This question is mostly academic. I ask out of curiosity, not because this poses an actual problem for me.
Consider the following incorrect C program.
#include <signal.h>
#include <stdio.h>
static int running = 1;
void handler(int u) {
running = 0;
}
int main() {
signal(SIGTERM, handler);
while (running)
;
printf("Bye!\n");
return 0;
}
This program is incorrect because the handler interrupts the program flow, so running can be modified at any time and should therefore be declared volatile. But let's say the programmer forgot that.
gcc 4.3.3, with the -O3 flag, compiles the loop body (after one initial check of the running flag) down to the infinite loop
.L7:
jmp .L7
which was to be expected.
Now we put something trivial inside the while loop, like:
while (running)
putchar('.');
And suddenly, gcc does not optimize the loop condition anymore! The loop body's assembly now looks like this (again at -O3):
.L7:
movq stdout(%rip), %rsi
movl $46, %edi
call _IO_putc
movl running(%rip), %eax
testl %eax, %eax
jne .L7
We see that running is re-loaded from memory each time through the loop; it is not even cached in a register. Apparently gcc now thinks that the value of running could have changed.
So why does gcc suddenly decide that it needs to re-check the value of running in this case?