Search Results

Search found 816 results on 33 pages for 'buffers'.

Page 12/33 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Unusually high dentry cache usage

    - by Wolfgang Stengel
    Problem A CentOS machine with kernel 2.6.32 and 128 GB physical RAM ran into trouble a few days ago. The responsible system administrator tells me that the PHP-FPM application was not responding to requests in a timely manner anymore due to swapping, and having seen in free that almost no memory was left, he chose to reboot the machine. I know that free memory can be a confusing concept on Linux and a reboot perhaps was the wrong thing to do. However, the mentioned administrator blames the PHP application (which I am responsible for) and refuses to investigate further. What I could find out on my own is this: Before the restart, the free memory (incl. buffers and cache) was only a couple of hundred MB. Before the restart, /proc/meminfo reported a Slab memory usage of around 90 GB (yes, GB). After the restart, the free memory was 119 GB, going down to around 100 GB within an hour, as the PHP-FPM workers (about 600 of them) were coming back to life, each of them showing between 30 and 40 MB in the RES column in top (which has been this way for months and is perfectly reasonable given the nature of the PHP application). There is nothing else in the process list that consumes an unusual or noteworthy amount of RAM. After the restart, Slab memory was around 300 MB If have been monitoring the system ever since, and most notably the Slab memory is increasing in a straight line with a rate of about 5 GB per day. Free memory as reported by free and /proc/meminfo decreases at the same rate. Slab is currently at 46 GB. According to slabtop most of it is used for dentry entries: Free memory: free -m total used free shared buffers cached Mem: 129048 76435 52612 0 144 7675 -/+ buffers/cache: 68615 60432 Swap: 8191 0 8191 Meminfo: cat /proc/meminfo MemTotal: 132145324 kB MemFree: 53620068 kB Buffers: 147760 kB Cached: 8239072 kB SwapCached: 0 kB Active: 20300940 kB Inactive: 6512716 kB Active(anon): 18408460 kB Inactive(anon): 24736 kB Active(file): 1892480 kB Inactive(file): 6487980 kB Unevictable: 8608 kB Mlocked: 8608 kB SwapTotal: 8388600 kB SwapFree: 8388600 kB Dirty: 11416 kB Writeback: 0 kB AnonPages: 18436224 kB Mapped: 94536 kB Shmem: 6364 kB Slab: 46240380 kB SReclaimable: 44561644 kB SUnreclaim: 1678736 kB KernelStack: 9336 kB PageTables: 457516 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 72364108 kB Committed_AS: 22305444 kB VmallocTotal: 34359738367 kB VmallocUsed: 480164 kB VmallocChunk: 34290830848 kB HardwareCorrupted: 0 kB AnonHugePages: 12216320 kB HugePages_Total: 2048 HugePages_Free: 2048 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 5604 kB DirectMap2M: 2078720 kB DirectMap1G: 132120576 kB Slabtop: slabtop --once Active / Total Objects (% used) : 225920064 / 226193412 (99.9%) Active / Total Slabs (% used) : 11556364 / 11556415 (100.0%) Active / Total Caches (% used) : 110 / 194 (56.7%) Active / Total Size (% used) : 43278793.73K / 43315465.42K (99.9%) Minimum / Average / Maximum Object : 0.02K / 0.19K / 4096.00K OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME 221416340 221416039 3% 0.19K 11070817 20 44283268K dentry 1123443 1122739 99% 0.41K 124827 9 499308K fuse_request 1122320 1122180 99% 0.75K 224464 5 897856K fuse_inode 761539 754272 99% 0.20K 40081 19 160324K vm_area_struct 437858 223259 50% 0.10K 11834 37 47336K buffer_head 353353 347519 98% 0.05K 4589 77 18356K anon_vma_chain 325090 324190 99% 0.06K 5510 59 22040K size-64 146272 145422 99% 0.03K 1306 112 5224K size-32 137625 137614 99% 1.02K 45875 3 183500K nfs_inode_cache 128800 118407 91% 0.04K 1400 92 5600K anon_vma 59101 46853 79% 0.55K 8443 7 33772K radix_tree_node 52620 52009 98% 0.12K 1754 30 7016K size-128 19359 19253 99% 0.14K 717 27 2868K sysfs_dir_cache 10240 7746 75% 0.19K 512 20 2048K filp VFS cache pressure: cat /proc/sys/vm/vfs_cache_pressure 125 Swappiness: cat /proc/sys/vm/swappiness 0 I know that unused memory is wasted memory, so this should not necessarily be a bad thing (especially given that 44 GB are shown as SReclaimable). However, apparently the machine experienced problems nonetheless, and I'm afraid the same will happen again in a few days when Slab surpasses 90 GB. Questions I have these questions: Am I correct in thinking that the Slab memory is always physical RAM, and the number is already subtracted from the MemFree value? Is such a high number of dentry entries normal? The PHP application has access to around 1.5 M files, however most of them are archives and not being accessed at all for regular web traffic. What could be an explanation for the fact that the number of cached inodes is much lower than the number of cached dentries, should they not be related somehow? If the system runs into memory trouble, should the kernel not free some of the dentries automatically? What could be a reason that this does not happen? Is there any way to "look into" the dentry cache to see what all this memory is (i.e. what are the paths that are being cached)? Perhaps this points to some kind of memory leak, symlink loop, or indeed to something the PHP application is doing wrong. The PHP application code as well as all asset files are mounted via GlusterFS network file system, could that have something to do with it? Please keep in mind that I can not investigate as root, only as a regular user, and that the administrator refuses to help. He won't even run the typical echo 2 > /proc/sys/vm/drop_caches test to see if the Slab memory is indeed reclaimable. Any insights into what could be going on and how I can investigate any further would be greatly appreciated. Updates Some further diagnostic information: Mounts: cat /proc/self/mounts rootfs / rootfs rw 0 0 proc /proc proc rw,relatime 0 0 sysfs /sys sysfs rw,relatime 0 0 devtmpfs /dev devtmpfs rw,relatime,size=66063000k,nr_inodes=16515750,mode=755 0 0 devpts /dev/pts devpts rw,relatime,gid=5,mode=620,ptmxmode=000 0 0 tmpfs /dev/shm tmpfs rw,relatime 0 0 /dev/mapper/sysvg-lv_root / ext4 rw,relatime,barrier=1,data=ordered 0 0 /proc/bus/usb /proc/bus/usb usbfs rw,relatime 0 0 /dev/sda1 /boot ext4 rw,relatime,barrier=1,data=ordered 0 0 tmpfs /phptmp tmpfs rw,noatime,size=1048576k,nr_inodes=15728640,mode=777 0 0 tmpfs /wsdltmp tmpfs rw,noatime,size=1048576k,nr_inodes=15728640,mode=777 0 0 none /proc/sys/fs/binfmt_misc binfmt_misc rw,relatime 0 0 cgroup /cgroup/cpuset cgroup rw,relatime,cpuset 0 0 cgroup /cgroup/cpu cgroup rw,relatime,cpu 0 0 cgroup /cgroup/cpuacct cgroup rw,relatime,cpuacct 0 0 cgroup /cgroup/memory cgroup rw,relatime,memory 0 0 cgroup /cgroup/devices cgroup rw,relatime,devices 0 0 cgroup /cgroup/freezer cgroup rw,relatime,freezer 0 0 cgroup /cgroup/net_cls cgroup rw,relatime,net_cls 0 0 cgroup /cgroup/blkio cgroup rw,relatime,blkio 0 0 /etc/glusterfs/glusterfs-www.vol /var/www fuse.glusterfs rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072 0 0 /etc/glusterfs/glusterfs-upload.vol /var/upload fuse.glusterfs rw,relatime,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072 0 0 sunrpc /var/lib/nfs/rpc_pipefs rpc_pipefs rw,relatime 0 0 172.17.39.78:/www /data/www nfs rw,relatime,vers=3,rsize=65536,wsize=65536,namlen=255,hard,proto=tcp,port=38467,timeo=600,retrans=2,sec=sys,mountaddr=172.17.39.78,mountvers=3,mountport=38465,mountproto=tcp,local_lock=none,addr=172.17.39.78 0 0 Mount info: cat /proc/self/mountinfo 16 21 0:3 / /proc rw,relatime - proc proc rw 17 21 0:0 / /sys rw,relatime - sysfs sysfs rw 18 21 0:5 / /dev rw,relatime - devtmpfs devtmpfs rw,size=66063000k,nr_inodes=16515750,mode=755 19 18 0:11 / /dev/pts rw,relatime - devpts devpts rw,gid=5,mode=620,ptmxmode=000 20 18 0:16 / /dev/shm rw,relatime - tmpfs tmpfs rw 21 1 253:1 / / rw,relatime - ext4 /dev/mapper/sysvg-lv_root rw,barrier=1,data=ordered 22 16 0:15 / /proc/bus/usb rw,relatime - usbfs /proc/bus/usb rw 23 21 8:1 / /boot rw,relatime - ext4 /dev/sda1 rw,barrier=1,data=ordered 24 21 0:17 / /phptmp rw,noatime - tmpfs tmpfs rw,size=1048576k,nr_inodes=15728640,mode=777 25 21 0:18 / /wsdltmp rw,noatime - tmpfs tmpfs rw,size=1048576k,nr_inodes=15728640,mode=777 26 16 0:19 / /proc/sys/fs/binfmt_misc rw,relatime - binfmt_misc none rw 27 21 0:20 / /cgroup/cpuset rw,relatime - cgroup cgroup rw,cpuset 28 21 0:21 / /cgroup/cpu rw,relatime - cgroup cgroup rw,cpu 29 21 0:22 / /cgroup/cpuacct rw,relatime - cgroup cgroup rw,cpuacct 30 21 0:23 / /cgroup/memory rw,relatime - cgroup cgroup rw,memory 31 21 0:24 / /cgroup/devices rw,relatime - cgroup cgroup rw,devices 32 21 0:25 / /cgroup/freezer rw,relatime - cgroup cgroup rw,freezer 33 21 0:26 / /cgroup/net_cls rw,relatime - cgroup cgroup rw,net_cls 34 21 0:27 / /cgroup/blkio rw,relatime - cgroup cgroup rw,blkio 35 21 0:28 / /var/www rw,relatime - fuse.glusterfs /etc/glusterfs/glusterfs-www.vol rw,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072 36 21 0:29 / /var/upload rw,relatime - fuse.glusterfs /etc/glusterfs/glusterfs-upload.vol rw,user_id=0,group_id=0,default_permissions,allow_other,max_read=131072 37 21 0:30 / /var/lib/nfs/rpc_pipefs rw,relatime - rpc_pipefs sunrpc rw 39 21 0:31 / /data/www rw,relatime - nfs 172.17.39.78:/www rw,vers=3,rsize=65536,wsize=65536,namlen=255,hard,proto=tcp,port=38467,timeo=600,retrans=2,sec=sys,mountaddr=172.17.39.78,mountvers=3,mountport=38465,mountproto=tcp,local_lock=none,addr=172.17.39.78 GlusterFS config: cat /etc/glusterfs/glusterfs-www.vol volume remote1 type protocol/client option transport-type tcp option remote-host 172.17.39.71 option ping-timeout 10 option transport.socket.nodelay on # undocumented option for speed # http://gluster.org/pipermail/gluster-users/2009-September/003158.html option remote-subvolume /data/www end-volume volume remote2 type protocol/client option transport-type tcp option remote-host 172.17.39.72 option ping-timeout 10 option transport.socket.nodelay on # undocumented option for speed # http://gluster.org/pipermail/gluster-users/2009-September/003158.html option remote-subvolume /data/www end-volume volume remote3 type protocol/client option transport-type tcp option remote-host 172.17.39.73 option ping-timeout 10 option transport.socket.nodelay on # undocumented option for speed # http://gluster.org/pipermail/gluster-users/2009-September/003158.html option remote-subvolume /data/www end-volume volume remote4 type protocol/client option transport-type tcp option remote-host 172.17.39.74 option ping-timeout 10 option transport.socket.nodelay on # undocumented option for speed # http://gluster.org/pipermail/gluster-users/2009-September/003158.html option remote-subvolume /data/www end-volume volume replicate1 type cluster/replicate option lookup-unhashed off # off will reduce cpu usage, and network option local-volume-name 'hostname' subvolumes remote1 remote2 end-volume volume replicate2 type cluster/replicate option lookup-unhashed off # off will reduce cpu usage, and network option local-volume-name 'hostname' subvolumes remote3 remote4 end-volume volume distribute type cluster/distribute subvolumes replicate1 replicate2 end-volume volume iocache type performance/io-cache option cache-size 8192MB # default is 32MB subvolumes distribute end-volume volume writeback type performance/write-behind option cache-size 1024MB option window-size 1MB subvolumes iocache end-volume ### Add io-threads for parallel requisitions volume iothreads type performance/io-threads option thread-count 64 # default is 16 subvolumes writeback end-volume volume ra type performance/read-ahead option page-size 2MB option page-count 16 option force-atime-update no subvolumes iothreads end-volume

    Read the article

  • Server slowdown

    - by Clinton Bosch
    I have a GWT application running on Tomcat on a cloud linux(Ubuntu) server, recently I released a new version of the application and suddenly my server response times have gone from 500ms average to 15s average. I have run every monitoring tool I know. iostat says my disks are 0.03% utilised mysqltuner.pl says I am OK other see below top says my processor is 99% idle and load average: 0.20, 0.31, 0.33 memory usage is 50% (-/+ buffers/cache: 3997 3974) mysqltuner output [OK] Logged in using credentials from debian maintenance account. -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.63-0ubuntu0.10.04.1-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 370M (Tables: 52) [--] Data in InnoDB tables: 697M (Tables: 1749) [!!] Total fragmented tables: 1754 -------- Security Recommendations ------------------------------------------- [OK] All database users have passwords assigned -------- Performance Metrics ------------------------------------------------- [--] Up for: 19h 25m 41s (1M q [28.122 qps], 1K conn, TX: 2B, RX: 1B) [--] Reads / Writes: 98% / 2% [--] Total buffers: 1.0G global + 2.7M per thread (500 max threads) [OK] Maximum possible memory usage: 2.4G (30% of installed RAM) [OK] Slow queries: 0% (1/1M) [OK] Highest usage of available connections: 34% (173/500) [OK] Key buffer size / total MyISAM indexes: 16.0M/279.0K [OK] Key buffer hit rate: 99.9% (50K cached / 40 reads) [OK] Query cache efficiency: 61.4% (844K cached / 1M selects) [!!] Query cache prunes per day: 553779 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 34K sorts) [OK] Temporary tables created on disk: 4% (4K on disk / 102K total) [OK] Thread cache hit rate: 84% (185 created / 1K connections) [!!] Table cache hit rate: 0% (256 open / 27K opened) [OK] Open file limit used: 0% (20/2K) [OK] Table locks acquired immediately: 100% (692K immediate / 692K locks) [OK] InnoDB data size / buffer pool: 697.2M/1.0G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Enable the slow query log to troubleshoot bad queries Increase table_cache gradually to avoid file descriptor limits Variables to adjust: query_cache_size (> 16M) table_cache (> 256)

    Read the article

  • Glassfish v3 failure when startup. "Cannot allocate memory "

    - by Shisoft
    It is clear in this Question Fail to start Glassfish 3.1: java.io.IOException: error=12, Cannot allocate memory But in my case,I have a 512M memory Ubuntu 10.04 vps.It seems that I don't need to change any configure.But when start the server,I got this exception VM failed to start: java.io.IOException: Cannot run program "/usr/lib/jvm/java-6-sun-1.6.0.22/bin/java" (in directory "/home/glassfish/glassfish/domains/domain1/config"): java.io.IOException: error=12, Cannot allocate memory So,I set <jvm-options>-Xmx512</jvm-options> to <jvm-options>-Xmx400</jvm-options> The exception remains.What did I do something wrong? result of free -m total used free shared buffers cached Mem: 512 43 468 0 0 0 -/+ buffers/cache: 43 468 Swap: 0 0 0 result of cat /proc/user_beancounters Version: 2.5 uid resource held maxheld barrier limit failcnt 146049: kmemsize 2670652 5385253 51200000 51200000 0 lockedpages 0 8 2048 2048 0 privvmpages 11134 134522 131200 262200 4 shmpages 648 1352 128000 128000 0 dummy 0 0 0 0 0 numproc 12 73 500 500 0 physpages 6519 28162 0 200000000 0 vmguarpages 0 0 512000 512000 0 oomguarpages 6527 28169 512000 512000 0 numtcpsock 4 14 4096 4096 0 numflock 0 5 2048 2048 0 numpty 1 2 32 32 0 numsiginfo 0 3 1024 1024 0 tcpsndbuf 159600 265744 20480000 20480000 0 tcprcvbuf 65536 3590352 20480000 20480000 0 othersockbuf 44232 90640 20480000 20480000 0 dgramrcvbuf 0 12848 10240000 10240000 0 numothersock 22 31 2048 2048 0 dcachesize 0 0 10240000 10240000 0 numfile 1002 1474 50000 50000 0 dummy 0 0 0 0 0 dummy 0 0 0 0 0 dummy 0 0 0 0 0 numiptent 24 24 2048 2048 0 Thanks

    Read the article

  • Why is my cron daemon is being killed every few minutes?

    - by user113215
    As of about a week ago, my cron daemon refuses to stay running. I'm using Debian 6 x64 on an OpenVZ virtual machine. Running something like pgrep cron shows that the daemon isn't running. I start the service with service cron start or /etc/init.d/cron start and it launches, but it disappears from the running process list after a few minutes (varying anywhere between 1 - 30 minutes before the process is killed again). Using strace -f service cron start, I can see that the process is being killed for some reason: nanosleep({60, 0}, <unfinished ...> +++ killed by SIGKILL +++ There's nothing relevant in /var/log/syslog, /var/log/messages, /var/log/auth.log, or /var/log/kern.log to explain why the the process is dying. The system has at least 800 MB of free memory, and cat /proc/loadavg returns 0.22 0.13 0.04 so resources shouldn't be the issue. With cron running, free -m reports: total used free shared buffers cached Mem: 1024 211 812 0 0 0 -/+ buffers/cache: 211 812 Swap: 0 0 0 I also tried removing and reinstalling the cron package using apt-get. Update: I initially thought the problem was a resource issues. I erased my entire VPS and started from a fresh Debian image. There is now nothing else running on the system, but even from a clean install my cron daemon is still being killed at random. What else should I check? How do I find out what's killing my crond?

    Read the article

  • Fresh install CentOS 6.4 64b with directadmin slowly consumes all memory and crashes

    - by Coen Ponsen
    Dear server fault community, This is my first question on server fault, i'm new to server (mis)configuration so please forgive me for asking something stupid :) I'm running Directadmin on a CentOS 6.4 64b with 4GB memory and over 10000Gh virtual machine. I migrated my websites because my former vps couldn't keep up anymore. Only half of the websites from this 1GB machine were migrated jet. So the migration is still in progress and already my server crashes every day. The server performance up until that moment is perfect. The directadmin log files show nothing out of the ordinary. Yesterday only the mysql server crashed but it also crashed the entire machine before. The memory usage in DA seems to be normal: directadmin directadmin (pid 3923 22158 22159 22160 22161 22162 )8.75 MB dovecot dovecot (pid 3851 ) 47.8 MB exim exim (pid 1350 ) 1.29 MB httpd (pid 21525 21528 21529 21530 21531 21532 21546 21571 21742 21743 21744 )490.4 MB mysqld mysqld (pid 1299 ) 287.8 MB named named (pid 3807 ) 16.3 MB proftpd proftpd (pid 1481 ) 1.91 MB sshd sshd (pid 1173 21494 ) 5.16 MB Restarting services immediately frees up memory, but slowly over time the memory usage increases(about 24 hours to crash). The commands: # sync # echo 3 > /proc/sys/vm/drop_caches Will free al memory correct. I could just create a cronjob but it seems the wrong way around to me. I can't seem to pinpoint the cause. Any advices, references or tips are highly appreciated! Greetings, Coen edit: free -m : after drop_caches: total used free shared buffers cached Mem: 3830 735 3095 0 0 21 -/+ buffers/cache: 712 3117 Swap: 991 0 991 I'll post another one this evening.

    Read the article

  • Website latency and bad tcp packets

    - by Mistero Lupo
    I have multiple websites hosted on a Linode VPS and I'm having an issue with one of them: every page that I try to load has about 10 seconds latency. Apache logs are clean and the other websites on the same machine are running well. At a first glance I tought it was a memory problem since the VPS has got only 512M, but from the linode dashboard CPU and Disk I/O are normal. Anyway here we have the ram status: $ free -m total used free shared buffers cached Mem: 487 463 23 0 2 55 -/+ buffers/cache: 404 82 Swap: 255 155 100 Only 23M free, but if it was a memory problem why other websites are going as usual? I took a live capture with wireshark, and there are some duplicates SYN ACK packets just before the 10 seconds gap. I'm out of ideas, looking for some clues. Wireshark live capture screenshot As you can see from the image, the gap is after the last bad tcp. Thank you in advance. UPDATE I've checked Apache2 logs in debug error level, and this is where something is appening: 151.97.156.191 - - [14/Nov/2012:11:19:40 +0100] [www.fmaisi.it/sid#7f32c625a220][rid#7f32c6801578/subreq] (3) [perdir /home/fmaisi/sites/www.fmaisi.it/public_html/] applying pattern '^index\.php$' to uri 'index.php' 151.97.156.191 - - [14/Nov/2012:11:19:40 +0100] [www.fmaisi.it/sid#7f32c625a220][rid#7f32c6801578/subreq] (1) [perdir /home/fmaisi/sites/www.fmaisi.it/public_html/] pass through /home/fmaisi/sites/www.fmaisi.it/public_html/index.php 151.97.156.191 - - [14/Nov/2012:11:19:54 +0100] [www.fmaisi.it/sid#7f32c625a220][rid#7f32c6537c78/initial] (3) [perdir /home/fmaisi/sites/www.fmaisi.it/public_html/] strip per-dir prefix: /home/fmaisi/sites/www.fmaisi.it/public_html/wp-content/plugins/wp-filebase/wp-filebase_css.php -> wp-content/plugins/wp-filebase/wp-filebase_css.php 151.97.156.191 - - [14/Nov/2012:11:19:54 +0100] [www.fmaisi.it/sid#7f32c625a220][rid#7f32c6537c78/initial] (3) [perdir /home/fmaisi/sites/www.fmaisi.it/public_html/] applying pattern '^index\.php$' to uri 'wp-content/plugins/wp-filebase/wp-filebase_css.php' As you can see there is a gap of 14 seconds after the pass through of index.php. Any suggestions? I'm out of ideas again.

    Read the article

  • Amazon EC2 - Free memory

    - by Damo
    We have an amazon ec2 small instance running and over the past few days we noticed that the memory is going down and down. On the small instance, we are running apache and tomcat6 Tomcat is started with the following JVM parameters -Xms32m -Xmx128m -XX:PermSize=128m -XX:MaxPermSize=256m We use nagios to monitor stuff like updates to apply, free disk space and memory. Everything else is behaving as expected but our memory is going down all the time. Our app receives approx half a million hits a day When I shutdown apache and tomcat, and ran free -m, we had only 594mb of memory free out out of the 1.7gb of memory. Not much else is running on the small instance and when running the top command I cannot see where the memory is going. The app we run on tomcat is a grails webapp. Could there be a possibility that there is a memory leak within our application? I read online and folks say that a small amazon instance is perfect for running apach and tomcat. I found a few posts online that showed how to setup apache and tomcat to limit the memory usage and I have already performed those steps. The memory is not being used up as quick but the memory is still decreasing over time. We have other amazone ec2 small instances running grails apps and the memory is fairly standard on those nodes. But they would not be receiving as much traffic Just to add, when I run the top command on the problem server, I cannot see where all the memory is being used Any help with this is greatly appreciated The output of free -m when run on my server is as follows total used free shared buffers cached Mem: 1657 1380 277 0 158 773 -/+ buffers/cache: 447 1209 Swap: 895 0 895 In your opinion, does this look ok? At what stage would the OS give back memory, would it wait to the memory reaches 0% or is this OS dependent?

    Read the article

  • Howto detect fake RAM

    - by Michael
    I just bought a virtual server which should have 2GB of RAM. Now i got a server with 4gb which looks very strange to me. I think it is just a virtual RAM. dmidecode only ouputs /dev/mem: Operation not permitted How can i check if it's a real RAM or just a virtual one? free -m outputs: total used free shared buffers cached Mem: 4093 364 3728 0 0 346 -/+ buffers/cache: 18 4074 Swap: 0 0 0 Output from cat /proc/user_beancounters Version: 2.5 uid resource held maxheld barrier limit failcnt 137: kmemsize 8922287 10194944 2145910784 2145910784 0 lockedpages 0 0 523904 523904 0 privvmpages 13387 59112 9223372036854775807 9223372036854775807 0 shmpages 769 785 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 numproc 22 54 9223372036854775807 9223372036854775807 0 physpages 93377 106010 0 1047808 0 vmguarpages 0 0 9223372036854775807 9223372036854775807 0 oomguarpages 2471 2473 9223372036854775807 9223372036854775807 0 numtcpsock 5 21 9223372036854775807 9223372036854775807 0 numflock 4 13 9223372036854775807 9223372036854775807 0 numpty 1 1 9223372036854775807 9223372036854775807 0 numsiginfo 0 39 9223372036854775807 9223372036854775807 0 tcpsndbuf 102592 381632 9223372036854775807 9223372036854775807 0 tcprcvbuf 81920 4820184 9223372036854775807 9223372036854775807 0 othersockbuf 4624 61632 9223372036854775807 9223372036854775807 0 dgramrcvbuf 0 9248 9223372036854775807 9223372036854775807 0 numothersock 39 56 9223372036854775807 9223372036854775807 0 dcachesize 4178917 4232732 1072955392 1072955392 0 numfile 378 535 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 numiptent 24 24 9223372036854775807 9223372036854775807 0

    Read the article

  • Access violation in DirectX OMSetRenderTargets

    - by IDWMaster
    I receive the following error (Unhandled exception at 0x527DAE81 (d3d11_1sdklayers.dll) in Lesson2.Triangles.exe: 0xC0000005: Access violation reading location 0x00000000) when running the Triangle sample application for DirectX 11 in D3D_FEATURE_LEVEL_9_1. This error occurs at the OMSetRenderTargets function, as shown below, and does not happen if I remove that function from the program (but then, the screen is blue, and does not render the triangle) //// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF //// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO //// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A //// PARTICULAR PURPOSE. //// //// Copyright (c) Microsoft Corporation. All rights reserved #include #include #include "DirectXSample.h" #include "BasicMath.h" #include "BasicReaderWriter.h" using namespace Microsoft::WRL; using namespace Windows::UI::Core; using namespace Windows::Foundation; using namespace Windows::ApplicationModel::Core; using namespace Windows::ApplicationModel::Infrastructure; // This class defines the application as a whole. ref class Direct3DTutorialViewProvider : public IViewProvider { private: CoreWindow^ m_window; ComPtr m_swapChain; ComPtr m_d3dDevice; ComPtr m_d3dDeviceContext; ComPtr m_renderTargetView; public: // This method is called on application launch. void Initialize( _In_ CoreWindow^ window, _In_ CoreApplicationView^ applicationView ) { m_window = window; } // This method is called after Initialize. void Load(_In_ Platform::String^ entryPoint) { } // This method is called after Load. void Run() { // First, create the Direct3D device. // This flag is required in order to enable compatibility with Direct2D. UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT; #if defined(_DEBUG) // If the project is in a debug build, enable debugging via SDK Layers with this flag. creationFlags |= D3D11_CREATE_DEVICE_DEBUG; #endif // This array defines the ordering of feature levels that D3D should attempt to create. D3D_FEATURE_LEVEL featureLevels[] = { D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_1 }; ComPtr d3dDevice; ComPtr d3dDeviceContext; DX::ThrowIfFailed( D3D11CreateDevice( nullptr, // specify nullptr to use the default adapter D3D_DRIVER_TYPE_HARDWARE, nullptr, // leave as nullptr if hardware is used creationFlags, // optionally set debug and Direct2D compatibility flags featureLevels, ARRAYSIZE(featureLevels), D3D11_SDK_VERSION, // always set this to D3D11_SDK_VERSION &d3dDevice, nullptr, &d3dDeviceContext ) ); // Retrieve the Direct3D 11.1 interfaces. DX::ThrowIfFailed( d3dDevice.As(&m_d3dDevice) ); DX::ThrowIfFailed( d3dDeviceContext.As(&m_d3dDeviceContext) ); // After the D3D device is created, create additional application resources. CreateWindowSizeDependentResources(); // Create a Basic Reader-Writer class to load data from disk. This class is examined // in the Resource Loading sample. BasicReaderWriter^ reader = ref new BasicReaderWriter(); // Load the raw vertex shader bytecode from disk and create a vertex shader with it. auto vertexShaderBytecode = reader-ReadData("SimpleVertexShader.cso"); ComPtr vertexShader; DX::ThrowIfFailed( m_d3dDevice-CreateVertexShader( vertexShaderBytecode-Data, vertexShaderBytecode-Length, nullptr, &vertexShader ) ); // Create an input layout that matches the layout defined in the vertex shader code. // For this lesson, this is simply a float2 vector defining the vertex position. const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = { { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; ComPtr inputLayout; DX::ThrowIfFailed( m_d3dDevice-CreateInputLayout( basicVertexLayoutDesc, ARRAYSIZE(basicVertexLayoutDesc), vertexShaderBytecode-Data, vertexShaderBytecode-Length, &inputLayout ) ); // Load the raw pixel shader bytecode from disk and create a pixel shader with it. auto pixelShaderBytecode = reader-ReadData("SimplePixelShader.cso"); ComPtr pixelShader; DX::ThrowIfFailed( m_d3dDevice-CreatePixelShader( pixelShaderBytecode-Data, pixelShaderBytecode-Length, nullptr, &pixelShader ) ); // Create vertex and index buffers that define a simple triangle. float3 triangleVertices[] = { float3(-0.5f, -0.5f,13.5f), float3( 0.0f, 0.5f,0), float3( 0.5f, -0.5f,0), }; D3D11_BUFFER_DESC vertexBufferDesc = {0}; vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; vertexBufferDesc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; vertexBufferData.pSysMem = triangleVertices; vertexBufferData.SysMemPitch = 0; vertexBufferData.SysMemSlicePitch = 0; ComPtr vertexBuffer; DX::ThrowIfFailed( m_d3dDevice-CreateBuffer( &vertexBufferDesc, &vertexBufferData, &vertexBuffer ) ); // Once all D3D resources are created, configure the application window. // Allow the application to respond when the window size changes. m_window-SizeChanged += ref new TypedEventHandler( this, &Direct3DTutorialViewProvider::OnWindowSizeChanged ); // Specify the cursor type as the standard arrow cursor. m_window-PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0); // Activate the application window, making it visible and enabling it to receive events. m_window-Activate(); // Enter the render loop. Note that tailored applications should never exit. while (true) { // Process events incoming to the window. m_window-Dispatcher-ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent); // Specify the render target we created as the output target. ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()}; m_d3dDeviceContext-OMSetRenderTargets( 1, targets, NULL // use no depth stencil ); // Clear the render target to a solid color. const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f }; //Code fails here m_d3dDeviceContext-ClearRenderTargetView( m_renderTargetView.Get(), clearColor ); m_d3dDeviceContext-IASetInputLayout(inputLayout.Get()); // Set the vertex and index buffers, and specify the way they define geometry. UINT stride = sizeof(float3); UINT offset = 0; m_d3dDeviceContext-IASetVertexBuffers( 0, 1, vertexBuffer.GetAddressOf(), &stride, &offset ); m_d3dDeviceContext-IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Set the vertex and pixel shader stage state. m_d3dDeviceContext-VSSetShader( vertexShader.Get(), nullptr, 0 ); m_d3dDeviceContext-PSSetShader( pixelShader.Get(), nullptr, 0 ); // Draw the cube. m_d3dDeviceContext-Draw(3,0); // Present the rendered image to the window. Because the maximum frame latency is set to 1, // the render loop will generally be throttled to the screen refresh rate, typically around // 60Hz, by sleeping the application on Present until the screen is refreshed. DX::ThrowIfFailed( m_swapChain-Present(1, 0) ); } } // This method is called before the application exits. void Uninitialize() { } private: // This method is called whenever the application window size changes. void OnWindowSizeChanged( _In_ CoreWindow^ sender, _In_ WindowSizeChangedEventArgs^ args ) { m_renderTargetView = nullptr; CreateWindowSizeDependentResources(); } // This method creates all application resources that depend on // the application window size. It is called at app initialization, // and whenever the application window size changes. void CreateWindowSizeDependentResources() { if (m_swapChain != nullptr) { // If the swap chain already exists, resize it. DX::ThrowIfFailed( m_swapChain-ResizeBuffers( 2, 0, 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0 ) ); } else { // If the swap chain does not exist, create it. DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0}; swapChainDesc.Stereo = false; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.Scaling = DXGI_SCALING_NONE; swapChainDesc.Flags = 0; // Use automatic sizing. swapChainDesc.Width = 0; swapChainDesc.Height = 0; // This is the most common swap chain format. swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Don't use multi-sampling. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Use two buffers to enable flip effect. swapChainDesc.BufferCount = 2; // We recommend using this swap effect for all applications. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // Once the swap chain description is configured, it must be // created on the same adapter as the existing D3D Device. // First, retrieve the underlying DXGI Device from the D3D Device. ComPtr dxgiDevice; DX::ThrowIfFailed( m_d3dDevice.As(&dxgiDevice) ); // Ensure that DXGI does not queue more than one frame at a time. This both reduces // latency and ensures that the application will only render after each VSync, minimizing // power consumption. DX::ThrowIfFailed( dxgiDevice-SetMaximumFrameLatency(1) ); // Next, get the parent factory from the DXGI Device. ComPtr dxgiAdapter; DX::ThrowIfFailed( dxgiDevice-GetAdapter(&dxgiAdapter) ); ComPtr dxgiFactory; DX::ThrowIfFailed( dxgiAdapter-GetParent( __uuidof(IDXGIFactory2), &dxgiFactory ) ); // Finally, create the swap chain. DX::ThrowIfFailed( dxgiFactory-CreateSwapChainForImmersiveWindow( m_d3dDevice.Get(), DX::GetIUnknown(m_window), &swapChainDesc, nullptr, // allow on all displays &m_swapChain ) ); } // Once the swap chain is created, create a render target view. This will // allow Direct3D to render graphics to the window. ComPtr backBuffer; DX::ThrowIfFailed( m_swapChain-GetBuffer( 0, __uuidof(ID3D11Texture2D), &backBuffer ) ); DX::ThrowIfFailed( m_d3dDevice-CreateRenderTargetView( backBuffer.Get(), nullptr, &m_renderTargetView ) ); // After the render target view is created, specify that the viewport, // which describes what portion of the window to draw to, should cover // the entire window. D3D11_TEXTURE2D_DESC backBufferDesc = {0}; backBuffer-GetDesc(&backBufferDesc); D3D11_VIEWPORT viewport; viewport.TopLeftX = 0.0f; viewport.TopLeftY = 0.0f; viewport.Width = static_cast(backBufferDesc.Width); viewport.Height = static_cast(backBufferDesc.Height); viewport.MinDepth = D3D11_MIN_DEPTH; viewport.MaxDepth = D3D11_MAX_DEPTH; m_d3dDeviceContext-RSSetViewports(1, &viewport); } }; // This class defines how to create the custom View Provider defined above. ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory { public: IViewProvider^ CreateViewProvider() { return ref new Direct3DTutorialViewProvider(); } }; [Platform::MTAThread] int main(array^) { auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory(); Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory); return 0; }

    Read the article

  • Commit in SQL

    - by PRajkumar
    SQL Transaction Control Language Commands (TCL)                                           (COMMIT) Commit Transaction As a SQL language we use transaction control language very frequently. Committing a transaction means making permanent the changes performed by the SQL statements within the transaction. A transaction is a sequence of SQL statements that Oracle Database treats as a single unit. This statement also erases all save points in the transaction and releases transaction locks. Oracle Database issues an implicit COMMIT before and after any data definition language (DDL) statement. Oracle recommends that you explicitly end every transaction in your application programs with a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting from Oracle Database. If you do not explicitly commit the transaction and the program terminates abnormally, then the last uncommitted transaction is automatically rolled back.   Until you commit a transaction: ·         You can see any changes you have made during the transaction by querying the modified tables, but other users cannot see the changes. After you commit the transaction, the changes are visible to other users' statements that execute after the commit ·         You can roll back (undo) any changes made during the transaction with the ROLLBACK statement   Note: Most of the people think that when we type commit data or changes of what you have made has been written to data files, but this is wrong when you type commit it means that you are saying that your job has been completed and respective verification will be done by oracle engine that means it checks whether your transaction achieved consistency when it finds ok it sends a commit message to the user from log buffer but not from data buffer, so after writing data in log buffer it insists data buffer to write data in to data files, this is how it works.   Before a transaction that modifies data is committed, the following has occurred: ·         Oracle has generated undo information. The undo information contains the old data values changed by the SQL statements of the transaction ·         Oracle has generated redo log entries in the redo log buffer of the System Global Area (SGA). The redo log record contains the change to the data block and the change to the rollback block. These changes may go to disk before a transaction is committed ·         The changes have been made to the database buffers of the SGA. These changes may go to disk before a transaction is committed   Note:   The data changes for a committed transaction, stored in the database buffers of the SGA, are not necessarily written immediately to the data files by the database writer (DBWn) background process. This writing takes place when it is most efficient for the database to do so. It can happen before the transaction commits or, alternatively, it can happen some times after the transaction commits.   When a transaction is committed, the following occurs: 1.      The internal transaction table for the associated undo table space records that the transaction has committed, and the corresponding unique system change number (SCN) of the transaction is assigned and recorded in the table 2.      The log writer process (LGWR) writes redo log entries in the SGA's redo log buffers to the redo log file. It also writes the transaction's SCN to the redo log file. This atomic event constitutes the commit of the transaction 3.      Oracle releases locks held on rows and tables 4.      Oracle marks the transaction complete   Note:   The default behavior is for LGWR to write redo to the online redo log files synchronously and for transactions to wait for the redo to go to disk before returning a commit to the user. However, for lower transaction commit latency application developers can specify that redo be written asynchronously and that transaction do not need to wait for the redo to be on disk.   The syntax of Commit Statement is   COMMIT [WORK] [COMMENT ‘your comment’]; ·         WORK is optional. The WORK keyword is supported for compliance with standard SQL. The statements COMMIT and COMMIT WORK are equivalent. Examples Committing an Insert INSERT INTO table_name VALUES (val1, val2); COMMIT WORK; ·         COMMENT Comment is also optional. This clause is supported for backward compatibility. Oracle recommends that you used named transactions instead of commit comments. Specify a comment to be associated with the current transaction. The 'text' is a quoted literal of up to 255 bytes that Oracle Database stores in the data dictionary view DBA_2PC_PENDING along with the transaction ID if a distributed transaction becomes in doubt. This comment can help you diagnose the failure of a distributed transaction. Examples The following statement commits the current transaction and associates a comment with it: COMMIT     COMMENT 'In-doubt transaction Code 36, Call (415) 555-2637'; ·         WRITE Clause Use this clause to specify the priority with which the redo information generated by the commit operation is written to the redo log. This clause can improve performance by reducing latency, thus eliminating the wait for an I/O to the redo log. Use this clause to improve response time in environments with stringent response time requirements where the following conditions apply: The volume of update transactions is large, requiring that the redo log be written to disk frequently. The application can tolerate the loss of an asynchronously committed transaction. The latency contributed by waiting for the redo log write to occur contributes significantly to overall response time. You can specify the WAIT | NOWAIT and IMMEDIATE | BATCH clauses in any order. Examples To commit the same insert operation and instruct the database to buffer the change to the redo log, without initiating disk I/O, use the following COMMIT statement: COMMIT WRITE BATCH; Note: If you omit this clause, then the behavior of the commit operation is controlled by the COMMIT_WRITE initialization parameter, if it has been set. The default value of the parameter is the same as the default for this clause. Therefore, if the parameter has not been set and you omit this clause, then commit records are written to disk before control is returned to the user. WAIT | NOWAIT Use these clauses to specify when control returns to the user. The WAIT parameter ensures that the commit will return only after the corresponding redo is persistent in the online redo log. Whether in BATCH or IMMEDIATE mode, when the client receives a successful return from this COMMIT statement, the transaction has been committed to durable media. A crash occurring after a successful write to the log can prevent the success message from returning to the client. In this case the client cannot tell whether or not the transaction committed. The NOWAIT parameter causes the commit to return to the client whether or not the write to the redo log has completed. This behavior can increase transaction throughput. With the WAIT parameter, if the commit message is received, then you can be sure that no data has been lost. Caution: With NOWAIT, a crash occurring after the commit message is received, but before the redo log record(s) are written, can falsely indicate to a transaction that its changes are persistent. If you omit this clause, then the transaction commits with the WAIT behavior. IMMEDIATE | BATCH Use these clauses to specify when the redo is written to the log. The IMMEDIATE parameter causes the log writer process (LGWR) to write the transaction's redo information to the log. This operation option forces a disk I/O, so it can reduce transaction throughput. The BATCH parameter causes the redo to be buffered to the redo log, along with other concurrently executing transactions. When sufficient redo information is collected, a disk write of the redo log is initiated. This behavior is called "group commit", as redo for multiple transactions is written to the log in a single I/O operation. If you omit this clause, then the transaction commits with the IMMEDIATE behavior. ·         FORCE Clause Use this clause to manually commit an in-doubt distributed transaction or a corrupt transaction. ·         In a distributed database system, the FORCE string [, integer] clause lets you manually commit an in-doubt distributed transaction. The transaction is identified by the 'string' containing its local or global transaction ID. To find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING. You can use integer to specifically assign the transaction a system change number (SCN). If you omit integer, then the transaction is committed using the current SCN. ·         The FORCE CORRUPT_XID 'string' clause lets you manually commit a single corrupt transaction, where string is the ID of the corrupt transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to specify this clause. ·         Specify FORCE CORRUPT_XID_ALL to manually commit all corrupt transactions. You must have DBA privileges to specify this clause. Examples Forcing an in doubt transaction. Example The following statement manually commits a hypothetical in-doubt distributed transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to issue this statement. COMMIT FORCE '22.57.53';

    Read the article

  • Server Memory with Magento

    - by Mohamed Elgharabawy
    I have a cloud server with the following specifications: 2vCPUs 4G RAM 160GB Disk Space Network 400Mb/s System Image: Ubuntu 12.04 LTS I am only running Magento CE 1.7.0.2 on this server. Nothing else. Usually, the server has a loading time of 4-5 seconds. Recently, this has dropped to over 30 seconds and sometimes the server just goes away and I get HTTP error reports to my email stating that HTTP requests took more than 20000ms. Running top command and sorting them returns the following: top - 15:29:07 up 3:40, 1 user, load average: 28.59, 25.95, 22.91 Tasks: 112 total, 30 running, 82 sleeping, 0 stopped, 0 zombie Cpu(s): 90.2%us, 9.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.3%si, 0.2%st PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 31901 www-data 20 0 360m 71m 5840 R 7 1.8 1:39.51 apache2 32084 www-data 20 0 362m 72m 5548 R 7 1.8 1:31.56 apache2 32089 www-data 20 0 348m 59m 5660 R 7 1.5 1:41.74 apache2 32295 www-data 20 0 343m 54m 5532 R 7 1.4 2:00.78 apache2 32303 www-data 20 0 354m 65m 5260 R 7 1.6 1:38.76 apache2 32304 www-data 20 0 346m 56m 5544 R 7 1.4 1:41.26 apache2 32305 www-data 20 0 348m 59m 5640 R 7 1.5 1:50.11 apache2 32291 www-data 20 0 358m 69m 5256 R 6 1.7 1:44.26 apache2 32517 www-data 20 0 345m 56m 5532 R 6 1.4 1:45.56 apache2 30473 www-data 20 0 355m 66m 5680 R 6 1.7 2:00.05 apache2 32093 www-data 20 0 352m 63m 5848 R 6 1.6 1:53.23 apache2 32302 www-data 20 0 345m 56m 5512 R 6 1.4 1:55.87 apache2 32433 www-data 20 0 346m 57m 5500 S 6 1.4 1:31.58 apache2 32638 www-data 20 0 354m 65m 5508 R 6 1.6 1:36.59 apache2 32230 www-data 20 0 347m 57m 5524 R 6 1.4 1:33.96 apache2 32231 www-data 20 0 355m 66m 5512 R 6 1.7 1:37.47 apache2 32233 www-data 20 0 354m 64m 6032 R 6 1.6 1:59.74 apache2 32300 www-data 20 0 355m 66m 5672 R 6 1.7 1:43.76 apache2 32510 www-data 20 0 347m 58m 5512 R 6 1.5 1:42.54 apache2 32521 www-data 20 0 348m 59m 5508 R 6 1.5 1:47.99 apache2 32639 www-data 20 0 344m 55m 5512 R 6 1.4 1:34.25 apache2 32083 www-data 20 0 345m 56m 5696 R 5 1.4 1:59.42 apache2 32085 www-data 20 0 347m 58m 5692 R 5 1.5 1:42.29 apache2 32293 www-data 20 0 353m 64m 5676 R 5 1.6 1:52.73 apache2 32301 www-data 20 0 348m 59m 5564 R 5 1.5 1:49.63 apache2 32528 www-data 20 0 351m 62m 5520 R 5 1.6 1:36.11 apache2 31523 mysql 20 0 3460m 576m 8288 S 5 14.4 2:06.91 mysqld 32002 www-data 20 0 345m 55m 5512 R 5 1.4 2:01.88 apache2 32080 www-data 20 0 357m 68m 5512 S 5 1.7 1:31.30 apache2 32163 www-data 20 0 347m 58m 5512 S 5 1.5 1:58.68 apache2 32509 www-data 20 0 345m 56m 5504 R 5 1.4 1:49.54 apache2 32306 www-data 20 0 358m 68m 5504 S 4 1.7 1:53.29 apache2 32165 www-data 20 0 344m 55m 5524 S 4 1.4 1:40.71 apache2 32640 www-data 20 0 345m 56m 5528 R 4 1.4 1:36.49 apache2 31888 www-data 20 0 359m 70m 5664 R 4 1.8 1:57.07 apache2 32511 www-data 20 0 357m 67m 5512 S 3 1.7 1:47.00 apache2 32054 www-data 20 0 357m 68m 5660 S 2 1.7 1:53.10 apache2 1 root 20 0 24452 2276 1232 S 0 0.1 0:01.58 init Moreover, running free -m returns the following: total used free shared buffers cached Mem: 4003 3919 83 0 118 901 -/+ buffers/cache: 2899 1103 Swap: 0 0 0 To investigate this further, I have installed apache buddy, it recommeneded that I need to reduce the maxclient connections. Which I did. I also installed MysqlTuner and it suggests that I need to set my innodb_buffer_pool_size to = 3.0G. However, I cannot do that, since the whole memory is 4G. Here is the output from apache buddy: ### GENERAL REPORT ### Settings considered for this report: Your server's physical RAM: 4003MB Apache's MaxClients directive: 40 Apache MPM Model: prefork Largest Apache process (by memory): 73.77MB [ OK ] Your MaxClients setting is within an acceptable range. Max potential memory usage: 2950.8 MB Percentage of RAM allocated to Apache 73.72 % And this is the output of MySQLTuner: -------- Performance Metrics ------------------------------------------------- [--] Up for: 47m 22s (675K q [237.552 qps], 12K conn, TX: 1B, RX: 300M) [--] Reads / Writes: 45% / 55% [--] Total buffers: 2.1G global + 2.7M per thread (151 max threads) [OK] Maximum possible memory usage: 2.5G (64% of installed RAM) [OK] Slow queries: 0% (0/675K) [OK] Highest usage of available connections: 26% (40/151) [OK] Key buffer size / total MyISAM indexes: 36.0M/18.7M [OK] Key buffer hit rate: 100.0% (245K cached / 105 reads) [OK] Query cache efficiency: 92.5% (500K cached / 541K selects) [!!] Query cache prunes per day: 302886 [OK] Sorts requiring temporary tables: 0% (1 temp sorts / 15K sorts) [!!] Joins performed without indexes: 12135 [OK] Temporary tables created on disk: 25% (8K on disk / 32K total) [OK] Thread cache hit rate: 90% (1K created / 12K connections) [!!] Table cache hit rate: 17% (400 open / 2K opened) [OK] Open file limit used: 12% (123/1K) [OK] Table locks acquired immediately: 100% (196K immediate / 196K locks) [!!] InnoDB buffer pool / data size: 2.0G/3.5G [OK] InnoDB log waits: 0 -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Enable the slow query log to troubleshoot bad queries Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Read this before increasing table_cache over 64: http://bit.ly/1mi7c4C Variables to adjust: query_cache_size ( 64M) join_buffer_size ( 128.0K, or always use indexes with joins) table_cache ( 400) innodb_buffer_pool_size (= 3G) Last but not least, the server still has more than 60% of free disk space. Now, based on the above, I have few questions: Are these numbers normal? Do they make sense? Do I need to upgrade the server? If I don't need to upgrade and my configuration is not correct, how do I optimize it?

    Read the article

  • 'pip install carbon' looks like it works, but pip disagrees afterward

    - by fennec
    I'm trying to use pip to install the package carbon, a package related to statistics collection. When I run pip install carbon, it looks like everything works. However, pip is unconvinced that the package is actually installed. (This ultimately causes trouble because I'm using Puppet, and have a rule to install carbon using pip, and when puppet asks pip "is this package installed?" it says "no" and it reinstalls it again.) How do I figure out what's preventing pip from recognizing the success of this installation? Here is the output of the regular install: root@statsd:/opt/graphite# pip install carbon Downloading/unpacking carbon Downloading carbon-0.9.9.tar.gz Running setup.py egg_info for package carbon package init file 'lib/twisted/plugins/__init__.py' not found (or not a regular file) Requirement already satisfied (use --upgrade to upgrade): twisted in /usr/local/lib/python2.7/dist-packages (from carbon) Requirement already satisfied (use --upgrade to upgrade): txamqp in /usr/local/lib/python2.7/dist-packages (from carbon) Requirement already satisfied (use --upgrade to upgrade): zope.interface in /usr/local/lib/python2.7/dist-packages (from twisted->carbon) Requirement already satisfied (use --upgrade to upgrade): distribute in /usr/local/lib/python2.7/dist-packages (from zope.interface->twisted->carbon) Installing collected packages: carbon Running setup.py install for carbon package init file 'lib/twisted/plugins/__init__.py' not found (or not a regular file) changing mode of build/scripts-2.7/validate-storage-schemas.py from 664 to 775 changing mode of build/scripts-2.7/carbon-aggregator.py from 664 to 775 changing mode of build/scripts-2.7/carbon-cache.py from 664 to 775 changing mode of build/scripts-2.7/carbon-relay.py from 664 to 775 changing mode of build/scripts-2.7/carbon-client.py from 664 to 775 changing mode of /opt/graphite/bin/validate-storage-schemas.py to 775 changing mode of /opt/graphite/bin/carbon-aggregator.py to 775 changing mode of /opt/graphite/bin/carbon-cache.py to 775 changing mode of /opt/graphite/bin/carbon-relay.py to 775 changing mode of /opt/graphite/bin/carbon-client.py to 775 Successfully installed carbon Cleaning up... root@statsd:/opt/graphite# pip freeze | grep carbon root@statsd: Here is the verbose version of the install: root@statsd:/opt/graphite# pip install carbon -v Downloading/unpacking carbon Using version 0.9.9 (newest of versions: 0.9.9, 0.9.9, 0.9.8, 0.9.7, 0.9.6, 0.9.5) Downloading carbon-0.9.9.tar.gz Running setup.py egg_info for package carbon running egg_info creating pip-egg-info/carbon.egg-info writing requirements to pip-egg-info/carbon.egg-info/requires.txt writing pip-egg-info/carbon.egg-info/PKG-INFO writing top-level names to pip-egg-info/carbon.egg-info/top_level.txt writing dependency_links to pip-egg-info/carbon.egg-info/dependency_links.txt writing manifest file 'pip-egg-info/carbon.egg-info/SOURCES.txt' warning: manifest_maker: standard file '-c' not found package init file 'lib/twisted/plugins/__init__.py' not found (or not a regular file) reading manifest file 'pip-egg-info/carbon.egg-info/SOURCES.txt' writing manifest file 'pip-egg-info/carbon.egg-info/SOURCES.txt' Requirement already satisfied (use --upgrade to upgrade): twisted in /usr/local/lib/python2.7/dist-packages (from carbon) Requirement already satisfied (use --upgrade to upgrade): txamqp in /usr/local/lib/python2.7/dist-packages (from carbon) Requirement already satisfied (use --upgrade to upgrade): zope.interface in /usr/local/lib/python2.7/dist-packages (from twisted->carbon) Requirement already satisfied (use --upgrade to upgrade): distribute in /usr/local/lib/python2.7/dist-packages (from zope.interface->twisted->carbon) Installing collected packages: carbon Running setup.py install for carbon running install running build running build_py creating build creating build/lib.linux-i686-2.7 creating build/lib.linux-i686-2.7/carbon copying lib/carbon/amqp_publisher.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/manhole.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/instrumentation.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/cache.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/management.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/relayrules.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/events.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/protocols.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/conf.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/rewrite.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/hashing.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/writer.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/client.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/util.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/service.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/amqp_listener.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/routers.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/storage.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/log.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/__init__.py -> build/lib.linux-i686-2.7/carbon copying lib/carbon/state.py -> build/lib.linux-i686-2.7/carbon creating build/lib.linux-i686-2.7/carbon/aggregator copying lib/carbon/aggregator/receiver.py -> build/lib.linux-i686-2.7/carbon/aggregator copying lib/carbon/aggregator/rules.py -> build/lib.linux-i686-2.7/carbon/aggregator copying lib/carbon/aggregator/buffers.py -> build/lib.linux-i686-2.7/carbon/aggregator copying lib/carbon/aggregator/__init__.py -> build/lib.linux-i686-2.7/carbon/aggregator package init file 'lib/twisted/plugins/__init__.py' not found (or not a regular file) creating build/lib.linux-i686-2.7/twisted creating build/lib.linux-i686-2.7/twisted/plugins copying lib/twisted/plugins/carbon_relay_plugin.py -> build/lib.linux-i686-2.7/twisted/plugins copying lib/twisted/plugins/carbon_aggregator_plugin.py -> build/lib.linux-i686-2.7/twisted/plugins copying lib/twisted/plugins/carbon_cache_plugin.py -> build/lib.linux-i686-2.7/twisted/plugins copying lib/carbon/amqp0-8.xml -> build/lib.linux-i686-2.7/carbon running build_scripts creating build/scripts-2.7 copying and adjusting bin/validate-storage-schemas.py -> build/scripts-2.7 copying and adjusting bin/carbon-aggregator.py -> build/scripts-2.7 copying and adjusting bin/carbon-cache.py -> build/scripts-2.7 copying and adjusting bin/carbon-relay.py -> build/scripts-2.7 copying and adjusting bin/carbon-client.py -> build/scripts-2.7 changing mode of build/scripts-2.7/validate-storage-schemas.py from 664 to 775 changing mode of build/scripts-2.7/carbon-aggregator.py from 664 to 775 changing mode of build/scripts-2.7/carbon-cache.py from 664 to 775 changing mode of build/scripts-2.7/carbon-relay.py from 664 to 775 changing mode of build/scripts-2.7/carbon-client.py from 664 to 775 running install_lib copying build/lib.linux-i686-2.7/carbon/amqp_publisher.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/manhole.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/amqp0-8.xml -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/instrumentation.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/cache.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/management.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/relayrules.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/events.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/protocols.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/conf.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/rewrite.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/hashing.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/writer.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/client.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/util.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/aggregator/receiver.py -> /opt/graphite/lib/carbon/aggregator copying build/lib.linux-i686-2.7/carbon/aggregator/rules.py -> /opt/graphite/lib/carbon/aggregator copying build/lib.linux-i686-2.7/carbon/aggregator/buffers.py -> /opt/graphite/lib/carbon/aggregator copying build/lib.linux-i686-2.7/carbon/aggregator/__init__.py -> /opt/graphite/lib/carbon/aggregator copying build/lib.linux-i686-2.7/carbon/service.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/amqp_listener.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/routers.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/storage.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/log.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/__init__.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/carbon/state.py -> /opt/graphite/lib/carbon copying build/lib.linux-i686-2.7/twisted/plugins/carbon_relay_plugin.py -> /opt/graphite/lib/twisted/plugins copying build/lib.linux-i686-2.7/twisted/plugins/carbon_aggregator_plugin.py -> /opt/graphite/lib/twisted/plugins copying build/lib.linux-i686-2.7/twisted/plugins/carbon_cache_plugin.py -> /opt/graphite/lib/twisted/plugins byte-compiling /opt/graphite/lib/carbon/amqp_publisher.py to amqp_publisher.pyc byte-compiling /opt/graphite/lib/carbon/manhole.py to manhole.pyc byte-compiling /opt/graphite/lib/carbon/instrumentation.py to instrumentation.pyc byte-compiling /opt/graphite/lib/carbon/cache.py to cache.pyc byte-compiling /opt/graphite/lib/carbon/management.py to management.pyc byte-compiling /opt/graphite/lib/carbon/relayrules.py to relayrules.pyc byte-compiling /opt/graphite/lib/carbon/events.py to events.pyc byte-compiling /opt/graphite/lib/carbon/protocols.py to protocols.pyc byte-compiling /opt/graphite/lib/carbon/conf.py to conf.pyc byte-compiling /opt/graphite/lib/carbon/rewrite.py to rewrite.pyc byte-compiling /opt/graphite/lib/carbon/hashing.py to hashing.pyc byte-compiling /opt/graphite/lib/carbon/writer.py to writer.pyc byte-compiling /opt/graphite/lib/carbon/client.py to client.pyc byte-compiling /opt/graphite/lib/carbon/util.py to util.pyc byte-compiling /opt/graphite/lib/carbon/aggregator/receiver.py to receiver.pyc byte-compiling /opt/graphite/lib/carbon/aggregator/rules.py to rules.pyc byte-compiling /opt/graphite/lib/carbon/aggregator/buffers.py to buffers.pyc byte-compiling /opt/graphite/lib/carbon/aggregator/__init__.py to __init__.pyc byte-compiling /opt/graphite/lib/carbon/service.py to service.pyc byte-compiling /opt/graphite/lib/carbon/amqp_listener.py to amqp_listener.pyc byte-compiling /opt/graphite/lib/carbon/routers.py to routers.pyc byte-compiling /opt/graphite/lib/carbon/storage.py to storage.pyc byte-compiling /opt/graphite/lib/carbon/log.py to log.pyc byte-compiling /opt/graphite/lib/carbon/__init__.py to __init__.pyc byte-compiling /opt/graphite/lib/carbon/state.py to state.pyc byte-compiling /opt/graphite/lib/twisted/plugins/carbon_relay_plugin.py to carbon_relay_plugin.pyc byte-compiling /opt/graphite/lib/twisted/plugins/carbon_aggregator_plugin.py to carbon_aggregator_plugin.pyc byte-compiling /opt/graphite/lib/twisted/plugins/carbon_cache_plugin.py to carbon_cache_plugin.pyc running install_data copying conf/storage-schemas.conf.example -> /opt/graphite/conf copying conf/rewrite-rules.conf.example -> /opt/graphite/conf copying conf/relay-rules.conf.example -> /opt/graphite/conf copying conf/carbon.amqp.conf.example -> /opt/graphite/conf copying conf/aggregation-rules.conf.example -> /opt/graphite/conf copying conf/carbon.conf.example -> /opt/graphite/conf running install_egg_info running egg_info creating lib/carbon.egg-info writing requirements to lib/carbon.egg-info/requires.txt writing lib/carbon.egg-info/PKG-INFO writing top-level names to lib/carbon.egg-info/top_level.txt writing dependency_links to lib/carbon.egg-info/dependency_links.txt writing manifest file 'lib/carbon.egg-info/SOURCES.txt' warning: manifest_maker: standard file '-c' not found reading manifest file 'lib/carbon.egg-info/SOURCES.txt' writing manifest file 'lib/carbon.egg-info/SOURCES.txt' removing '/opt/graphite/lib/carbon-0.9.9-py2.7.egg-info' (and everything under it) Copying lib/carbon.egg-info to /opt/graphite/lib/carbon-0.9.9-py2.7.egg-info running install_scripts copying build/scripts-2.7/validate-storage-schemas.py -> /opt/graphite/bin copying build/scripts-2.7/carbon-aggregator.py -> /opt/graphite/bin copying build/scripts-2.7/carbon-cache.py -> /opt/graphite/bin copying build/scripts-2.7/carbon-relay.py -> /opt/graphite/bin copying build/scripts-2.7/carbon-client.py -> /opt/graphite/bin changing mode of /opt/graphite/bin/validate-storage-schemas.py to 775 changing mode of /opt/graphite/bin/carbon-aggregator.py to 775 changing mode of /opt/graphite/bin/carbon-cache.py to 775 changing mode of /opt/graphite/bin/carbon-relay.py to 775 changing mode of /opt/graphite/bin/carbon-client.py to 775 writing list of installed files to '/tmp/pip-9LuJTF-record/install-record.txt' Successfully installed carbon Cleaning up... Removing temporary dir /opt/graphite/build... root@statsd:/opt/graphite# For reference, this is pip 1.0 from /usr/lib/python2.7/dist-packages (python 2.7)

    Read the article

  • SQL SERVER – Data Pages in Buffer Pool – Data Stored in Memory Cache

    - by pinaldave
    This will drop all the clean buffers so we will be able to start again from there. Now, run the following script and check the execution plan of the query. Have you ever wondered what types of data are there in your cache? During SQL Server Trainings, I am usually asked if there is any way one can know how much data in a table is stored in the memory cache? The more detailed question I usually get is if there are multiple indexes on table (and used in a query), were the data of the single table stored multiple times in the memory cache or only for a single time? Here is a query you can run to figure out what kind of data is stored in the cache. USE AdventureWorks GO SELECT COUNT(*) AS cached_pages_count, name AS BaseTableName, IndexName, IndexTypeDesc FROM sys.dm_os_buffer_descriptors AS bd INNER JOIN ( SELECT s_obj.name, s_obj.index_id, s_obj.allocation_unit_id, s_obj.OBJECT_ID, i.name IndexName, i.type_desc IndexTypeDesc FROM ( SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id ,allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id AND (au.type = 1 OR au.type = 3) UNION ALL SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id, allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.partition_id AND au.type = 2 ) AS s_obj LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj ON bd.allocation_unit_id = obj.allocation_unit_id WHERE database_id = DB_ID() GROUP BY name, index_id, IndexName, IndexTypeDesc ORDER BY cached_pages_count DESC; GO Now let us run the query above and observe the output of the same. We can see in the above query that there are four columns. Cached_Pages_Count lists the pages cached in the memory. BaseTableName lists the original base table from which data pages are cached. IndexName lists the name of the index from which pages are cached. IndexTypeDesc lists the type of index. Now, let us do one more experience here. Please note that you should not run this test on a production server as it can extremely reduce the performance of the database. DBCC DROPCLEANBUFFERS This will drop all the clean buffers and we will be able to start again from there. Now run following script and check the execution plan for the same. USE AdventureWorks GO SELECT UnitPrice, ModifiedDate FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID BETWEEN 1 AND 100 GO The execution plans contain the usage of two different indexes. Now, let us run the script that checks the pages cached in SQL Server. It will give us the following output. It is clear from the Resultset that when more than one index is used, datapages related to both or all of the indexes are stored in Memory Cache separately. Let me know what you think of this article. I had a great pleasure while writing this article because I was able to write on this subject, which I like the most. In the next article, we will exactly see what data are cached and those that are not cached, using a few undocumented commands. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

  • Swap not available on System Monitor

    - by Zaki
    I had a swap partition of 1GB (RAM 1GB, Ubuntu 12.04 lts). Now swap is not shown on System Monitor neither can I hibernate my pc (sudo pm-hibernate). blkid output: /dev/sda1: UUID="B8B4FBB1B4FB706C" TYPE="ntfs" /dev/sda2: UUID="2ea7d608-2d89-4e41-9436-d05cb3ce8871" TYPE="swap" /dev/sda3: UUID="3219d03a-67e4-454b-8ce7-a27831846e35" TYPE="ext4" /dev/sda5: LABEL="Softwares" UUID="AC1CC3301CC2F47C" TYPE="ntfs" /dev/sda6: LABEL="Education" UUID="1E103E6C103E4B53" TYPE="ntfs" /dev/sda7: LABEL="Recreation" UUID="2CC8D181C8D149AA" TYPE="ntfs" /dev/sda8: LABEL="Miscellaneous" UUID="0274D6B174D6A727" TYPE="ntfs" /etc/fstab # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda6 during installation UUID=3219d03a-67e4-454b-8ce7-a27831846e35 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda5 during installation UUID=2ea7d608-2d89-4e41-9436-d05cb3ce8871 none swap sw 0 0 free -m total used free shared buffers cached Mem: 991 867 123 0 27 418 -/+ buffers/cache: 421 569 Swap: 0 0 0 cat /proc/swaps Filename Type Size Used Priority fdisk -l Disk /dev/sda: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581808 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x9f369f36 Device Boot Start End Blocks Id System /dev/sda1 * 63 31471334 15735636 7 HPFS/NTFS/exFAT /dev/sda2 31471616 33470447 999416 82 Linux swap / Solaris /dev/sda3 33472512 62539775 14533632 83 Linux /dev/sda4 62541045 312592769 125025862+ f W95 Ext'd (LBA) /dev/sda5 62541108 125066024 31262458+ 7 HPFS/NTFS/exFAT /dev/sda6 125066088 187591004 31262458+ 7 HPFS/NTFS/exFAT /dev/sda7 187591068 250115984 31262458+ 7 HPFS/NTFS/exFAT /dev/sda8 250116048 312576704 31230328+ 7 HPFS/NTFS/exFAT swapon --all swapon: /dev/sda2: swapon failed: Invalid argument dmesg | grep -A 5 -B 5 -i swap [ 9.487404] EXT4-fs (sda3): ext4_orphan_cleanup: deleting unreferenced inode 131645 [ 9.487413] EXT4-fs (sda3): ext4_orphan_cleanup: deleting unreferenced inode 131330 [ 9.487418] EXT4-fs (sda3): 16 orphan inodes deleted [ 9.487420] EXT4-fs (sda3): recovery complete [ 9.578600] EXT4-fs (sda3): mounted filesystem with ordered data mode. Opts: (null) [ 20.580539] Swap area shorter than signature indicates [ 20.588363] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready [ 20.619443] udevd[330]: starting version 175 [ 20.649959] lp: driver loaded but no devices found [ 20.662972] [drm] Initialized drm 1.1.0 20060810 [ 20.675515] i915 0000:00:02.0: setting latency timer to 64 -- [ 72.288573] PM: thaw of drv:sr dev:3:0:0:0 complete after 178.143 msecs [ 72.288578] PM: thaw of drv:scsi_device dev:3:0:0:0 complete after 178.136 msecs [ 72.299677] PM: thaw of drv:scsi_device dev:2:0:0:0 complete after 189.270 msecs [ 72.309473] PM: thaw of devices complete after 202.763 msecs [ 72.309668] PM: writing image. [ 72.309670] PM: Cannot find swap device, try swapon -a. [ 72.309699] PM: Cannot get swap writer [ 72.329896] Restarting tasks ... done. [ 72.331777] PM: Basic memory bitmaps freed [ 72.331792] video LNXVIDEO:00: Restoring backlight state [ 72.420048] option1 ttyUSB0: option_instat_callback: error -84 [ 72.804047] option1 ttyUSB0: option_instat_callback: error -84 -- [ 145.960625] sd 7:0:0:0: Attached scsi generic sg2 type 0 [ 145.972036] sd 7:0:0:0: [sdb] Attached SCSI removable disk [ 172.430508] PPP BSD Compression module registered [ 172.455583] PPP Deflate Compression module registered [ 332.260789] type=1400 audit(1381814763.342:27): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=636 comm="cupsd" pid=636 comm="cupsd" capability=36 capname="block_suspend" [ 1913.030998] Swap area shorter than signature indicates [ 2022.530155] type=1400 audit(1381816453.610:28): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=636 comm="cupsd" pid=636 comm="cupsd" capability=36 capname="block_suspend" [ 4062.729509] Swap area shorter than signature indicates Please help. Thanks in advance. df -h Filesystem Size Used Avail Use% Mounted on /dev/sda3 14G 6.1G 7.0G 47% / udev 488M 4.0K 488M 1% /dev tmpfs 199M 868K 198M 1% /run none 5.0M 4.0K 5.0M 1% /run/lock none 496M 224K 496M 1% /run/shm

    Read the article

  • Guaranteed Restore Points as Fallback Method

    - by Mike Dietrich
    Thanks to the great audience yesterday in the Upgrade & Migration Workshop in Utrecht. That was really fun and I was amazed by our new facilities (and the  "wellness" lights surrounding the plenum room's walls). And another reason why I like to do these workshops is that often I learn new things from you So credits here to Rick van  Ek who has highlighted the following topic to me. Yesterday (and in some previous workshops) I did mention during the discussion about Fallback Strategies that you'll have to switch on Flashback Database beforehand to create a guaranteed restore point in case you'll encounter an issue during the database upgrade. I knew that we've made it possible since Oracle Database 11.2 to switch Flashback Database on without taking the database into MOUNT status (you could switch it off anyway while the database is open before in all releases). But before Oracle Database 11.2 that did require MOUNT status. SQL> create restore point rp1 guarantee flashback database ; create restore point rp1 guarantee flashback database * ERROR at line 1: ORA-38784: Cannot create restore point 'RP1'. ORA-38787: Creating the first guaranteed restore point requires mount mode when flashback database is off. But Rick did mention that I won't need to switch Flashback Database On to create a guaranteed restore point. And he's right - in older releases I would have had to go into MOUNT state to define the restore point which meant to restart the database. But in 11.2 that's no necessary anymore. And the same will apply when you upgrade your pre-11.2 database (e.g. an Oracle Database 10.2.0.4) to Oracle Database 11.2. As soon as you start your "old" not-yet-upgraded database in your 11.2 environment with STARTUP UPGRADE you can define a guaranteed restore point. If you tail the alert.log you'll see that the database will start the RVWR (Recovery Writer) background process - you'll just have to make sure that you'd define the values for db_recovery_file_dest_size and db_recovery_file_dest. SQL> startup upgrade ORACLE instance started. Total System Global Area  417546240 bytes Fixed Size                  2228944 bytes Variable Size             134221104 bytes Database Buffers          272629760 bytes Redo Buffers                8466432 bytes Database mounted. Database opened. SQL> create restore point grpt guarantee flashback database; Restore point created.SQL> drop restore point grpt; And don't forget to drop that restore point the sooner or later as it is guaranteed - and will fill up your Fast Recovery Area pretty quickly Just on the side: in any case archivelog mode is required if you'd like to work with restore points. - Mike

    Read the article

  • OpenGL Fast-Object Instancing Error

    - by HJ Media Studios
    I have some code that loops through a set of objects and renders instances of those objects. The list of objects that needs to be rendered is stored as a std::map, where an object of class MeshResource contains the vertices and indices with the actual data, and an object of classMeshRenderer defines the point in space the mesh is to be rendered at. My rendering code is as follows: glDisable(GL_BLEND); glEnable(GL_CULL_FACE); glDepthMask(GL_TRUE); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); for (std::map<MeshResource*, std::vector<MeshRenderer*> >::iterator it = renderables.begin(); it != renderables.end(); it++) { it->first->setupBeforeRendering(); cout << "<"; for (unsigned long i =0; i < it->second.size(); i++) { //Pass in an identity matrix to the vertex shader- used here only for debugging purposes; the real code correctly inputs any matrix. uniformizeModelMatrix(Matrix4::IDENTITY); /** * StartHere fix rendering problem. * Ruled out: * Vertex buffers correctly. * Index buffers correctly. * Matrices correct? */ it->first->render(); } it->first->cleanupAfterRendering(); } geometryPassShader->disable(); glDepthMask(GL_FALSE); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); The function in MeshResource that handles setting up the uniforms is as follows: void MeshResource::setupBeforeRendering() { glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); glEnableVertexAttribArray(4); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, iboID); glBindBuffer(GL_ARRAY_BUFFER, vboID); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), 0); // Vertex position glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (const GLvoid*) 12); // Vertex normal glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (const GLvoid*) 24); // UV layer 0 glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (const GLvoid*) 32); // Vertex color glVertexAttribPointer(4, 1, GL_UNSIGNED_SHORT, GL_FALSE, sizeof(Vertex), (const GLvoid*) 44); //Material index } The code that renders the object is this: void MeshResource::render() { glDrawElements(GL_TRIANGLES, geometry->numIndices, GL_UNSIGNED_SHORT, 0); } And the code that cleans up is this: void MeshResource::cleanupAfterRendering() { glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glDisableVertexAttribArray(4); } The end result of this is that I get a black screen, although the end of my rendering pipeline after the rendering code (essentially just drawing axes and lines on the screen) works properly, so I'm fairly sure it's not an issue with the passing of uniforms. If, however, I change the code slightly so that the rendering code calls the setup immediately before rendering, like so: void MeshResource::render() { setupBeforeRendering(); glDrawElements(GL_TRIANGLES, geometry->numIndices, GL_UNSIGNED_SHORT, 0); } The program works as desired. I don't want to have to do this, though, as my aim is to set up vertex, material, etc. data once per object type and then render each instance updating only the transformation information. The uniformizeModelMatrix works as follows: void RenderManager::uniformizeModelMatrix(Matrix4 matrix) { glBindBuffer(GL_UNIFORM_BUFFER, globalMatrixUBOID); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(Matrix4), matrix.ptr()); glBindBuffer(GL_UNIFORM_BUFFER, 0); }

    Read the article

  • Memory is full with vertex buffer

    - by Christian Frantz
    I'm having a pretty strange problem that I didn't think I'd run into. I was able to store a 50x50 grid in one vertex buffer finally, in hopes of better performance. Before I had each cube have an individual vertex buffer and with 4 50x50 grids, this slowed down my game tremendously. But it still ran. With 4 50x50 grids with my new code, that's only 4 vertex buffers. With the 4 vertex buffers, I get a memory error. When I load the game with 1 grid, it takes forever to load and with my previous version, it started up right away. So I don't know if I'm storing chunks wrong or what but it stumped me -.- for (int x = 0; x < 50; x++) { for (int z = 0; z < 50; z++) { for (int y = 0; y <= map[x, z]; y++) { SetUpVertices(); SetUpIndices(); cubes.Add(new Cube(device, new Vector3(x, map[x, z] - y, z), grass)); } } } vertexBuffer = new VertexBuffer(device, typeof(VertexPositionTexture), vertices.Count(), BufferUsage.WriteOnly); vertexBuffer.SetData<VertexPositionTexture>(vertices.ToArray()); indexBuffer = new IndexBuffer(device, typeof(short), indices.Count(), BufferUsage.WriteOnly); indexBuffer.SetData(indices.ToArray()); Thats how theyre stored. The array I'm reading from is a byte array which defines the coordinates of my map. Now with my old version, I used the same loading from an array so that hasn't changed. The only difference is the one vertex buffer instead of 2500 for a 50x50 grid. cubes is just a normal list that holds all my cubes for the vertex buffer. Another thing that just came to mind would be my draw calls. If I'm setting an effect for each cube in my cube list, that's probably going to take a lot of memory. How can I avoid doing this? I need the foreach method to set my cubes to the right position foreach (Cube block in cube.cubes) { effect.VertexColorEnabled = false; effect.TextureEnabled = true; Matrix center = Matrix.CreateTranslation(new Vector3(-0.5f, -0.5f, -0.5f)); Matrix scale = Matrix.CreateScale(1f); Matrix translate = Matrix.CreateTranslation(block.cubePosition); effect.World = center * scale * translate; effect.View = cam.view; effect.Projection = cam.proj; effect.FogEnabled = false; effect.FogColor = Color.CornflowerBlue.ToVector3(); effect.FogStart = 1.0f; effect.FogEnd = 50.0f; cube.Draw(effect); noc++; }

    Read the article

  • ??AMDU?????MOUNT?DISKGROUP???????

    - by Liu Maclean(???)
    AMDU?ORACLE??ASM??????????,????ASM Metadata Dump Utility(AMDU) AMDU??????????: 1. ?ASM DISK?????????????????2. ?ASM?????????????OS????,Diskgroup??mount??3. ????????,???C?????16????? ?????????AMDU??ASM DISKGROUP??????; ASM???????????????, ?????????????,?????????ASM????? ??DISKGROUP??MOUNT????????????????????????? AMDU???????, ????????ASM DISKGROUP ??MOUNT???????,???RDBMS?????ASM??????? ?? AMDU???11g??????,?????10g?ASM ???? ???????????, ORACLE DATABASE?SPFILE?CONTROLFILE?DATAFILE????ASM DISKGROUP?,?????ASM ORA-600??????MOUNT?DISKGROUP, ???????AMDU??????ASM DISK?????? ?? 1 ??? ??SPFILE?CONTROLFILE?DATAFILE ????: ???????SPFILE ,????SPFILE??PFILE???,?????????????control_files??? SQL> show parameter control_files NAME TYPE VALUE———————————— ———– ——————————control_files string +DATA/prodb/controlfile/current.260.794687955, +FRA/prodb/controlfile/current.256.794687955 ??control_files ?????ASM???????????,+DATA/prodb/controlfile/current.260.794687955 ?? 260????????+DATA ??DISKGROUP??FILE NUMBER ???????ASM DISK?DISCOVERY PATH??,??????ASM?SPFILE??asm_diskstring ???? [oracle@mlab2 oracle.SupportTools]$ unzip amdu_X86-64.zipArchive: amdu_X86-64.zipinflating: libskgxp11.soinflating: amduinflating: libnnz11.soinflating: libclntsh.so.11.1 [oracle@mlab2 oracle.SupportTools]$ export LD_LIBRARY_PATH=./ [oracle@mlab2 oracle.SupportTools]$ ./amdu -diskstring ‘/dev/asm*’ -extract data.260amdu_2009_10_10_20_19_17/AMDU-00204: Disk N0006 is in currently mounted diskgroup DATAAMDU-00201: Disk N0006: ‘/dev/asm-disk10'AMDU-00204: Disk N0003 is in currently mounted diskgroup DATAAMDU-00201: Disk N0003: ‘/dev/asm-disk5'AMDU-00204: Disk N0002 is in currently mounted diskgroup DATAAMDU-00201: Disk N0002: ‘/dev/asm-disk6' [oracle@mlab2 oracle.SupportTools]$ cd amdu_2009_10_10_20_19_17/[oracle@mlab2 amdu_2009_10_10_20_19_17]$ lsDATA_260.f report.txt[oracle@mlab2 amdu_2009_10_10_20_19_17]$ ls -ltotal 9548-rw-r–r– 1 oracle oinstall 9748480 Oct 10 20:19 DATA_260.f-rw-r–r– 1 oracle oinstall 9441 Oct 10 20:19 report.txt ???????DATA_260.f ??????,?????????startup mount RDBMS??: SQL> alter system set control_files=’/opt/oracle.SupportTools/amdu_2009_10_10_20_19_17/DATA_260.f’ scope=spfile; System altered. SQL> startup force mount;ORACLE instance started. Total System Global Area 1870647296 bytesFixed Size 2229424 bytesVariable Size 452987728 bytesDatabase Buffers 1409286144 bytesRedo Buffers 6144000 bytesDatabase mounted. SQL> select name from v$datafile; NAME——————————————————————————–+DATA/prodb/datafile/system.256.794687873+DATA/prodb/datafile/sysaux.257.794687875+DATA/prodb/datafile/undotbs1.258.794687875+DATA/prodb/datafile/users.259.794687875+DATA/prodb/datafile/example.265.794687995+DATA/prodb/datafile/mactbs.267.794688457 6 rows selected. startup mount???,???v$datafile????????,????????DISKGROUP??FILE NUMBER ???./amdu -diskstring ‘/dev/asm*’ -extract ???? ??????????? [oracle@mlab2 oracle.SupportTools]$ ./amdu -diskstring ‘/dev/asm*’ -extract data.256amdu_2009_10_10_20_22_21/AMDU-00204: Disk N0006 is in currently mounted diskgroup DATAAMDU-00201: Disk N0006: ‘/dev/asm-disk10'AMDU-00204: Disk N0003 is in currently mounted diskgroup DATAAMDU-00201: Disk N0003: ‘/dev/asm-disk5'AMDU-00204: Disk N0002 is in currently mounted diskgroup DATAAMDU-00201: Disk N0002: ‘/dev/asm-disk6' [oracle@mlab2 oracle.SupportTools]$ cd amdu_2009_10_10_20_22_21/[oracle@mlab2 amdu_2009_10_10_20_22_21]$ lsDATA_256.f report.txt[oracle@mlab2 amdu_2009_10_10_20_22_21]$ dbv file=DATA_256.f DBVERIFY: Release 11.2.0.3.0 – Production on Sat Oct 10 20:23:12 2009 Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved. DBVERIFY – Verification starting : FILE = /opt/oracle.SupportTools/amdu_2009_10_10_20_22_21/DATA_256.f DBVERIFY – Verification complete Total Pages Examined : 90880Total Pages Processed (Data) : 59817Total Pages Failing (Data) : 0Total Pages Processed (Index): 12609Total Pages Failing (Index): 0Total Pages Processed (Other): 3637Total Pages Processed (Seg) : 1Total Pages Failing (Seg) : 0Total Pages Empty : 14817Total Pages Marked Corrupt : 0Total Pages Influx : 0Total Pages Encrypted : 0Highest block SCN : 1125305 (0.1125305)

    Read the article

  • How to use the buffer on SocketAsyncEventArgs object

    - by Rob
    We're stuck with using buffers on the SocketAsyncEventArgs object. With the old socket method we'd cast our state object, like this: clientState cs = (clientState)asyncResult.AsyncState; However, the 3.5 framework is different. With have strings arriving from the client in chunks and we can't seem to work out how the buffers work so we can process an entire string when we find a char3. Code at the moment: private void ProcessReceive(SocketAsyncEventArgs e) { string content = string.Empty; // Check if the remote host closed the connection. if (e.BytesTransferred > 0) { if (e.SocketError == SocketError.Success) { Socket s = e.UserToken as Socket; //asyncResult.AsyncState; Int32 bytesTransferred = e.BytesTransferred; // Get the message received from the listener. content += Encoding.ASCII.GetString(e.Buffer, e.Offset, bytesTransferred); if (content.IndexOf(Convert.ToString((char)3)) > -1) { e.BufferList = null; // Increment the count of the total bytes receive by the server. Interlocked.Add(ref this.totalBytesRead, bytesTransferred); } else { content += Encoding.ASCII.GetString(e.Buffer, e.Offset, bytesTransferred); ProcessReceive(e); } } else { this.CloseClientSocket(e); } } }

    Read the article

  • Reinterpret a CGImageRef using PyObjC in Python

    - by Michael Rondinelli
    Hi, I'm doing something that's a little complicated to sum up in the title, so please bear with me. I'm writing a Python module that provides an interface to my C++ library, which provides some specialized image manipulation functionality. It would be most convenient to be able to access image buffers as CGImageRefs from Python, so they could be manipulated further using Quartz (using PyObjC, which works well). So I have a C++ function that provides a CGImageRef representation from my own image buffers, like this: CGImageRef CreateCGImageRefForImageBuffer(shared_ptr<ImageBuffer> buffer); I'm using Boost::Python to create my Python bridge. What is the easiest way for me to export this function so that I can use the CGImageRef from Python? Problems: The CGImageRef type can't be exported directly because it is a pointer to an undefined struct. So I could make a wrapper function that wraps it in a PyCObject or something to get it to send the pointer to Python. But then how do I "cast" this object to a CGImageRef from Python? Is there a better way to go about this?

    Read the article

  • Rapid calls to fread crashes the application

    - by Slynk
    I'm writing a function to load a wave file and, in the process, split the data into 2 separate buffers if it's stereo. The program gets to i = 18 and crashes during the left channel fread pass. (You can ignore the couts, they are just there for debugging.) Maybe I should load the file in one pass and use memmove to fill the buffers? if(params.channels == 2){ params.leftChannelData = new unsigned char[params.dataSize/2]; params.rightChannelData = new unsigned char[params.dataSize/2]; bool isLeft = true; int offset = 0; const int stride = sizeof(BYTE) * (params.bitsPerSample/8); for(int i = 0; i < params.dataSize; i += stride) { std::cout << "i = " << i << " "; if(isLeft){ std::cout << "Before Left Channel, "; fread(params.leftChannelData+offset, sizeof(BYTE), stride, file + i); std::cout << "After Left Channel, "; } else{ std::cout << "Before Right Channel, "; fread(params.rightChannelData+offset, sizeof(BYTE), stride, file + i); std::cout << "After Right Channel, "; offset += stride; std::cout << "After offset incr.\n"; } isLeft != isLeft; } } else { params.leftChannelData = new unsigned char[params.dataSize]; fread(params.leftChannelData, sizeof(BYTE), params.dataSize, file); }

    Read the article

  • ORA- 01157 / Cant connect to database

    - by Tom
    Hi everyone, this is a follow up from this question. Let me start by saying that i am NOT a DBA, so i'm really really lost with this. A few weeks ago, we lost contact with one of our SID'S. All the other services are working, but this one in particular is not. What we got was this message when trying to connect ORA-01033: ORACLE initialization or shutdown in progress An attempt to alter database open ended up in ORA-01157: cannot identify/lock data file 6 - see DBWR trace file ORA-01110: data file 6: '/u01/app/oracle/oradata/xxx/xxx_data.dbf' I tried to shutdown / restart the database, but got this message. Total System Global Area 566231040 bytes Fixed Size 1220604 bytes Variable Size 117440516 bytes Database Buffers 444596224 bytes Redo Buffers 2973696 bytes Database mounted. ORA-01157: cannot identify/lock data file 6 - see DBWR trace file ORA-01110: data file 6: '/u01/app/oracle/oradata/xxx/xxx_data.dbf' When all continued the same, I erased the dbf files (rm xxx_data.dbf xxx_index.dbf), and recreated them using touch xxx_data.dbf. I also tried to recreate the tablespaces using `CREATE TABLESPACE DATA DATAFILE XXX_DATA.DBF` and got Database not open As I said, i don't know how bad this is, or how far i'm from gaining access to my database (well, to this SID at least, the others are working). I would imagine that a last resource would be to throw everything away, and recreating it, but I don't know how to, and I was hoping there's a less destructive solution. Any help will be greatly appreciated . Thanks in advance.

    Read the article

  • Fastest Java way to remove the first/top line of a file (like a stack)

    - by christangrant
    I am trying to improve an external sort implementation in java. I have a bunch of BufferedReader objects open for temporary files. I repeatedly remove the top line from each of these files. This pushes the limits of the Java's Heap. I would like a more scalable method of doing this without loosing speed because of a bunch of constructor calls. One solution is to only open files when they are needed, then read the first line and then delete it. But I am afraid that this will be significantly slower. So using Java libraries what is the most efficient method of doing this. --Edit-- For external sort, the usual method is to break a large file up into several chunk files. Sort each of the chunks. And then treat the sorted files like buffers, pop the top item from each file, the smallest of all those is the global minimum. Then continue until for all items. http://en.wikipedia.org/wiki/External_sorting My temporary files (buffers) are basically BufferedReader objects. The operations performed on these files are the same as stack/queue operations (peek and pop, no push needed). I am trying to make these peek and pop operations more efficient. This is because using many BufferedReader objects takes up too much space.

    Read the article

  • Is there a reason why SSIS significantly slows down after a few minutes?

    - by Mark
    I'm running a fairly substantial SSIS package against SQL 2008 - and I'm getting the same results both in my dev environment (Win7-x64 + SQL-x64-Developer) and the production environment (Server 2008 x64 + SQL Std x64). The symptom is that initial data loading screams at between 50K - 500K records per second, but after a few minutes the speed drops off dramatically and eventually crawls embarrasingly slowly. The database is in Simple recovery model, the target tables are empty, and all of the prerequisites for minimally logged bulk inserts are being met. The data flow is a simple load from a RAW input file to a schema-matched table (i.e. no complex transforms of data, no sorting, no lookups, no SCDs, etc.) The problem has the following qualities and resiliences: Problem persists no matter what the target table is. RAM usage is lowish (45%) - there's plenty of spare RAM available for SSIS buffers or SQL Server to use. Perfmon shows buffers are not spooling, disk response times are normal, disk availability is high. CPU usage is low (hovers around 25% shared between sqlserver.exe and DtsDebugHost.exe) Disk activity primarily on TempDB.mdf, but I/O is very low (< 600 Kb/s) OLE DB destination and SQL Server Destination both exhibit this problem. To sum it up, I expect either disk, CPU or RAM to be exhausted before the package slows down, but instead its as if the SSIS package is taking an afternoon nap. SQL server remains responsive to other queries, and I can't find any performance counters or logged events that betray the cause of the problem. I'll gratefully reward any reasonable answers / suggestions.

    Read the article

  • Reduce durability in MySQL for performance

    - by Paul Prescod
    My site occasionally has fairly predictable bursts of traffic that increase the throughput by 100 times more than normal. For example, we are going to be featured on a television show, and I expect in the hour after the show, I'll get more than 100 times more traffic than normal. My understanding is that MySQL (InnoDB) generally keeps my data in a bunch of different places: RAM Buffers commitlog binary log actual tables All of the above places on my DB slave This is too much "durability" given that I'm on an EC2 node and most of the stuff goes across the same network pipe (file systems are network attached). Plus the drives are just slow. The data is not high value and I'd rather take a small chance of a few minutes of data loss rather than have a high probability of an outage when the crowd arrives. During these traffic bursts I would like to do all of that I/O only if I can afford it. I'd like to just keep as much in RAM as possible (I have a fair chunk of RAM compared to the data size that would be touched over an hour). If buffers get scarce, or the I/O channel is not too overloaded, then sure, I'd like things to go to the commitlog or binary log to be sent to the slave. If, and only if, the I/O channel is not overloaded, I'd like to write back to the actual tables. In other words, I'd like MySQL/InnoDB to use a "write back" cache algorithm rather than a "write through" cache algorithm. Can I convince it to do that? If this is not possible, I am interested in general MySQL write-performance optimization tips. Most of the docs are about optimizing read performance, but when I get a crowd of users, I am creating accounts for all of them, so that's a write-heavy workload.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >