Search Results

Search found 1889 results on 76 pages for 'evolutionary algorithms'.

Page 19/76 | < Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >

  • Algorithms after load-balancer?

    - by Vimvq1987
    I need to study about load-balancers, such as Network Load Balancing, Linux Virtual Server, HAProxy,...There're somethings under-the-hood I need to know: What algorithms/technologies are used in these load-balancers? Which is the most popular? most effective? I expect that these algorithms/technologies will not be too complicated. Are there some resources written about them? Thank you very much for your help.

    Read the article

  • Genetic Programming in C#

    - by Mac
    I've been looking for some good genetic programming examples for C#. Anyone knows of good online/book resources? Wonder if there is a C# library out there for Evolutionary/Genetic programming?

    Read the article

  • Is there a shorthand term for O(n log n)?

    - by jemfinch
    We usually have a single-word shorthand for most complexities we encounter in algorithmic analysis: O(1) == "constant" O(log n) == "logarithmic" O(n) == "linear" O(n^2) == "quadratic" O(n^3) == "cubic" O(2^n) == "exponential" We encounter algorithms with O(n log n) complexity with some regularity (think of all the algorithms dominated by sort complexity) but as far as I know, there's no single word we can use in English to refer to that complexity. Is this a gap in my knowledge, or a real gap in our English discourse on computational complexity?

    Read the article

  • Using local classes with STL algorithms

    - by David Rodríguez - dribeas
    I have always wondered why you cannot use locally defined classes as predicates to STL algorithms. In the question: Approaching STL algorithms, lambda, local classes and other approaches, BubbaT mentions says that 'Since the C++ standard forbids local types to be used as arguments' Example code: int main() { int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; std::vector<int> v( array, array+10 ); struct pair : public std::unary_function<int,bool> { bool operator()( int x ) { return !( x % 2 ); } }; std::remove_if( v.begin(), v.end(), pair() ); // error } Does anyone know where in the standard is the restriction? What is the rationale for disallowing local types?

    Read the article

  • Recursive vs. Iterative algorithms

    - by teehoo
    I'm implementing the Euclidian algorithm for finding the GCD (Greatest Common Divisor) of two integers. Two sample implementations are given: Recursive and Iterative. http://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations My Question: In school I remember my professors talking about recursive functions like they were all the rage, but I have one doubt. Compared to an iterative version don't recursive algorithms take up more stack space and therefore much more memory? Also, because calling a function requires uses some overhead for initialization, aren't recursive algorithms more slower than their iterative counterpart?

    Read the article

  • Choice of programming language for learning data structures and algorithms

    - by bguiz
    Which programming language would you recommend to learn about data structures and algorithms in? Considering the follwing: Personal experience Language features (pointers, OO, etc) Suitability for learning DS & A concepts I ask because there are some books out there that are programming language-agnostic (written from a Mathematical perspective, and use pseudocode). If I learn from one of these I would like to work out the algorithms in a chosen language. Then, there are other books which introduce DS & A concepts with examples in a particular programming laguage - and I would follow these examples as well. Either way, I have to choose a language, and I would like to stick to one throughout. Which one best fits the bill.

    Read the article

  • Methodologies or algorithms for filling in missing data

    - by tbone
    I am dealing with datasets with missing data and need to be able to fill forward, backward, and gaps. So, for example, if I have data from Jan 1, 2000 to Dec 31, 2010, and some days are missing, when a user requests a timespan that begins before, ends after, or encompasses the missing data points, I need to "fill in" these missing values. Is there a proper term to refer to this concept of filling in data? Imputation is one term, don't know if it is "the" term for it though. I presume there are multiple algorithms & methodologies for filling in missing data (use last measured, using median/average/moving average, etc between 2 known numbers, etc. Anyone know the proper term for this problem, any online resources on this topic, or ideally links to open source implementations of some algorithms (C# preferably, but any language would be useful)

    Read the article

  • Code bacteria: evolving mathematical behavior

    - by Stefano Borini
    It would not be my intention to put a link on my blog, but I don't have any other method to clarify what I really mean. The article is quite long, and it's in three parts (1,2,3), but if you are curious, it's worth the reading. A long time ago (5 years, at least) I programmed a python program which generated "mathematical bacteria". These bacteria are python objects with a simple opcode-based genetic code. You can feed them with a number and they return a number, according to the execution of their code. I generate their genetic codes at random, and apply an environmental selection to those objects producing a result similar to a predefined expected value. Then I let them duplicate, introduce mutations, and evolve them. The result is quite interesting, as their genetic code basically learns how to solve simple equations, even for values different for the training dataset. Now, this thing is just a toy. I had time to waste and I wanted to satisfy my curiosity. however, I assume that something, in terms of research, has been made... I am reinventing the wheel here, I hope. Are you aware of more serious attempts at creating in-silico bacteria like the one I programmed? Please note that this is not really "genetic algorithms". Genetic algorithms is when you use evolution/selection to improve a vector of parameters against a given scoring function. This is kind of different. I optimize the code, not the parameters, against a given scoring function.

    Read the article

  • Bouncycastle encryption algorithms not provided

    - by David Read
    I'm trying to use BouncyCastle with android to implement ECDH and EL Gamal. I've added the bouncycastle jar file (bcprov-jdk16-144.jar) and written some code that works with my computers jvm however when I try and port it to my android application it throws: java.security.NoSuchAlgorithmException: KeyPairGenerator ECDH implementation not found A sample of the code is: Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider()); java.security.KeyPairGenerator keyGen = org.bouncycastle.jce.provider.asymmetric.ec.KeyPairGenerator.getInstance("ECDH", "BC"); ECGenParameterSpec ecSpec = new ECGenParameterSpec("prime192v1"); keyGen.initialize(ecSpec, SecureRandom.getInstance("SHA1PRNG")); KeyPair pair = keyGen.generateKeyPair(); PublicKey pubk = pair.getPublic(); PrivateKey prik = pair.getPrivate(); I then wrote a simple program to see what encryption algorithms are available and ran it on my android emulator and on my computers jvm the code was: Set<Provider.Service> rar = new org.bouncycastle.jce.provider.BouncyCastleProvider().getServices(); Iterator<Provider.Service> ir = rar.iterator(); while(ir.hasNext()) System.out.println(ir.next().getAlgorithm()); On android I do not get any of the EC algorithms while ran normally on my computer it's fine. I'm also getting the following two errors when compiling for a lot of the bouncy castle classes: 01-07 17:17:42.548: INFO/dalvikvm(1054): DexOpt: not resolving ambiguous class 'Lorg/bouncycastle/asn1/ASN1Encodable;' 01-07 17:17:42.548: DEBUG/dalvikvm(1054): DexOpt: not verifying 'Lorg/bouncycastle/asn1/ess/OtherSigningCertificate;': multiple definitions What am I doing wrong?

    Read the article

  • Suggestions of the easiest algorithms for some Graph operations

    - by Nazgulled
    Hi, The deadline for this project is closing in very quickly and I don't have much time to deal with what it's left. So, instead of looking for the best (and probably more complicated/time consuming) algorithms, I'm looking for the easiest algorithms to implement a few operations on a Graph structure. The operations I'll need to do is as follows: List all users in the graph network given a distance X List all users in the graph network given a distance X and the type of relation Calculate the shortest path between 2 users on the graph network given a type of relation Calculate the maximum distance between 2 users on the graph network Calculate the most distant connected users on the graph network A few notes about my Graph implementation: The edge node has 2 properties, one is of type char and another int. They represent the type of relation and weight, respectively. The Graph is implemented with linked lists, for both the vertices and edges. I mean, each vertex points to the next one and each vertex also points to the head of a different linked list, the edges for that specific vertex. What I know about what I need to do: I don't know if this is the easiest as I said above, but for the shortest path between 2 users, I believe the Dijkstra algorithm is what people seem to recommend pretty often so I think I'm going with that. I've been searching and searching and I'm finding it hard to implement this algorithm, does anyone know of any tutorial or something easy to understand so I can implement this algorithm myself? If possible, with C source code examples, it would help a lot. I see many examples with math notations but that just confuses me even more. Do you think it would help if I "converted" the graph to an adjacency matrix to represent the links weight and relation type? Would it be easier to perform the algorithm on that instead of the linked lists? I could easily implement a function to do that conversion when needed. I'm saying this because I got the feeling it would be easier after reading a couple of pages about the subject, but I could be wrong. I don't have any ideas about the other 4 operations, suggestions?

    Read the article

  • implementing cryptographic algorithms, specifically the key expansion part

    - by masseyc
    Hey, recently I picked up a copy of Applied Cryptography by Bruce Schneier and it's been a good read. I now understand how several algorithms outlined in the book work, and I'd like to start implementing a few of them in C. One thing that many of the algorithms have in common is dividing an x-bit key, into several smaller y-bit keys. For example, blowfish's key, X, is 64-bits, but you are required to break it up into two 32-bit halves; Xl and Xr. This is where I'm getting stuck. I'm fairly decent with C, but I'm not the strongest when it comes to bitwise operators and the like. After some help on IRC, I managed to come up with these two macros: #define splitup(a, b, c) {b = a >> 32; c = a & 0xffffffff; } #define combine(a, b, c) {a = (c << 32) | a;} Where a is 64 bits and b and c are 32 bits. However, the compiler warns me about the fact that I'm shifting a 32 bit variable by 32 bits. My questions are these: what's bad about shifting a 32-bit variable 32 bits? I'm guessing it's undefined, but these macros do seem to be working. Also, would you suggest I go about this another way? As I said, I'm fairly familiar with C, but bitwise operators and the like still give me a headache.

    Read the article

  • Aligning music notes using String matching algorithms or Dynamic Programming

    - by Dolphin
    Hi I need to compare 2 sets of musical pieces (i.e. a playing-taken in MIDI format-note details extracted and saved in a database table, against sheet music-taken into XML format). When evaluating playing against sheet music (i.e.note details-pitch, duration, rhythm), note alignment needs to be done - to identify missed/extra/incorrect/swapped notes that from the reference (sheet music) notes. I have like 1800-2500 notes in one piece approx (can even be more-with polyphonic, right now I'm doing for monophonic). So will I have to have all these into an array? Will it be memory overloading or stack overflow? There are string matching algorithms like KMP, Boyce-Moore. But note alignment can also be done through Dynamic Programming. How can I use Dynamic Programming to approach this? What are the available algorithms? Is it about approximate string matching? Which approach is much productive? String matching algos like Boyce-Moore, or dynamic programming? How can I assess which is more effective? Greatly appreciate any insight or suggestions Thanks in advance

    Read the article

  • Intelligent web features, algorithms (people you may follow, similar to you ...)

    - by hilal
    I have 3 main questions about the algorithms in intelligent web (web 2.0) Here the book I'm reading http://www.amazon.com/Algorithms-Intelligent-Web-Haralambos-Marmanis/dp/1933988665 and I want to learn the algorithms in deeper 1. People You may follow (Twitter) How can one determine the nearest result to my requests ? Data mining? which algorithms? 2. How you’re connected feature (Linkedin) Simply algorithm works like that. It draws the path between two nodes let say between Me and the other person is C. Me - A, B - A connections - C . It is not any brute force algorithms or any other like graph algorithms :) 3. Similar to you (Twitter, Facebook) This algorithms is similar to 1. Does it simply work the max(count) friend in common (facebook) or the max(count) follower in Twitter? or any other algorithms they implement? I think the second part is true because running the loop dict{count, person} for person in contacts: dict.add(count(common(person))) return dict(max) is a silly act in every refreshing page. 4. Did you mean (Google) I know that they may implement it with phonetic algorithm http://en.wikipedia.org/wiki/Phonetic_algorithm simply soundex http://en.wikipedia.org/wiki/Soundex and here is the Google VP of Engineering and CIO Douglas Merrill speak http://www.youtube.com/watch?v=syKY8CrHkck#t=22m03s What about first 3 questions? Any ideas are welcome ! Thanks

    Read the article

  • Choices in Architecture, Design, Algorithms, Data Structures for effective RDF Reasoning and Querying in a Big Data Environment [on hold]

    - by user2891213
    As part of my academic project I would like to know what choices in Architecture, Design, Algorithms, Data Structures do we need in order to provide effective and efficient RDF Reasoning and Querying in a Big Data Environment. Basically I want to get info regarding below points: What are the Systems and Software to get appropriate Architecture? What kind of API layer(s) would we need on top of the Big Data stores, to make this possible? The Indexing structures we will need. The appropriate Algorithms, and appropriate Algorithms for Query Planning across Big Data stores. The Performance Analysis and Cost Models we will need to justify the design decisions we have made along the way. Can anyone please provide pointers.. Thanks, David

    Read the article

  • HLSL, Program pixel shader with different Texture2D downscaling algorithms

    - by Kaminari
    I'm trying to port some image interpolation algorithms into HLSL code, for now i got: float2 texSize; float scale; int method; sampler TextureSampler : register(s0); float4 PixelShader(float4 color : COLOR0, float2 texCoord : TEXCOORD0) : COLOR0 { float2 newTexSize = texSize * scale; float4 tex2; if(texCoord[0] * texSize[0] > newTexSize[0] || texCoord[1] * texSize[1] > newTexSize[1]) { tex2 = float4( 0, 0, 0, 0 ); } else { if (method == 0) { tex2 = tex2D(TextureSampler, float2(texCoord[0]/scale, texCoord[1]/scale)); } else { float2 step = float2(1/texSize[0], 1/texSize[1]); float4 px1 = tex2D(TextureSampler, float2(texCoord[0]/scale-step[0], texCoord[1]/scale-step[1])); float4 px2 = tex2D(TextureSampler, float2(texCoord[0]/scale , texCoord[1]/scale-step[1])); float4 px3 = tex2D(TextureSampler, float2(texCoord[0]/scale+step[0], texCoord[1]/scale-step[1])); float4 px4 = tex2D(TextureSampler, float2(texCoord[0]/scale-step[0], texCoord[1]/scale )); float4 px5 = tex2D(TextureSampler, float2(texCoord[0]/scale+step[0], texCoord[1]/scale )); float4 px6 = tex2D(TextureSampler, float2(texCoord[0]/scale-step[0], texCoord[1]/scale+step[1])); float4 px7 = tex2D(TextureSampler, float2(texCoord[0]/scale , texCoord[1]/scale+step[1])); float4 px8 = tex2D(TextureSampler, float2(texCoord[0]/scale+step[0], texCoord[1]/scale+step[1])); tex2 = (px1+px2+px3+px4+px5+px6+px7+px8)/8; tex2.a = 1; } } return tex2; } technique Resample { pass Pass1 { PixelShader = compile ps_2_0 PixelShader(); } } The problem is that programming pixel shader requires different approach because we don't have the control of current position, only the 'inner' part of actual loop through pixels. I've been googling for about whole day and found none open source library with scaling algoriths used in loop. Is there such library from wich i could port some methods? I found http://www.codeproject.com/KB/GDI-plus/imgresizoutperfgdiplus.aspx but I really don't understand His approach to the problem, and porting it will be a pain in the ... Wikipedia tells a matematic approach. So my question is: Where can I find easy-to-port graphic open source library wich includes simple scaling algorithms? Of course if such library even exists :)

    Read the article

  • Are there any ball tracking algorithms/patterns around in game programming

    - by user214626
    Hello, I am a newbie to game programming,I would need the suggestions and help of the wonderful people around here. I have set of players, and a ball, the players can kick the ball around the ground (not yet a football game, neither a foosball game too ).Are there any algorithms/ patterns for addressing the problems with tracking the ball and taking decisions, Is that too much to ask.What I was looking at is something like a collision detection algorithm for the common problem of 2 objects interacting with one another.

    Read the article

  • STL algorithms and concurrent programming

    - by Andrew
    Hello everyone, Can any of STL algorithms/container operations like std::fill, std::transform be executed in parallel if I enable OpenMP for my compiler? I am working with MSVC 2008 at the moment. Or maybe there are other ways to make it concurrent? Thanks.

    Read the article

  • Algorithms or OO stuff or new technology

    - by Prashant
    I am trying to learn new stuff about jquery, html, asp .net mvc. I see two school of thoughts - Those who use oo concepts a lot and stress on more object oriented approach Those who rely heavily on algorithms and say a particular problem should take o(n) etc. I am not sure where to spend more time ? . Should I spend more time learning OO stuff or learn new stuff like jquery etc or learn travelling sales man algorithm etc ?

    Read the article

  • Searching, Sorting and Graph Algorithms questions

    - by user177883
    Is there a resource that i can find different variations of searching, sorting and graph algorithm questions ? I have studied CLRS and Algorithm Design by Kleinberg. and solved some set of questions. I have also, checked SO for algorithms questions. Curious, if there is a resource you would highly recommend. EDIT: There is also this free ebook with many questions, that i was able to solve some of them.

    Read the article

  • Algorithms for subgraph isomorphism detection

    - by Jack
    This a NP Complete problem. More info can be found here http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem The most widely used algorithm is the one proposed by Ullman. Can someone please explain the algorithm to me. I read a paper by him and couldn't understand much. Also what other algorithms for this problem. I am working on an image processing project.

    Read the article

  • An extended Bezier Library or Algorithms of bezier operations

    - by Sorush Rabiee
    Hi, Is there a library of data structures and operations for quadratic bezier curves? I need to implement: bezier to bitmap converting with arbitrary quality optimizing bezier curves common operations like subtraction, extraction, rendering etc. languages: c,c++,.net,python Algorithms without implementation (pseudocode or etc) could be useful too. (especially optimization)

    Read the article

< Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >