServiceClientWrapper(config)) {     serviceClientWrapper.CreateServiceClient().CallService(); } The underlying WCF client created by the CreateServiceClient() will be disposed after the using, and hey presto - a disposable WCF service client.

    Read the article

  • Can Campaign URL tags cause a soft 404 error?

    - by user35306
    I was checking out one of my company's website's Webmaster Tools to analyze the cause behind some soft 404 errors and discovered that a few of the older errors had affiliate mp referral tags listed as the relative URLs. Since these are older problems and I don't seem too many of them coming up in the last few months I don't think it's still a problem. I'm just curious if it's possible to cause a soft 404 by improperly copying the campaign or referral tag into the URL.

    Read the article

< Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >