Search Results

Search found 1889 results on 76 pages for 'evolutionary algorithms'.

Page 12/76 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • How can I keep directories in sync

    - by Guillaume Boudreau
    I have a directory, dirA, that users can work in: they can create, modify, rename and delete files & sub-directores in dirA. I want to keep another directory, dirB, in sync with dirA. What I'd like, is a discussion on finding a working algorithm that would achieve the above, with the limitations listed below. Requirements: 1. Something asynchronous - I don't want to stop file operations in dirA while I work in dirB. 2. I can't assume that I can just blindly rsync dirA to dirB on regular interval - dirA could contain millions of files & directories, and terrabytes of data. Completely walking the dirA tree could take hours. Those two requirements makes this really difficult. Having it asynchronous means that when I start working on a specific file from dirA, it might have moved a lot since it appeared. And the second limitation means that I really need to watch dirA, and work on atomic file operations that I notice. Current (broken) implementation: 1. Log all file & directory operations in dirA. 2. Using a separate process, read that log, and 'repeat' all the logged operations in dirB. Why is it broken: echo 1 > dirA/file1 # Allow the 'log reader' process to create dirB/file1: log = "write dirA/file1"; action = cp dirA/file1 dirB/file1; result = OK echo 1 > dirA/file2 mv dirA/file1 dirA/file3 mv dirA/file2 dirA/file1 rm dirA/file3 # End result: file1 contains '1' # 'log reader' process starts working on the 4 above file operations: log = "write file2"; action = cp dirA/file2 dirB/file2; result = failed: there is no dirA/file2 log = "rename file1 file3"; action = mv dirB/file1 dirB/file3; result = OK log = "rename file2 file1"; action = mv dirB/file2 dirB/file1; result = failed: there is no dirB/file2 log = "delete file3"; action = rm dirB/file3; result = OK # End result in dirB: no more files! Another broken example: echo 1 > dirA/dir1/file1 mv dirA/dir1 dirA/dir2 # 'log reader' process starts working on the 2 above file operations: log = "write file1"; action = cp dirA/dir1/file1 dirB/dir1/file1; result = failed: there is no dirA/dir1/file1 log = "rename dir1 dir2"; action = mv dirB/dir1 dirB/dir2; result = failed: there is no dirA/dir1 # End result if dirB: nothing!

    Read the article

  • Find points whose pairwise distances approximate a given distance matrix

    - by Stephan Kolassa
    Problem. I have a symmetric distance matrix with entries between zero and one, like this one: D = ( 0.0 0.4 0.0 0.5 ) ( 0.4 0.0 0.2 1.0 ) ( 0.0 0.2 0.0 0.7 ) ( 0.5 1.0 0.7 0.0 ) I would like to find points in the plane that have (approximately) the pairwise distances given in D. I understand that this will usually not be possible with strictly correct distances, so I would be happy with a "good" approximation. My matrices are smallish, no more than 10x10, so performance is not an issue. Question. Does anyone know of an algorithm to do this? Background. I have sets of probability densities between which I calculate Hellinger distances, which I would like to visualize as above. Each set contains no more than 10 densities (see above), but I have a couple of hundred sets. What I did so far. I did consider posting at math.SE, but looking at what gets tagged as "geometry" there, it seems like this kind of computational geometry question would be more on-topic here. If the community thinks this should be migrated, please go ahead. This looks like a straightforward problem in computational geometry, and I would assume that anyone involved in clustering might be interested in such a visualization, but I haven't been able to google anything. One simple approach would be to randomly plonk down points and perturb them until the distance matrix is close to D, e.g., using Simulated Annealing, or run a Genetic Algorithm. I have to admit that I haven't tried that yet, hoping for a smarter way. One specific operationalization of a "good" approximation in the sense above is Problem 4 in the Open Problems section here, with k=2. Now, while finding an algorithm that is guaranteed to find the minimum l1-distance between D and the resulting distance matrix may be an open question, it still seems possible that there at least is some approximation to this optimal solution. If I don't get an answer here, I'll mail the gentleman who posed that problem and ask whether he knows of any approximation algorithm (and post any answer I get to that here).

    Read the article

  • Can this word search algorithm be made faster?

    - by Ashwin Singh
    Problem: Find a match of word S in text T Given: S and T are part of spoken and written English. Example: Match 'Math' in 'I love Mathematics' NOTE: Ignore CASES. My algorithm: STEP 1) Convert S, T to char[] STEP 2) for i=0, i < T.length , i++ STEP 3) for j=S.length-1, j>0 , j-- STEP 3 is the magic, instead of going about matching M,A,T,H, this matches M, H, T and finally A. This helps in eliminating a lot of possible partial matches. For example, if I go sequentially like M A as in Boyer Moore's method ... it can match Matter, Mass, Matchstick etc. using M _ _ H will bring down size of partial matches. STEP 4) if S[j]!=T[i] -> break; else if j==i -> PRINT MATCH

    Read the article

  • Why create a Huffman tree per character instead of a Node?

    - by Omega
    For a school assignment we're supposed to make a Java implementation of a compressor/decompresser using Huffman's algorithm. I've been reading a bit about it, specially this C++ tutorial: http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html In my program, I've been thinking about having Nodes that have the following properties: Total Frequency Character (if a leaf) Right child (if any) Left child (if any) Parent (if any) So when building the Huffman tree, it is just a matter of linking a node to others, etc. However, I'm a bit confused with the following quote (emphasis mine): First, every letter starts off as part of its own tree and the trees are ordered by the frequency of the letters in the original string. Then the two least-frequently used letters are combined into a single tree, and the frequency of that tree is set to be the combined frequency of the two trees that it links together. My question: why should I create a tree per letter, instead of just a node per letter and then do the linking later? I have not begun coding, I'm just studying the algorithm first, so I guess I'm missing an important detail. What is it?

    Read the article

  • What is the best way to keep track of the median?

    - by Steven Mou
    I read a question in one book: Numbers are randomly generated and stored into an (expanding) array, How would you keep track of the median? There are two data structures can solve the problem. One is the balanced binary tree, the other is two heaps which keep trace of the biggest half and the smallest half of the elements. I think these two solutions has the same running time as O(n lg n), but I am not sure of my judgement. In your opinions, What is the best way to keep track of the median?

    Read the article

  • Windows XP self-installing virus [closed]

    - by Oliver
    Do you remember. Some years ago, there was a huge virus attacking Windows XP in its first version. Once you had installed Windows XP, and on your first internet access, the virus installed itself on your computer, closing your internet connection and making the computer reboot after some seconds. I wonder... How can a virus install itslef this way from nowhere ? Without any user action. You install Windows XP... the computer just connects itself to the internet (assuming Microsoft don't connect to bad sites on its first connection)... and you have a virus. There is something magic I don't understand here. Can someone explain me how that virus could attack Windows that way, without any user action on a fresh installed system...

    Read the article

  • How does one unit test an algorithm

    - by Asa Baylus
    I was recently working on a JS slideshow which rotates images using a weighted average algorithm. Thankfully, timgilbert has written a weighted list script which implements the exact algorithm I needed. However in his documentation he's noted under todos: "unit tests!". I'd like to know is how one goes about unit testing an algorithm. In the case of a weighted average how would you create a proof that the averages are accurate when there is the element of randomness? Code samples of similar would be very helpful to my understanding.

    Read the article

  • Microsoft Interview Preparation

    - by Manish
    I have 8 years of java background. Need help in identifying topics I need to prepare for Microsoft interview. I need to know how many rounds Microsoft will have and what all things these rounds consist of. I have identified the following topics. Please let me know if I need to prepare anything else as well. Arrays Linked Lists Recursion Stacks Queue Trees Graph -- What all I should prepare here Dynamic Programming -- again what all I need to prepare Sorting, Searching String Algos

    Read the article

  • Finding the order of a set's elements

    - by Maciej Stachowski
    A little rephrased, in the form of a game, real-life problem: Suppose there is a set of elements {1, 2, ..., n}. Player A has chosen a single permutation of this set. Player B wants to find out the order of the elements by asking questions of form "Is X earlier in the permutation than Y?", where X and Y are elements of the set. Assuming B wants to minimize the amount of questions, how many times would he have to ask, and what would be the algorithm?

    Read the article

  • Common mistakes made by new programmers without CS backgrounds [on hold]

    - by mblinn
    I've noticed that there seems to be a class of mistakes that new programmers without CS backgrounds tend to make, that programmers with CS backgrounds tend not to. I'm not talking about not understanding source control, or how to design large programs, or a whole host of other things that both freshly minted CS graduates and non-CS graduates tend to not understand, I'm talking about basic mistakes that having a CS background will prevent a programmer from making. One obvious and well trod example is that folks who don't have a basic understanding of formal languages will often try to parse arbitrary HTML or XML using regular expressions, and possibly summon Cthulu in the process. Another fairly common one that I've seen is using common data structures in suboptimal ways like using a vector and a search function as if it were a hash map. What sorts of other things along these lines would you look out for when on-boarding a batch of newly minted, non-CS programmers.

    Read the article

  • How to discriminate from two nodes with identical frequencies in a Huffman's tree?

    - by Omega
    Still on my quest to compress/decompress files with a Java implementation of Huffman's coding (http://en.wikipedia.org/wiki/Huffman_coding) for a school assignment. From the Wikipedia page, I quote: Create a leaf node for each symbol and add it to the priority queue. While there is more than one node in the queue: Remove the two nodes of highest priority (lowest probability) from the queue Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities. Add the new node to the queue. The remaining node is the root node and the tree is complete. Now, emphasis: Remove the two nodes of highest priority (lowest probability) from the queue Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities. So I have to take two nodes with the lowest frequency. What if there are multiple nodes with the same low frequency? How do I discriminate which one to use? The reason I ask this is because Wikipedia has this image: And I wanted to see if my Huffman's tree was the same. I created a file with the following content: aaaaeeee nnttmmiihhssfffouxprl And this was the result: Doesn't look so bad. But there clearly are some differences when multiple nodes have the same frequency. My questions are the following: What is Wikipedia's image doing to discriminate the nodes with the same frequency? Is my tree wrong? (Is Wikipedia's image method the one and only answer?) I guess there is one specific and strict way to do this, because for our school assignment, files that have been compressed by my program should be able to be decompressed by other classmate's programs - so there must be a "standard" or "unique" way to do it. But I'm a bit lost with that. My code is rather straightforward. It literally just follows Wikipedia's listed steps. The way my code extracts the two nodes with the lowest frequency from the queue is to iterate all nodes and if the current node has a lower frequency than any of the two "smallest" known nodes so far, then it replaces the highest one. Just like that.

    Read the article

  • Algorithm to match items be value into sets base on total

    - by Ben
    Given n sets of items. Each item has a value. The items in a set have similar values but vary by a small amount. The goal is to create new sets containing three items selected from the original sets such that the total of the values is within a given range. Only one item a source set can be selected. For example: If we have the following starting sets: Set A - { 4.0, 3.8, 4.2 } Set B - { 7.0, 6.8, 7.2 } Set C - { 1.0, 0.9, 1.1 } Set D - { 6.5, 6.4, 6.6 } Set E - { 2.5, 2.4, 2.6 } Goal is to create sets containing three elements such that the total is between 11.9 and 12.1. For example { 3.8, 7.2, 1.0 } There can be unused elements. Can someone suggest an algorithm for this problem?

    Read the article

  • Algorithm to infer tag hierarchy

    - by Tom
    I'm looking for an algorithm to infer a hierarchy from a set of tagged items. E.g. if the following items have the tags: 1 a 2 a,b 3 a,c 4 a,c,e 5 a,b 6 a,c 7 d 8 d,f Then I can construct an undirected graph (or graphs) by tallying the node weights and edge weights: node weights edge weights a 6 a-b 2 b 2 a-c 3 c 3 c-e 1 d 2 a-e 1 <-- this edge is parallel to a-c and c-e and not wanted e 1 d-f 1 f 1 The first problem is how to drop any redundant edges to get to the simplified graph? Note that it's only appropriate to remove that redundant a-e edge in this case because something is tagged as a-c-e, if that wasn't the case and the tag was a-e, that edge would have to remain. I suspect that means the removal of edges can only happen during the construction of the graph, not after everything has been tallied up. What I'd then like to do is identify the direction of the edges to create a directed graph (or graphs) and pick out root nodes to hopefully create a tree (or trees): trees a d // \\ | b c f \ e It seems like it could be a string algorithm - longest common subsequences/prefixes - or a tree/graph algorithm, but I am a little stuck since I don't know the correct terminology to search for it.

    Read the article

  • Why does a proportional controller have a steady state error?

    - by Qantas 94 Heavy
    I've read about feedback loops, how much this steady state error is for a given gain and what to do to remove this steady state error (add integral and/or derivative gains to the controller), but I don't understand at all why this steady state error occurs in the first place. If I understand how a proportional control works correctly, the output is equal to the current output plus the error, multiplied by the proportional gain (Kp). However, wouldn't the error slowly diminish over time as it is added (reaching 0 at infinite time), not have a steady state error? From my confusion, it seems I'm completely misunderstanding how it works - a proper explanation of how this steady state error eventuates would be fantastic.

    Read the article

  • Are there currently any modern, standardized, aptitude test for software engineering?

    - by Matthew Patrick Cashatt
    Background I am a working software engineer who is in the midst of seeking out a new contract for the next year or so. In my search, I am enduring several absurd technical interviews as indicated by this popular question I asked earlier today. Even if the questions I was being asked weren't almost always absurd, I would be tired nonetheless of answering them many times over for various contract opportunities. So this got me thinking that having a standardized exam that working software professionals could take would provide a common scorecard that could be referenced by interviewers in lieu of absurd technical interview questions (i.e. nerd hazing). Question Is there a standardized software engineering aptitude test (SEAT??) available for working professionals to take? If there isn't a such an exam out there, what questions or topics should be covered? An additional thought Please keep in mind, if suggesting a question or topic, to focus on questions or topics that would be relevant to contemporary development practices and realistic needs in the workforce as that would be the point of a standard aptitude test. In other words, no clown traversal questions.

    Read the article

  • What is this algorithm for converting strings into numbers called?

    - by CodexArcanum
    I've been doing some work in Parsec recently, and for my toy language I wanted multi-based fractional numbers to be expressible. After digging around in Parsec's source a bit, I found their implementation of a floating-point number parser, and copied it to make the needed modifications. So I understand what this code does, and vaguely why (I haven't worked out the math fully yet, but I think I get the gist). But where did it come from? This seems like a pretty clever way to turn strings into floats and ints, is there a name for this algorithm? Or is it just something basic that's a hole in my knowledge? Did the folks behind Parsec devise it? Here's the code, first for integers: number' :: Integer -> Parser Integer number' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let n = foldl (\x d -> base * x + toInteger (convertDigit base d)) 0 digits ; seq n (return n) } So the basic idea here is that digits contains the string representing the whole number part, ie "192". The foldl converts each digit individually into a number, then adds that to the running total multiplied by the base, which means that by the end each digit has been multiplied by the correct factor (in aggregate) to position it. The fractional part is even more interesting: fraction' :: Integer -> Parser Double fraction' base = do { digits <- many1 ( oneOf ( sigilRange base )) ; let base' = fromIntegral base ; let f = foldr (\d x -> (x + fromIntegral (convertDigit base d))/base') 0.0 digits ; seq f (return f) Same general idea, but now a foldr and using repeated division. I don't quite understand why you add first and then divide for the fraction, but multiply first then add for the whole. I know it works, just haven't sorted out why. Anyway, I feel dumb not working it out myself, it's very simple and clever looking at it. Is there a name for this algorithm? Maybe the imperative version using a loop would be more familiar?

    Read the article

  • Algorithm for perfect non-binary graph layout

    - by mariki
    I have a complex non-binary graph model. Each tree node can have multiple children&parents (a node can also have a connection to it's "brother"). A node is represented as square on screen with lines to the connected nodes. For that I want to use Draw2D and GEF libraries. The problem I am facing is the graph layout. I need a nice algorithm that can reposition the square nodes and the connections with minimum intersections and also make it symmetric as possible.

    Read the article

  • What Is The Formula for the 3 of 9 Bar Code Alphabet?

    - by Chris Moschini
    Background: 3 of 9 Barcode Alphabet A simple syntax for 3 of 9 bar codes What is the formula behind the alphabet and digits in a 3 of 9 bar code? For example, ASCII has a relatively clear arrangement. Numbers start at 33, capitals at 65, lowercase at 97. From these starting points you can infer the ASCII code for any number or letter. The start point for each range is also a multiple of 32 + 1. Bar codes seem random and lacking sequence. If we use the syntax from the second link, this is the first six characters in 3 of 9: A 100-01 B 010-01 C 110-00 D 001-01 E 101-00 F 011-00 I see no pattern here; what is it? I'm as much interested in the designer's intended pattern behind these as I am in someone devising an algorithm of their own that can give you the above code for a given character based on its sequence. I struggled with where to put this question; is it history, computer science, information science? I chose Programmers because a StackExchange search had the most barcode hits here, and because I wanted to specifically relate it to ASCII to explain what sort of formula/explanation I'm looking for.

    Read the article

  • Assignment of roles in communication when sides could try to cheat

    - by 9000
    Assume two nodes in a peer-to-peer network initiating a communication. In this communication, one node has to serve as a "sender", another as a "receiver" (role names are arbitrary here). I'd like the nodes to assert either role with approximately equal probability. That is, in N communications with various other nodes a given node would assume the "sender" role roughly N/2 times. Since there's no third-party arbiter available, nodes should agree on their roles by exchanging messages. The catch is that we can encounter a rogue node which would try to become the "receiver" in most or all cases, and coax the other side to always serve as a "sender". I'm looking for an algorithm to assign roles to sides of communication so that no side could get a predetermined role with high probability. It's OK for the side which is trying to cheat to fail to communicate.

    Read the article

  • Finding duplicate files?

    - by ub3rst4r
    I am going to be developing a program that detects duplicate files and I was wondering what the best/fastest method would be to do this? I am more interested in what the best hash algorithm would be to do this? For example, I was thinking of having it get the hash of each files contents and then group the hashes that are the same. Also, should there be a limit set for what the maximum file size can be or is there a hash that is suitable for large files?

    Read the article

  • Converting a bounded knapsack problem to 0/1 knapsack problem

    - by Ants
    I ran across a problem where goal was to use dynamic programming (instead of other approaches). There is a distance to be spanned, and a set of cables of different lengths. What is the minimum number of cables needed to span the distance exactly? To me this looked like a knapsack problem, but since there could be multiples of a particular length, it was a bounded knapsack problem, rather than a 0/1 knapsack problem. (Treat the value of each item to be its weight.) Taking the naive approach (and not caring about the expansion of the search space), the method I used to convert the bounded knapsack problem into a 0/1 knapsack problem, was simply break up the multiples into singles and apply the well-known dynamic programming algorithm. Unfortunately, this leads to sub-optimal results. For example, given cables: 1 x 10ft, 1 x 7ft, 1 x 6ft, 5 x 3ft, 6 x 2ft, 7 x 1ft If the target span is 13ft, the DP algorithm picks 7+6 to span the distance. A greedy algorithm would have picked 10+3, but it's a tie for minimum number of cables. The problem arises, when trying to span 15ft. The DP algorithm ended up picking 6+3+3+3 to get 4 cables, while the greedy algorithm correctly picks 10+3+2 for only 3 cables. Anyway, doing some light scanning of converting bounded to 0/1, it seems like the well-known approach to convert multiple items to { p, 2p, 4p ... }. My question is how does this conversion work if p+2p+4p does not add up to the number of multiple items. For example: I have 5 3ft cables. I can't very well add { 3, 2x3, 4x3 } because 3+2x3+4x3 5x3. Should I add { 3, 4x3 } instead? [I'm currently trying to grok the "Oregon Trail Knapsack Problem" paper, but it currently looks like the approach used there is not dynamic programming.]

    Read the article

  • Strategy/algorithm to divide fair teams based on history

    - by Vegar
    We are a group of people playing floorball together on a regular basis. Every session starts with the daunting task of dividing teams... So what would be better than an application to pick teams automatically? So, given a history of team-combinations and results, and a list of people showing up for this particular session, what would be a good strategy to find the optimal teams? By optimal, I mean teams as equal as possible. Any ideas? Edit: To make it clear, the date that I have to base the picking on, would be something like this: [{ team1: ["playerA", "playerB", "playerC"], team2: ["playerD", "playerE", "playerF"], goals_team1: 10, goals_team2: 8 }, { team1: ["playerD", "playerB", "playerC"], team2: ["playerA", "playerE", "playerG"], goals_team1: 2, goals_team2: 5 }, { team1: ["playerD", "playerB", "playerF"], team2: ["playerA", "playerE", "playerC"], goals_team1: 4, goals_team2: 2 }]

    Read the article

  • How to make a queue switches from FIFO mode to priority mode?

    - by enzom83
    I would like to implement a queue capable of operating both in the FIFO mode and in the priority mode. This is a message queue, and the priority is first of all based on the message type: for example, if the messages of A type have higher priority than the messages of the B type, as a consequence all messages of A type are dequeued first, and finally the messages of B type are dequeued. Priority mode: my idea consists of using multiple queues, one for each type of message; in this way, I can manage a priority based on the message type: just take first the messages from the queue at a higher priority and progressively from lower priority queues. FIFO mode: how to handle FIFO mode using multiple queues? In other words, the user does not see multiple queues, but it uses the queue as if it were a single queue, so that the messages leave the queue in the order they arrive when the priority mode is disabled. In order to achieve this second goal I have thought to use a further queue to manage the order of arrival of the types of messages: let me explain better with the following code snippet. int NUMBER_OF_MESSAGE_TYPES = 4; int CAPACITY = 50; Queue[] internalQueues = new Queue[NUMBER_OF_MESSAGE_TYPES]; Queue<int> queueIndexes = new Queue<int>(CAPACITY); void Enqueue(object message) { int index = ... // the destination queue (ie its index) is chosen according to the type of message. internalQueues[index].Enqueue(message); queueIndexes.Enqueue(index); } object Dequeue() { if (fifo_mode_enabled) { // What is the next type that has been enqueued? int index = queueIndexes.Dequeue(); return internalQueues[index].Dequeue(); } if (priority_mode_enabled) { for(int i=0; i < NUMBER_OF_MESSAGE_TYPES; i++) { int currentQueueIndex = i; if (!internalQueues[currentQueueIndex].IsEmpty()) { object result = internalQueues[currentQueueIndex].Dequeue(); // The following statement is fundamental to a subsequent switching // from priority mode to FIFO mode: the messages that have not been // dequeued (since they had lower priority) remain in the order in // which they were queued. queueIndexes.RemoveFirstOccurrence(currentQueueIndex); return result; } } } } What do you think about this idea? Are there better or more simple implementations?

    Read the article

  • Algorithmic Forecasting and Pattern Recognition

    - by Ryan King
    Say a user could enter project data into my software. Each project has 2 variables "size" and "work" and they're related but the relationship is not known. Is there a way to programmatically determine the relationship between the variables based on previous data and forecast the amount of work provided if only given the size of the project in the future? For Example, say the user had manually entered the following projects. Project 1 - Size:1, Work: 4 Project 2 - Size:2, Work: 7 Project 3 - Size:3, Work: 10 Project 4 - Size:4, Work: x What should I look into to be able to programmatically determine, that Work = Size*3+1 and therefor be able to say that x=13?

    Read the article

  • Indefinite loops where the first time is different

    - by George T
    This isn't a serious problem or anything someone has asked me to do, just a seemingly simple thing that I came up with as a mental exercise but has stumped me and which I feel that I should know the answer to already. There may be a duplicate but I didn't manage to find one. Suppose that someone asked you to write a piece of code that asks the user to enter a number and, every time the number they entered is not zero, says "Error" and asks again. When they enter zero it stops. In other words, the code keeps asking for a number and repeats until zero is entered. In each iteration except the first one it also prints "Error". The simplest way I can think of to do that would be something like the folloing pseudocode: int number = 0; do { if(number != 0) { print("Error"); } print("Enter number"); number = getInput(); }while(number != 0); While that does what it's supposed to, I personally don't like that there's repeating code (you test number != 0 twice) -something that should generally be avoided. One way to avoid this would be something like this: int number = 0; while(true) { print("Enter number"); number = getInput(); if(number == 0) { break; } else { print("Error"); } } But what I don't like in this one is "while(true)", another thing to avoid. The only other way I can think of includes one more thing to avoid: labels and gotos: int number = 0; goto question; error: print("Error"); question: print("Enter number"); number = getInput(); if(number != 0) { goto error; } Another solution would be to have an extra variable to test whether you should say "Error" or not but this is wasted memory. Is there a way to do this without doing something that's generally thought of as a bad practice (repeating code, a theoretically endless loop or the use of goto)? I understand that something like this would never be complex enough that the first way would be a problem (you'd generally call a function to validate input) but I'm curious to know if there's a way I haven't thought of.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >