Search Results

Search found 22083 results on 884 pages for 'display templates'.

Page 119/884 | < Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >

  • Better way to write an object generator for an RAII template class?

    - by Dan
    I would like to write an object generator for a templated RAII class -- basically a function template to construct an object using type deduction of parameters so the types don't have to be specified explicitly. The problem I foresee is that the helper function that takes care of type deduction for me is going to return the object by value, which will result in a premature call to the RAII destructor when the copy is made. Perhaps C++0x move semantics could help but that's not an option for me. Anyone seen this problem before and have a good solution? This is what I have: template<typename T, typename U, typename V> class FooAdder { private: typedef OtherThing<T, U, V> Thing; Thing &thing_; int a_; // many other members public: FooAdder(Thing &thing, int a); ~FooAdder(); void foo(T t, U u); void bar(V v); }; The gist is that OtherThing has a horrible interface, and FooAdder is supposed to make it easier to use. The intended use is roughly like this: FooAdder(myThing, 2) .foo(3, 4) .foo(5, 6) .bar(7) .foo(8, 9); The FooAdder constructor initializes some internal data structures. The foo and bar methods populate those data structures. The ~FooAdder dtor wraps things up and calls a method on thing_, taking care of all the nastiness. That would work fine if FooAdder wasn't a template. But since it is, I would need to put the types in, more like this: FooAdder<Abc, Def, Ghi>(myThing, 2) ... That's annoying, because the types can be inferred based on myThing. So I would prefer to create a templated object generator, similar to std::make_pair, that will do the type deduction for me. Something like this: template<typename T, typename U, typename V> FooAdder<T, U, V> AddFoo(Thing &thing, int a) { return FooAdder<T, U, V>(thing, a); } That seems problematic: because it returns by value, the stack temporary object will be destructed, which will cause the RAII dtor to run prematurely. One thought I had was to give FooAdder a copy ctor with move semantics, kinda like std::auto_ptr. But I would like to do this without dynamic memory allocation, so I thought the copy ctor could set a flag within FooAdder indicating the dtor shouldn't do the wrap-up. Like this: FooAdder(FooAdder &rhs) // Note: rhs is not const : thing_(rhs.thing_) , a_(rhs.a_) , // etc... lots of other members, annoying. , moved(false) { rhs.moved = true; } ~FooAdder() { if (!moved) { // do whatever it would have done } } Seems clunky. Anyone got a better way?

    Read the article

  • In a C++ template, is it allowed to return an object with spesific type parameters?

    - by nieldw
    When I've got a template with certain type parameters, is it allowed for a function to return an object of this same template, but with different types? In other words, is the following allowed? template<class edgeDecor, class vertexDecor, bool dir> Graph<edgeDecor,int,dir> Graph<edgeDecor,vertexDecor,dir>::Dijkstra(vertex s, bool print = false) const { /* Construct new Graph with apropriate decorators */ Graph<edgeDecor,int,dir> span = new Graph<edgeDecor,int,dir>(); /* ... */ return span; }; If this is not allowed, how can I accomplish the same kind of thing?

    Read the article

  • In Jeditable, how do I make it so that when I click the div to edit, the text box content has initial value that is processed?

    - by TIMEX
    When the user clicks on the div, jeditable will make a text box. However, I want the initial text to be done with function stripTags(), instead of what's on the page. The reason is that I'm using some URL techniques to turn plain text links into URLs. When the user clicks on the div, jeditable is turning them into <a href=>..</a> Is there a "beforeSubmit" option in jeditable? http://www.appelsiini.net/projects/jeditable

    Read the article

  • Member function overloading/template specialization issue

    - by Ferruccio
    I've been trying to call the overloaded table::scan_index(std::string, ...) member function without success. For the sake of clarity, I have stripped out all non-relevant code. I have a class called table which has an overloaded/templated member function named scan_index() in order to handle strings as a special case. class table : boost::noncopyable { public: template <typename T> void scan_index(T val, std::function<bool (uint recno, T val)> callback) { // code } void scan_index(std::string val, std::function<bool (uint recno, std::string val)> callback) { // code } }; Then there is a hitlist class which has a number of templated member functions which call table::scan_index(T, ...) class hitlist { public: template <typename T> void eq(uint fieldno, T value) { table* index_table = db.get_index_table(fieldno); // code index_table->scan_index<T>(value, [&](uint recno, T n)->bool { // code }); } }; And, finally, the code which kicks it all off: hitlist hl; // code hl.eq<std::string>(*fieldno, p1.to_string()); The problem is that instead of calling table::scan_index(std::string, ...), it calls the templated version. I have tried using both overloading (as shown above) and a specialized function template (below), but nothing seems to work. After staring at this code for a few hours, I feel like I'm missing something obvious. Any ideas? template <> void scan_index<std::string>(std::string val, std::function<bool (uint recno, std::string val)> callback) { // code }

    Read the article

  • Is the use of union in this matrix class completely safe?

    - by identitycrisisuk
    Unions aren't something I've used that often and after looking at a few other questions on them here it seems like there is almost always some kind of caveat where they might not work. Eg. structs possibly having unexpected padding or endian differences. Came across this in a math library I'm using though and I wondered if it is a totally safe usage. I assume that multidimensional arrays don't have any extra padding and since the type is the same for both definitions they are guaranteed to take up exactly the same amount of memory? template<typename T> class Matrix44T { ... union { T M[16]; T m[4][4]; } m; }; Are there any downsides to this setup? Would the order of definition make any difference to how this works?

    Read the article

  • inspect C++ template instantiation

    - by aaa
    hello. Is there some utility which would allow me to inspect template instantiation? my compiler is g++ or Intel. Specific points I would like: Step by step instantiation. Instantiation backtrace (can hack this by crashing compiler. Better method?) Inspection of template parameters. Thanks

    Read the article

  • C++ template type deduction problem

    - by hamishmcn
    motivation: I would like to create a utility class so that instead of having to write: if( someVal == val1 || someVal == val2 || someVal == val3 ) I could instead write: if( is(someVal).in(val1, val2, val3) ) which is much closer to the mathematical 'a is an element of (b,c,d)' and also would save on a lot of typing when the variable name 'someVal' is long. Here is the code I have so far (for 2 and 3 values): template<class T> class is { private: T t_; public: is(T t) : t_(t) { } bool in(const T& v1, const T& v2) { return t_ == v1 || t_ == v2; } bool in(const T& v1, const T& v2, const T& v3) { return t_ == v1 || t_ == v2 || t_ == v3; } }; However it fails to compile if I write: is(1).in(3,4,5); instead I have to write is<int>(1).in(3,4,5); Which isn't too bad, but it would be better if somehow the compiler could figure out that the type is int with out me having to explicitly specify it. Is there anyway to do this or I am stuck with specifying it explicitly?

    Read the article

  • std::basic_string full specialization (g++ conflict)

    - by SoapBox
    I am trying to define a full specialization of std::basic_string< char, char_traits<char>, allocator<char> > which is typedef'd (in g++) by the <string> header. The problem is, if I include <string> first, g++ sees the typedef as an instantiation of basic_string and gives me errors. If I do my specialization first then I have no issues. I should be able to define my specialization after <string> is included. What do I have to do to be able to do that? My Code: #include <bits/localefwd.h> //#include <string> // <- uncommenting this line causes compilation to fail namespace std { template<> class basic_string< char, char_traits<char>, allocator<char> > { public: int blah() { return 42; } size_t size() { return 0; } const char *c_str() { return ""; } void reserve(int) {} void clear() {} }; } #include <string> #include <iostream> int main() { std::cout << std::string().blah() << std::endl; } The above code works fine. But, if I uncomment the first #include <string> line, I get the following compiler errors: blah.cpp:7: error: specialization of ‘std::basic_string<char, std::char_traits<char>, std::allocator<char> >’ after instantiation blah.cpp:7: error: redefinition of ‘class std::basic_string<char, std::char_traits<char>, std::allocator<char> >’ /usr/include/c++/4.4/bits/stringfwd.h:52: error: previous definition of ‘class std::basic_string<char, std::char_traits<char>, std::allocator<char> >’ blah.cpp: In function ‘int main()’: blah.cpp:22: error: ‘class std::string’ has no member named ‘blah’ Line 52 of /usr/include/c++/4.4/bits/stringfwd.h: template<typename _CharT, typename _Traits = char_traits<_CharT>, typename _Alloc = allocator<_CharT> > class basic_string; As far as I know this is just a forward delcaration of the template, NOT an instantiation as g++ claims. Line 56 of /usr/include/c++/4.4/bits/stringfwd.h: typedef basic_string<char> string; As far as I know this is just a typedef, NOT an instantiation either. So why are these lines conflicting with my code? What can I do to fix this other than ensuring that my code is always included before <string>?

    Read the article

  • C++ CRTP question

    - by aaa
    following piece of code does not compile, the problem is in T::rank not be inaccessible (I think) or uninitialized in parent template. Can you tell me exactly what the problem is? is passing rank explicitly the only way? or is there a way to query tensor class directly? Thank you #include <boost/utility/enable_if.hpp> template<class T, // size_t N, class enable = void> struct tensor_operator; // template<class T, size_t N> template<class T> struct tensor_operator<T, typename boost::enable_if_c< T::rank == 4>::type > { tensor_operator(T &tensor) : tensor_(tensor) {} T& operator()(int i,int j,int k,int l) { return tensor_.layout.element_at(i, j, k, l); } T &tensor_; }; template<size_t N, typename T = double> // struct tensor : tensor_operator<tensor<N,T>, N> { struct tensor : tensor_operator<tensor<N,T> > { static const size_t rank = N; }; I know the workaround, however am interested in mechanics of template instantiation for self-education

    Read the article

  • In the generic programming/TMP world what exactly is a model / a policy and a "concept" ?

    - by Hassan Syed
    I'd like to know the precise yet succinct definitions of these three concepts in one place. The quality of the answer should depend on the following two points. Show a simple code snippet to show how and what the concept/technique is used for. Be simple enough to understand so that a programmer without any exposure to this area can grasp it. Note: There are probably many correct answers since each concept has many different facets. If there are a lot of good answers I will eventually turn the question into CW and aggregate the answers. -- Post Accept Edit -- Boost has a nice article on generic programming concepts

    Read the article

  • Specify a base classes template parameters while instantiating a derived class?

    - by DaClown
    Hi, I have no idea if the title makes any sense but I can't find the right words to descibe my "problem" in one line. Anyway, here is my problem. There is an interface for a search: template <typename InputType, typename ResultType> class Search { public: virtual void search (InputType) = 0; virtual void getResult(ResultType&) = 0; }; and several derived classes like: template <typename InputType, typename ResultType> class XMLSearch : public Search<InputType, ResultType> { public: void search (InputType) { ... }; void getResult(ResultType&) { ... }; }; The derived classes shall be used in the source code later on. I would like to hold a simple pointer to a Search without specifying the template parameters, then assign a new XMLSearch and thereby define the template parameters of Search and XMLSearch Search *s = new XMLSearch<int, int>(); I found a way that works syntactically like what I'm trying to do, but it seems a bit odd to really use it: template <typename T> class Derived; class Base { public: template <typename T> bool GetValue(T &value) { Derived<T> *castedThis=dynamic_cast<Derived<T>* >(this); if(castedThis) return castedThis->GetValue(value); return false; } virtual void Dummy() {} }; template <typename T> class Derived : public Base { public: Derived<T>() { mValue=17; } bool GetValue(T &value) { value=mValue; return true; } T mValue; }; int main(int argc, char* argv[]) { Base *v=new Derived<int>; int i=0; if(!v->GetValue(i)) std::cout<<"Wrong type int."<<std::endl; float f=0.0; if(!v->GetValue(f)) std::cout<<"Wrong type float."<<std::endl; std::cout<<i<<std::endl<<f; char c; std::cin>>c; return 0; } Is there a better way to accomplish this?

    Read the article

  • Why are there two implementations of std::sort (with and without a comparator) rather than one implementation with a default template parameter?

    - by PolyVox
    In my code I'm adopting a design strategy which is similar to some standard library algorithms in that the exact behavior can be customized by a function object. The simplest example is std::sort, where a function object can control how the comparison is made between objects. I notice that the Visual C++ provides two implementations of std::sort, which naturally involves code duplication. I would have imagined that it was instead possible to have only one implementation, and provide a default comparator (using operator< ) as a default template parameter. What is the rational behind two separate versions? Would my suggestion make the interface more complex in some way? Or result in confusing error messages when the object does not provide operator Thanks, David

    Read the article

  • C++ template overloading - wrong function called

    - by DeadMG
    template<typename T> T* Push(T* ptr); template<typename T> T* Push(T& ref); template<typename T, typename T1> T* Push(T1&& ref); I have int i = 0; Push<int>(i); But the compiler calls it ambiguous. How is that ambiguous? The second function is clearly the preferred match since it's more specialized. Especially since the T1&& won't bind to an lvalue unless I explicitly forward/move it. Sorry - i is an int. Otherwise, the question would make no sense, and I thought people would infer it since it's normally the loop iterator.

    Read the article

  • Is there a Visual Studio (or freeware) equivalent for Expression Blend's "Edit Template" feature?

    - by DanM
    In Expression Blend, you can view and edit the control template of objects in the "Objects and Timeline" panel. I'm wondering if there's an equivalent feature in Visual Studio or if there's something free (or very inexpensive) I can download that will allow me to do this. Here's a screen cap from Expression Blend that shows what I'm talking about: Doing this for DataGrid results in the following: <Style x:Key="DataGridStyle1" TargetType="{x:Type Custom:DataGrid}"> ... <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type Custom:DataGrid}"> ... </ControlTemplate> </Setter.Value> </Setter> <Style.Triggers> <Trigger Property="IsGrouping" Value="True"> <Setter Property="ScrollViewer.CanContentScroll" Value="False"/> </Trigger> </Style.Triggers> </Style> (The ... is of course replaced with setters and the contents of the control template.) This is a very useful starting point if you want to create a custom style and template for a control. It seems like you can do pretty much anything you can do in Blend in Studio, but this one is eluding me. Any ideas? Edit I'm also curious if this feature will be in Visual Studio 2010. Anyone know?

    Read the article

  • avoiding enums as interface identifiers c++ OOP

    - by AlasdairC
    Hi I'm working on a plugin framework using dynamic loaded shared libraries which is based on Eclipse's (and probally other's) extension-point model. All plugins share similar properties (name, id, version etc) and each plugin could in theory satisfy any extension-point. The actual plugin (ie Dll) handling is managed by another library, all I am doing really is managing collections of interfaces for the application. I started by using an enum PluginType to distinguish the different interfaces, but I have quickly realised that using template functions made the code far cleaner and would leave the grunt work up to the compiler, rather than forcing me to use lots of switch {...} statements. The only issue is where I need to specify like functionality for class members - most obvious example is the default plugin which provides a particular interface. A Settings class handles all settings, including the default plugin for an interface. ie Skin newSkin = settings.GetDefault<ISkin>(); How do I store the default ISkin in a container without resorting to some other means of identifying the interface? As I mentioned above, I currently use a std::map<PluginType, IPlugin> Settings::defaults member to achieve this (where IPlugin is an abstract base class which all plugins derive from. I can then dynamic_cast to the desired interface when required, but this really smells of bad design to me and introduces more harm than good I think. would welcome any tips edit: here's an example of the current use of default plugins typedef boost::shared_ptr<ISkin> Skin; typedef boost::shared_ptr<IPlugin> Plugin; enum PluginType { skin, ..., ... } class Settings { public: void SetDefault(const PluginType type, boost::shared_ptr<IPlugin> plugin) { m_default[type] = plugin; } boost::shared_ptr<IPlugin> GetDefault(const PluginType type) { return m_default[type]; } private: std::map<PluginType, boost::shared_ptr<IPlugin> m_default; }; SkinManager::Initialize() { Plugin thedefault = g_settings.GetDefault(skinplugin); Skin defaultskin = boost::dynamic_pointer_cast<ISkin>(theskin); defaultskin->Initialize(); } I would much rather call the getdefault as the following, with automatic casting to the derived class. However I need to specialize for every class type. template<> Skin Settings::GetDefault<ISkin>() { return boost::dynamic_pointer_cast<ISkin>(m_default(skin)); }

    Read the article

  • Specializing a template member function of a template class?

    - by uj2
    I have a template class that has a template member function that needs to be specialized, as in: template <typename T> class X { public: template <typename U> void Y() {} template <> void Y<int>() {} }; Altough VC handles this correctly, apperantly this isn't standard and GCC complains: explicit specialization in non-namespace scope 'class X<T>' I tried: template <typename T> class X { public: template <typename U> void Y() {} }; template <typename T> // Also tried `template<>` here void X<T>::Y<int>() {} But this causes both VC and GCC to complain. What's the right way to do this?

    Read the article

  • Typedef equivalence in function arguments

    - by Warren Seine
    Hi guys, The question is kind of hard to ask without an example so here it is: #include <vector> struct O { }; struct C { template <typename T> void function1(void (C::*callback)(const O*)); template <typename T> void function2(void (C::*callback)(const typename T::value_type)); void print(const O*); }; int main() { C c; c.function1< std::vector<O*> >(&C::print); // Success. c.function2< std::vector<O*> >(&C::print); // Fail. } The error that I am given is: error: no matching function for call to ‘C::function2(void (C::*)(const O*))’. Basically, the only difference between calls is that in function2, I'm more generic since I use the typedef std::vector<O*>::value_type which should resolve to O*, hence similar to function1. I'm using G++ 4.2.1 (I know it's old), but Comeau confirms I'm wrong. Why does the compilation fail?

    Read the article

  • Why can I derived from a templated/generic class based on that type in C# / C++

    - by stusmith
    Title probably doesn't make a lot of sense, so I'll start with some code: class Foo : public std::vector<Foo> { }; ... Foo f; f.push_back( Foo() ); Why is this allowed by the compiler? My brain is melting at this stage, so can anyone explain whether there are any reasons you would want to do this? Unfortunately I've just seen a similar pattern in some production C# code and wondered why anyone would use this pattern.

    Read the article

  • Passing functor and function pointers interchangeably using a templated method in C++

    - by metroxylon
    I currently have a templated class, with a templated method. Works great with functors, but having trouble compiling for functions. Foo.h template <typename T> class Foo { public: // Constructor, destructor, etc... template <typename Func> void bar(T x, Func f); }; template <typename T> template <typename Func> Foo::bar(T x, Func f) { /* some code here */ } Main.cpp #include "Foo.h" template <typename T> class Functor { public: Functor() {} void operator()(T x) { /* ... */ } private: /* some attributes here */ }; void Function(T x) { /* ... */ } int main() { Foo<int> foo; foo.bar(2, Functor); // No problem foo.bar(2, Function); // <unresolved overloaded function type> return 0; }

    Read the article

  • "Automatic" class proxy in C++

    - by PierreBdR
    I need to allow the user to change members of two data structures of the same type at the same time. For example: struct Foo { int a, b; } Foo a1 = {1,2}, a2 = {3,4}; dual(a1,a2)->a = 5; // Now a1 = {5,2} and a2 = {5,2} I have a class that works and that change first a1 and then copy a1 into a2. This is fine as long as: the class copied is small the user doesn't mind about everything being copied, not only the part modified. Is there a way to obtain this behavior: dual(a1,a2)->a = 5; // Now a1 = {5,2} and a2 = {5,4} I am opened to alternative syntax, but they should stay simple, and I would like to avoid things like: set_members(a1, a2, &Foo::a, 5); members(a1, a2, &Foo::a) = 5; or anything involving specifying explictely &Foo::

    Read the article

  • Adapting non-iterable containers to be iterated via custom templatized iterator

    - by DAldridge
    I have some classes, which for various reasons out of scope of this discussion, I cannot modify (irrelevant implementation details omitted): class Foo { /* ... irrelevant public interface ... */ }; class Bar { public: Foo& get_foo(size_t index) { /* whatever */ } size_t size_foo() { /* whatever */ } }; (There are many similar 'Foo' and 'Bar' classes I'm dealing with, and it's all generated code from elsewhere and stuff I don't want to subclass, etc.) [Edit: clarification - although there are many similar 'Foo' and 'Bar' classes, it is guaranteed that each "outer" class will have the getter and size methods. Only the getter method name and return type will differ for each "outer", based on whatever it's "inner" contained type is. So, if I have Baz which contains Quux instances, there will be Quux& Baz::get_quux(size_t index), and size_t Baz::size_quux().] Given the design of the Bar class, you cannot easily use it in STL algorithms (e.g. for_each, find_if, etc.), and must do imperative loops rather than taking a functional approach (reasons why I prefer the latter is also out of scope for this discussion): Bar b; size_t numFoo = b.size_foo(); for (int fooIdx = 0; fooIdx < numFoo; ++fooIdx) { Foo& f = b.get_foo(fooIdx); /* ... do stuff with 'f' ... */ } So... I've never created a custom iterator, and after reading various questions/answers on S.O. about iterator_traits and the like, I came up with this (currently half-baked) "solution": First, the custom iterator mechanism (NOTE: all uses of 'function' and 'bind' are from std::tr1 in MSVC9): // Iterator mechanism... template <typename TOuter, typename TInner> class ContainerIterator : public std::iterator<std::input_iterator_tag, TInner> { public: typedef function<TInner& (size_t)> func_type; ContainerIterator(const ContainerIterator& other) : mFunc(other.mFunc), mIndex(other.mIndex) {} ContainerIterator& operator++() { ++mIndex; return *this; } bool operator==(const ContainerIterator& other) { return ((mFunc.target<TOuter>() == other.mFunc.target<TOuter>()) && (mIndex == other.mIndex)); } bool operator!=(const ContainerIterator& other) { return !(*this == other); } TInner& operator*() { return mFunc(mIndex); } private: template<typename TOuter, typename TInner> friend class ContainerProxy; ContainerIterator(func_type func, size_t index = 0) : mFunc(func), mIndex(index) {} function<TInner& (size_t)> mFunc; size_t mIndex; }; Next, the mechanism by which I get valid iterators representing begin and end of the inner container: // Proxy(?) to the outer class instance, providing a way to get begin() and end() // iterators to the inner contained instances... template <typename TOuter, typename TInner> class ContainerProxy { public: typedef function<TInner& (size_t)> access_func_type; typedef function<size_t ()> size_func_type; typedef ContainerIterator<TOuter, TInner> iter_type; ContainerProxy(access_func_type accessFunc, size_func_type sizeFunc) : mAccessFunc(accessFunc), mSizeFunc(sizeFunc) {} iter_type begin() const { size_t numItems = mSizeFunc(); if (0 == numItems) return end(); else return ContainerIterator<TOuter, TInner>(mAccessFunc, 0); } iter_type end() const { size_t numItems = mSizeFunc(); return ContainerIterator<TOuter, TInner>(mAccessFunc, numItems); } private: access_func_type mAccessFunc; size_func_type mSizeFunc; }; I can use these classes in the following manner: // Sample function object for taking action on an LMX inner class instance yielded // by iteration... template <typename TInner> class SomeTInnerFunctor { public: void operator()(const TInner& inner) { /* ... whatever ... */ } }; // Example of iterating over an outer class instance's inner container... Bar b; /* assume populated which contained items ... */ ContainerProxy<Bar, Foo> bProxy( bind(&Bar::get_foo, b, _1), bind(&Bar::size_foo, b)); for_each(bProxy.begin(), bProxy.end(), SomeTInnerFunctor<Foo>()); Empirically, this solution functions correctly (minus any copy/paste or typos I may have introduced when editing the above for brevity). So, finally, the actual question: I don't like requiring the use of bind() and _1 placeholders, etcetera by the caller. All they really care about is: outer type, inner type, outer type's method to fetch inner instances, outer type's method to fetch count inner instances. Is there any way to "hide" the bind in the body of the template classes somehow? I've been unable to find a way to separately supply template parameters for the types and inner methods separately... Thanks! David

    Read the article

  • Notepad++ premade template

    - by bah
    Hi, I have seen in videos, that people get html template by typing "html:5" or something like that (btw, they're not using notepad++). Is this possible in notepad++? Thanks.

    Read the article

  • template; Point<2, double>; Point<3, double>

    - by Oops
    Hi, I want to create my own Point struct it is only for purposes of learning C++. I have the following code: template <int dims, typename T> struct Point { T X[dims]; Point(){} Point( T X0, T X1 ) { X[0] = X0; X[1] = X1; } Point( T X0, T X1, T X2 ) { X[0] = X0; X[1] = X1; X[2] = X2; } Point<dims, int> toint() { //how to distinguish between 2D and 3D ??? Point<dims, int> ret = Point<dims, int>( (int)X[0], (int)X[1]); return ret; } std::string str(){ //how to distinguish between 2D and 3D ??? std::stringstream s; s << "{ X0: " << X[0] << " | X1: " << X[1] << " }"; return s.str(); } }; int main(void) { Point<2, double> p2d = Point<2, double>( 12.3, 45.6 ); Point<3, double> p3d = Point<3, double>( 12.3, 45.6, 78.9 ); Point<2, int> p2i = p2d.toint(); //OK Point<3, int> p3i = p3d.toint(); //m??? std::cout << p2d.str() << std::endl; //OK std::cout << p3d.str() << std::endl; //m??? std::cout << p2i.str() << std::endl; //m??? std::cout << p3i.str() << std::endl; //m??? char c; std::cin >> c; return 0; } of couse until now the output is not what I want. my questions is: how to take care of the dimensions of the Point (2D or 3D) in member functions of the Point? many thanks in advance Oops

    Read the article

< Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >