Search Results

Search found 1889 results on 76 pages for 'evolutionary algorithms'.

Page 15/76 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • What are startups expecting when they ask you to solve a programming challenge before interviewing? [closed]

    - by Swapnil Tailor
    I have applied to couple of startups and most of them are asking to solve programming challenge before they start on the interviewing candidate. I have submitted couple of the solutions and all the time getting rejected in the initial screening. Now what I think is, they will see my coding style, algorithm and OOD concepts that I have used to solve the problem. Can you guys input more on it as what other details are taken into consideration and how can I improve my coding for getting selected. By the way, I did all my coding in either Java/Perl. EDIT I feel the biggest reason for rejection is code didn't work for couple of use cases.

    Read the article

  • booth multiplication algorithm

    - by grassPro
    Is booth algorithm for multiplication only for multiplying 2 negative numbers (-3 * -4) or one positive and one negative number (-3 * 4) ? Whenever i multiply 2 positive numbers using booth algorithm i get a wrong result. example : 5 * 4 A = 101 000 0 // binary of 5 is 101 S = 011 000 0 // 2's complement of 5 is 011 P = 000 100 0 // binary of 4 is 100 x = 3 y = 3 m = 5 -m = 2's complement of m r = 4 After right shift of P by 1 bit 0 000 100 After right shift of P by 1 bit 0 000 010 P+S = 011 001 0 After right shift by 1 bit 0 011 001 Discarding the LSB 001100 But that comes out to be the binary of 12 . It should have been 20(010100)

    Read the article

  • Refactoring While Programming

    - by Kirby
    When posed with a problem, particularly when it is complicated in nature, I try to take some time to think about the approach I am going to take to solve the problem. Despite this, what often happens is, as I am programming the solution, I start to think of details of the problem that I missed, and I adjust the code accordingly. What results is a mess of code that needs to be refactored. I want to "refactor as I go," but while it sounds easy enough to do, I have a really hard time doing it. When the detail that I missed is small, it is tempting to make a small update to my design, rather than erase what I've already written and write it the way it is supposed to be. It sounds like a question with an obvious answer, but are there any techniques to use to better "refactor as you go"? I know that this is a good principle, but I fail with it time and time again.

    Read the article

  • In Search Data Structure And Algorithm Project Title Based on Topic

    - by Salehin Suhaimi
    As the title says, my lecturer gave me a project that i needed to finish in 3 weeks before final semester exams. So i thought i will start now. The requirement is to "build a simple program that has GUI based on all the chapter that we've learned." But i got stuck on WHAT program should i build. Any idea a program that is related to this chapter i've learned? Any input will help. list, array list, linked list, vectors, stacks, Queues, ADT, Hashing, Binary Search Tree, AVL Tree, That's about all i can remember. Any idea where can i start looking?

    Read the article

  • Construct an array from an existing array

    - by Luv
    Given an array of integers A[1...n-1] where 'N' is the length of array A[ ]. Construct an array B such that B[i] = min(A[i], A[i+1], ..., A[i+K-1]), where K will be given. Array B will have N-K+1 elements. We can solve the problem using min-heaps Construct min-heap for k elements - O(k) For every next element delete the first element and insert the new element and heapify Hence Worst Case Time - O( (n-k+1)*k ) + O(k) Space - O(k) Can we do it better?

    Read the article

  • Possible applications of algorithm devised for differentiating between structured vs random text

    - by rooznom
    I have written a program that can rapidly (within 5 sec on a 2GB RAM desktop, 2.33 Ghz CPU) differentiate between structured text (e.g english text) and random alphanumeric strings. It can also provide a probability score for the prediction. Are there any practical applications/uses of such a program. Note that the program is based on entropy models and does not have any dictionary comparisons in its workflow. Thanks in advance for your responses

    Read the article

  • Algorithm to increase odds of matching when randomly selecting

    - by Bryan
    I am building a mobile game loosely based on dual n-back http://brainworkshop.sourceforge.net/tutorial.html Now with the game I have 9 squares (numbered 1 through 9) and 9 letters (A through K) In the current code, I randomly select a square (e.g. 3) and a letter (e.g. C), then repeat the random selection for the next turn. For 1-back, I test whether either, neither or both match the previous turn. The problem with my current code is I get very few matches - I can go through many turns without having either match. How can I increase the match frequency, or alternatively decrease the randomness so a match is more likely? I am not looking for specific code (but pseudo-code would be fine) - just more an approach to increase match frequency.

    Read the article

  • Tail-recursive implementation of take-while

    - by Giorgio
    I am trying to write a tail-recursive implementation of the function take-while in Scheme (but this exercise can be done in another language as well). My first attempt was (define (take-while p xs) (if (or (null? xs) (not (p (car xs)))) '() (cons (car xs) (take-while p (cdr xs))))) which works correctly but is not tail-recursive. My next attempt was (define (take-while-tr p xs) (let loop ((acc '()) (ys xs)) (if (or (null? ys) (not (p (car ys)))) (reverse acc) (loop (cons (car ys) acc) (cdr ys))))) which is tail recursive but needs a call to reverse as a last step in order to return the result list in the proper order. I cannot come up with a solution that is tail-recursive, does not use reverse, only uses lists as data structure (using a functional data structure like a Haskell's sequence which allows to append elements is not an option), has complexity linear in the size of the prefix, or at least does not have quadratic complexity (thanks to delnan for pointing this out). Is there an alternative solution satisfying all the properties above? My intuition tells me that it is impossible to accumulate the prefix of a list in a tail-recursive fashion while maintaining the original order between the elements (i.e. without the need of using reverse to adjust the result) but I am not able to prove this. Note The solution using reverse satisfies conditions 1, 3, 4.

    Read the article

  • Given two sets of DNA, what does it take to computationally "grow" that person from a fertilised egg and see what they become? [closed]

    - by Nicholas Hill
    My question is essentially entirely in the title, but let me add some points to prevent some "why on earth would you want to do that" sort of answers: This is more of a mind experiment than an attempt to implement real software. For fun. Don't worry about computational speed or the number of available memory bytes. Computers get faster and better all of the time. Imagine we have two data files: Mother.dna and Father.dna. What else would be required? (Bonus point for someone who tells me approx how many GB each file will be, and if the size of the files are exactly the same number of bytes for everyone alive on Earth!) There would ideally need to be a way to see what the egg becomes as it becomes a human adult. If you fancy, feel free to outline the design. I am initially thinking that there'd need to be some sort of volumetric voxel-based 3D environment for simulation purposes.

    Read the article

  • What are the common techniques to handle user-generated HTML modified differently by different browsers?

    - by Jakie
    I am developing a website updater. The front end uses HTML, CSS and JavaScript, and the backend uses Python. The way it works is that <p/>, <b/> and some other HTML elements can be updated by the user. To enable this, I load the webpage and, with JQuery, convert all those elements to <textarea/> elements. Once they the content of the text area is changed, I apply the change to the original elements and send it to a Python script to store the new content. The problem is that I'm finding that different browsers change the original HTML. How do you get around this issue? What Python libraries do you use? What techniques or application designs do you use to avoid or overcome this issue? The problems I found are: IE removes the quotes around class and id attributes. For example, <img class='abc'/> becomes <img class=abc/>. Firefox removes the backslash from the line breaks: <br \> becomes <br>. Some websites have very specific display technicalities, so an insertion of a simple "\n"(which IE does) can affect the display of a website. Example: changing <img class='headingpic' /><div id="maincontent"> to <img class='headingpic'/>\n <div id="maincontent"> inserts a vertical gap in IE. The things I have unsuccessfully tried to overcome these issues: Using either JQuery or Python to remove all >\n< occurences, <br> etc. But this fails because I get different patterns in IE, sometimes a ·\n, sometimes a \n···. In a Python, parse the new HTML, extract the new text/content, insert it into the old HTML so the elements and format never change, just the content. This is very difficult and seems to be overkill.

    Read the article

  • When calculating how many days between 2 dates, should you include both dates in the count, or neither, or 1?

    - by Andy
    I hope this question is alright to ask here. I am trying to make an algorithm that counts how many days between 2 dates. For example, 3/1/2012 and 3/2/2012. Whats the correct answer, or the most popular choice, and should be the one I use? So in this case, if I don't include both dates I am comparing, its 0. If I include one of them (both the start date), its 1. Lastly, if I include both, its 2. Thanks.

    Read the article

  • Structuring cascading properties - parent only or parent + entire child graph?

    - by SB2055
    I have a Folder entity that can be Moderated by users. Folders can contain other folders. So I may have a structure like this: Folder 1 Folder 2 Folder 3 Folder 4 I have to decide how to implement Moderation for this entity. I've come up with two options: Option 1 When the user is given moderation privileges to Folder 1, define a moderator relationship between Folder 1 and User 1. No other relationships are added to the db. To determine if the user can moderate Folder 3, I check and see if User 1 is the moderator of any parent folders. This seems to alleviate some of the complexity of handling updates / moved entities / additions under Folder 1 after the relationship has been defined, and reverting the relationship means I only have to deal with one entity. Option 2 When the user is given moderation privileges to Folder 1, define a new relationship between User 1 and Folder 1, and all child entities down to the grandest of grandchildren when the relationship is created, and if it's ever removed, iterate back down the graph to remove the relationship. If I add something under Folder 2 after this relationship has been made, I just copy all Moderators into the new Entity. But when I need to show only the top-level Folders that a user is Moderating, I need to query all folders that have a parent folder that the user does not moderate, as opposed to option 1, where I just query any items that the user is moderating. I think it comes down to determining if users will be querying for all parent items more than they'll be querying child items... if so, then option 1 seems better. But I'm not sure. Is either approach better than the other? Why? Or is there another approach that's better than both? I'm using Entity Framework in case it matters.

    Read the article

  • Nearest color algorithm using Hex Triplet

    - by Lijo
    Following page list colors with names http://en.wikipedia.org/wiki/List_of_colors. For example #5D8AA8 Hex Triplet is "Air Force Blue". This information will be stored in a databse table (tbl_Color (HexTriplet,ColorName)) in my system Suppose I created a color with #5D8AA7 Hex Triplet. I need to get the nearest color available in the tbl_Color table. The expected anaser is "#5D8AA8 - Air Force Blue". This is because #5D8AA8 is the nearest color for #5D8AA7. Do we have any algorithm for finding the nearest color? How to write it using C# / Java? REFERENCE http://stackoverflow.com/questions/5440051/algorithm-for-parsing-hex-into-color-family http://stackoverflow.com/questions/6130621/algorithm-for-finding-the-color-between-two-others-in-the-colorspace-of-painte Suggested Formula: Suggested by @user281377. Choose the color where the sum of those squared differences is minimal (Square(Red(source)-Red(target))) + (Square(Green(source)-Green(target))) +(Square(Blue(source)-Blue(target)))

    Read the article

  • How can I estimate the entropy of a password?

    - by Wug
    Having read various resources about password strength I'm trying to create an algorithm that will provide a rough estimation of how much entropy a password has. I'm trying to create an algorithm that's as comprehensive as possible. At this point I only have pseudocode, but the algorithm covers the following: password length repeated characters patterns (logical) different character spaces (LC, UC, Numeric, Special, Extended) dictionary attacks It does NOT cover the following, and SHOULD cover it WELL (though not perfectly): ordering (passwords can be strictly ordered by output of this algorithm) patterns (spatial) Can anyone provide some insight on what this algorithm might be weak to? Specifically, can anyone think of situations where feeding a password to the algorithm would OVERESTIMATE its strength? Underestimations are less of an issue. The algorithm: // the password to test password = ? length = length(password) // unique character counts from password (duplicates discarded) uqlca = number of unique lowercase alphabetic characters in password uquca = number of uppercase alphabetic characters uqd = number of unique digits uqsp = number of unique special characters (anything with a key on the keyboard) uqxc = number of unique special special characters (alt codes, extended-ascii stuff) // algorithm parameters, total sizes of alphabet spaces Nlca = total possible number of lowercase letters (26) Nuca = total uppercase letters (26) Nd = total digits (10) Nsp = total special characters (32 or something) Nxc = total extended ascii characters that dont fit into other categorys (idk, 50?) // algorithm parameters, pw strength growth rates as percentages (per character) flca = entropy growth factor for lowercase letters (.25 is probably a good value) fuca = EGF for uppercase letters (.4 is probably good) fd = EGF for digits (.4 is probably good) fsp = EGF for special chars (.5 is probably good) fxc = EGF for extended ascii chars (.75 is probably good) // repetition factors. few unique letters == low factor, many unique == high rflca = (1 - (1 - flca) ^ uqlca) rfuca = (1 - (1 - fuca) ^ uquca) rfd = (1 - (1 - fd ) ^ uqd ) rfsp = (1 - (1 - fsp ) ^ uqsp ) rfxc = (1 - (1 - fxc ) ^ uqxc ) // digit strengths strength = ( rflca * Nlca + rfuca * Nuca + rfd * Nd + rfsp * Nsp + rfxc * Nxc ) ^ length entropybits = log_base_2(strength) A few inputs and their desired and actual entropy_bits outputs: INPUT DESIRED ACTUAL aaa very pathetic 8.1 aaaaaaaaa pathetic 24.7 abcdefghi weak 31.2 H0ley$Mol3y_ strong 72.2 s^fU¬5ü;y34G< wtf 88.9 [a^36]* pathetic 97.2 [a^20]A[a^15]* strong 146.8 xkcd1** medium 79.3 xkcd2** wtf 160.5 * these 2 passwords use shortened notation, where [a^N] expands to N a's. ** xkcd1 = "Tr0ub4dor&3", xkcd2 = "correct horse battery staple" The algorithm does realize (correctly) that increasing the alphabet size (even by one digit) vastly strengthens long passwords, as shown by the difference in entropy_bits for the 6th and 7th passwords, which both consist of 36 a's, but the second's 21st a is capitalized. However, they do not account for the fact that having a password of 36 a's is not a good idea, it's easily broken with a weak password cracker (and anyone who watches you type it will see it) and the algorithm doesn't reflect that. It does, however, reflect the fact that xkcd1 is a weak password compared to xkcd2, despite having greater complexity density (is this even a thing?). How can I improve this algorithm? Addendum 1 Dictionary attacks and pattern based attacks seem to be the big thing, so I'll take a stab at addressing those. I could perform a comprehensive search through the password for words from a word list and replace words with tokens unique to the words they represent. Word-tokens would then be treated as characters and have their own weight system, and would add their own weights to the password. I'd need a few new algorithm parameters (I'll call them lw, Nw ~= 2^11, fw ~= .5, and rfw) and I'd factor the weight into the password as I would any of the other weights. This word search could be specially modified to match both lowercase and uppercase letters as well as common character substitutions, like that of E with 3. If I didn't add extra weight to such matched words, the algorithm would underestimate their strength by a bit or two per word, which is OK. Otherwise, a general rule would be, for each non-perfect character match, give the word a bonus bit. I could then perform simple pattern checks, such as searches for runs of repeated characters and derivative tests (take the difference between each character), which would identify patterns such as 'aaaaa' and '12345', and replace each detected pattern with a pattern token, unique to the pattern and length. The algorithmic parameters (specifically, entropy per pattern) could be generated on the fly based on the pattern. At this point, I'd take the length of the password. Each word token and pattern token would count as one character; each token would replace the characters they symbolically represented. I made up some sort of pattern notation, but it includes the pattern length l, the pattern order o, and the base element b. This information could be used to compute some arbitrary weight for each pattern. I'd do something better in actual code. Modified Example: Password: 1234kitty$$$$$herpderp Tokenized: 1 2 3 4 k i t t y $ $ $ $ $ h e r p d e r p Words Filtered: 1 2 3 4 @W5783 $ $ $ $ $ @W9001 @W9002 Patterns Filtered: @P[l=4,o=1,b='1'] @W5783 @P[l=5,o=0,b='$'] @W9001 @W9002 Breakdown: 3 small, unique words and 2 patterns Entropy: about 45 bits, as per modified algorithm Password: correcthorsebatterystaple Tokenized: c o r r e c t h o r s e b a t t e r y s t a p l e Words Filtered: @W6783 @W7923 @W1535 @W2285 Breakdown: 4 small, unique words and no patterns Entropy: 43 bits, as per modified algorithm The exact semantics of how entropy is calculated from patterns is up for discussion. I was thinking something like: entropy(b) * l * (o + 1) // o will be either zero or one The modified algorithm would find flaws with and reduce the strength of each password in the original table, with the exception of s^fU¬5ü;y34G<, which contains no words or patterns.

    Read the article

  • What is the name of this array transformation?

    - by Brandon Tilley
    Start with an array of arrays; in this case, they are different lengths in order to demonstrate the technique, but they do not have to be. [[1,2,3,4], [5,6,7], [8,9,10], [11,12,13,14,15]] At the other end of the transformation, you have an array of arrays where the first array contains the first element from each of the original arrays, the second array contains the second element from each of the original arrays, and so on. [[1,5,8,11], [2,6,9,12], [3,7,10,13], [4,14], [15]] Is there a mathematical or CS term for this operation?

    Read the article

  • Algorithm for grouping friends at the cinema [closed]

    - by Tim Skauge
    I got a brain teaser for you - it's not as simple as it sounds so please read and try to solve the issue. Before you ask if it's homework - it's not! I just wish to see if there's an elegant way of solving this. Here's the issue: X-number of friends want's to go to the cinema and wish to be seated in the best available groups. Best case is that everyone sits together and worst case is that everyone sits alone. Fewer groups are preferred over more groups. Sitting alone is least preferred. Input is the number of people going to the cinema and output should be an array of integer arrays that contains: Ordered combinations (most preferred are first) Number of people in each group Below are some examples of number of people going to the cinema and a list of preferred combinations these people can be seated: 1 person: 1 2 persons: 2, 1+1 3 persons: 3, 2+1, 1+1+1 4 persons: 4, 2+2, 3+1, 2+1+1, 1+1+1+1 5 persons: 5, 3+2, 4+1, 2+2+1, 3+1+1, 2+1+1+1, 1+1+1+1+1 6 persons: 6, 3+3, 4+2, 2+2+2, 5+1, 3+2+1, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1 Example with more than 7 persons explodes in combinations but I think you get the point by now. Question is: What does an algorithm look like that solves this problem? My language by choice is C# so if you could give an answer in C# it would be fantastic!

    Read the article

  • how to avoid or minimise use of check/conditional statement?

    - by Muneeb Nasir
    I have scenario, where i got stream and i need to check for some value. if i got my any new value i have to store it in any of data structure. well it seems very easy, i can place conditional statement if-else or can use contain method of set/map to check either received is new or not. but the problem is checking will effect my application performance, in stream i'll receive hundreds for value in second, if i start checking each and every value i received than for sure it effect performance. Any body can suggest me any mechanism or algorithm that solve my issue. either by bypassing checks or atleast minimize them?

    Read the article

  • Randomization of biomes

    - by user24527
    You know how in Minecraft, the World is ever-expanding and all the biomes are randomized? My generalized question is: In relation to a space simulation that is also ever-expanding as the player moves about the world, how would one go about programming this randomization in Java? My real question is: Could I get a simplified example broken down into these example classes: astroids (This would include how many astroids there are, their positioning in space, their size, how often the larger astroids occur, how close they are to each other, the limitations of how many of the large asteroids can be in one field, how often astroid fields are generated, etc.) star-types (size, color, type, how often they occur, where hey occur, etc.) inhabitable-planets (size, positioning, how often they're generated, where they are generated, etc.) This would be very helpful currently since I wish to make a simplified version of such a program.

    Read the article

  • Number Game Algorithm

    - by 7Aces
    Problem Link - http://www.iarcs.org.in/inoi/2011/zco2011/zco2011-1b.php The task is to find the maximum score you can get in the game. Such problems, based on games, where you have to simulate, predict the result, or obtain the maximum possible score always seem to puzzle me. I can do it with recursion by considering two cases - first number picked or last number picked, each of which again branches into two states similarly, and so on... which finally can yield the max possible result. But it's a very time-inefficient approach, since time increases exponentially, due to the large test cases. What is the most pragmatic approach to the problem, and to such problems in general?

    Read the article

  • Initialize array in amortized constant time -- what is this trick called?

    - by user946850
    There is this data structure that trades performance of array access against the need to iterate over it when clearing it. You keep a generation counter with each entry, and also a global generation counter. The "clear" operation increases the generation counter. On each access, you compare local vs. global generation counters; if they differ, the value is treated as "clean". This has come up in this answer on Stack Overflow recently, but I don't remember if this trick has an official name. Does it? One use case is Dijkstra's algorithm if only a tiny subset of the nodes has to be relaxed, and if this has to be done repeatedly.

    Read the article

  • How to create Button/Switch-Like Tile where you can step on it and change its value?

    - by aldroid16
    If the player steps on a Button-Tile when its true, it becomes false. If the player steps on a Button-Tile when it is false, it becomes true. The problem is, when the player stands on (intersects) the Button-Tile, it will keep updating the condition. So, from true, it becomes false. Because its false and the player intersects it, it becomes true again. True-false-true-false and so on. I use ElapsedGameTime to make the updating process slower, and the player can have a chance to change the Button to true or false. However, it's not the solution I was looking for. Is there any other way to make it keep in False/True condition while the Player is standing on the Button tile?

    Read the article

  • What is an appropriate language for expressing initial stages of algorithm refinement?

    - by hydroparadise
    First, this is not a homework assignment, but you can treat it as such ;). I found the following question in the published paper The Camel Has Two Humps. I was not a CS major going to college (I majored in MIS/Management), but I have a job where I find myself coding quite often. For a non-trivial programming problem, which one of the following is an appropriate language for expressing the initial stages of algorithm refinement? (a) A high-level programming language. (b) English. (c) Byte code. (d) The native machine code for the processor on which the program will run. (e) Structured English (pseudocode). What I do know is that you usually want to start your design implementation by writing down pseuducode and then moving/writing in the desired technology (because we all do that, right?) But I never thought about it in terms of refinement. I mean, if you were the original designer, then you might have access to the original pseudocode. But realisticly, when I have to maintain/refactor/refine somebody elses code, I just keep trucking with the language it currently resides in. Anybody have a definitive answer to this? As a side note, I did a quick scan of the paper as I havn't read every single detail. It presents various score statistics, can't find where the answers are with the paper.

    Read the article

  • Is there a word or description for this type of query?

    - by Nick
    We have the requirement to find a result in a collection of records based on a prioritised set of search criteria against a relational db (I'm talking indexed field matching here rather than text search). The way we are thinking about designing the query is to begin with a highly refined and specific set of criteria. If there are no results for this initial query we want to progressively reduce the criteria one by one in order of reducing priority, querying each time such a less specific set of criteria until we find a result we can accept. Alternatively, we have considered starting with a smaller set of criteria and increasing until we have reduced number of results down to the last set. What I would like to know is if an existing term to describe this type of query exists? So that we can look to model our own on existing patterns and use best practice.

    Read the article

  • How to avoid oscillation by async event based systems?

    - by inf3rno
    Imagine a system where there are data sources which need to be kept in sync. A simple example is model - view data binding by MVC. Now I intend to describe these kind of systems with data sources and hubs. Data sources are publishing and subscribing for events and hubs are relaying events to data sources. By handling an event a data source will change it state described in the event. By publishing an event the data source puts its current state to the event, so other data sources can use that information to change their state accordingly. The only problem with this system, that events can be reflected from the hub or from the other data sources, and that can put the system into an infinite oscillation (by async or infinite loop by sync). For example A -- data source B -- data source H -- hub A -> H -> A -- reflection from the hub A -> H -> B -> H -> A -- reflection from another data source By sync it is relatively easy to solve this issue. You can compare the current state with the event, and if they are equal, you don't change the state and raise the same event again. By async I could not find a solution yet. The state comparison does not work by async event handling because there is eventual consistency, and new events can be published in an inconsistent state causing the same oscillation. For example: A(*->x) -> H -> B(y->x) -- can go parallel with B(*->y) -> H -> A(x->y) -- so first A changes to x state while B changes to y state -- then B changes to x state while A changes to y state -- and so on for eternity... What do you think is there an algorithm to solve this problem? If there is a solution, is it possible to extend it to prevent oscillation caused by multiple hubs, multiple different events, etc... ? update: I don't think I can make this work without a lot of effort. I think this problem is just the same as we have by syncing multiple databases in a distributed system. So I think what I really need is constraints if I want to prevent this problem in an automatic way. What constraints do you suggest?

    Read the article

  • Calculate pi to an accuracy of 5 decimal places?

    - by pgras
    In this message at point 18 I saw following programming question: Given that Pi can be estimated using the function 4 * (1 – 1/3 + 1/5 – 1/7 + …) with more terms giving greater accuracy, write a function that calculates Pi to an accuracy of 5 decimal places. So I know how to implement the given function and how to choose how "far" I should calculate, but how can I tell when I've reached the "accuracy of 5 decimal places" ?

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >