Search Results

Search found 5298 results on 212 pages for 'marching cubes algorithm'.

Page 124/212 | < Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >

  • Handling timeout in network application

    - by user2175831
    How can I handle timeouts in a network application. I'm implementing a provisioning system on a Linux server, the code is huge so I'm going to put the algorithm, it works as like this Read provisioning commands from file Send it to another server using TCP Save the request in hash. Receive the response then if successful response received then remove request from hash if failed response received then retry the message The problem I'm in now is when the program didn't receive the response for a timeout reason then the request will be waiting for a response forever and won't be retried. And please note that I'll be sending hundreds of commands and I have to monitor the timeout commands for all of them. I tried to use timer but that didn't help because I'll end up with so many waiting timers and I'm not sure if this is a good way of doing this. The question is how can I save the message in some data structure and check to remove or retry it later when there is no response from the other end? Please note that I'm willing to change the algorithm to anything you suggest that could deal with the timeouts.

    Read the article

  • 3D primitive rendering library

    - by tomzx
    Hi, I am looking for a library which would easily allow me to render shapes (cubes, spheres, lines, circles, etc.) in 3D3 and OpenGL if possible. I want to be able to rapidly design visual debugging tools and I am not proefficient enough in graphics rendering to do it myself (writing the low level stuff that is). The library would have to be for C/C++. I've already taken a look at the open-source 3d engine, but I feel those are too big for what I really need. Do any of you know if such library exist? If so, links would be appreciated!

    Read the article

  • Comments on Comments

    - by Joe Mayo
    I almost tweeted a reply to Capar Kleijne's question about comments on Twitter, but realized that my opinion exceeded 140 characters. The following is based upon my experience with extremes and approaches that I find useful in code comments. There are a couple extremes that I've seen and reasons why people go the distance in each approach. The most common extreme is no comments in the code at all.  A few bad reasons why this happens is because a developer is in a hurry, sloppy, or is interested in job preservation. The unfortunate result is that the code is difficult to understand and hard to maintain. The drawbacks to no comments in code are a primary reason why teachers drill the need for commenting code into our heads.  This viewpoint assumes the lack of comments are bad because the code is bad, but there is another reason for not commenting that is gaining more popularity. I've heard/and read that code should be self documenting. Following this thought pattern, if code is well written with meaningful names, there should not be a reason for comments.  An addendum to this argument is that comments are often neglected and get out-of-date, but the code is what is kept up-to-date. Presumably, if code contained very good naming, it would be easy to maintain.  This is a noble perspective and I like the practice of meaningful naming of identifiers. However, I think it's also an extreme approach that doesn't cover important cases.  i.e. If an identifier is named badly (subjective differences in opinion) or not changed appropriately during maintenance, then the badly named identifier is no more useful than a stale comment. These were the two no-comment extremes, so let's look at the too many comments extreme. On a regular basis, I'll see cases where the code is over-commented; not nearly as often as the no-comment scenarios, but still prevalent.  These are examples of where every single line in the code is commented.  These comments make the code harder to read because they get in the way of the algorithm.  In most cases, the comments parrot what each line of code does.  If a developer understands the language, then most statements are immediately intuitive.  i.e. what use is it to say that I'm assigning foo to bar when it's clear what the code is doing. I think that over-commenting code is a waste of time that slows down initial development and maintenance.  Understandably, the developer's intentions are admirable because they've had it beaten into their heads that they must comment. However, I think it's an extreme and prefer a more moderate approach. I don't think the extremes do justice to code because each can make maintenance harder.  No comments on bad code is obviously a problem, but the other two extremes are subtle and require qualification to address properly. The problem I see with the code-as-documentation approach is that it doesn't lift the developer out of the algorithm to identify dependencies, intentions, and hacks. Any developer can read code and follow an algorithm, but they still need to know where it fits into the big picture of the application. Because of indirections with language features like interfaces, delegates, and virtual members, code can become complex.  Occasionally, it's useful to point out a nuance or reason why a piece of code is there. i.e. If you've building an app that communicates via HTTP, you'll have certain headers to include for the endpoint, and it could be useful to point out why the code for setting those header values is there and how they affect the application. An argument against this could be that you should extract that code into a separate method with a meaningful name to describe the scenario.  My problem with such an approach would be that your code base becomes even more difficult to navigate and work with because you have all of this extra code just to make the code more meaningful. My opinion is that a simple and well-stated comment stating the reasons and intention for the code is more natural and convenient to the initial developer and maintainer.  I just don't agree with the approach of going out of the way to avoid making a comment.  I'm also concerned that some developers would take this approach as an excuse to not comment their bad code. Another area where I like comments is on documentation comments.  Java has it and so does C# and VB.  It's convenient because we can build automated tools that extract these comments.  These extracted comments are often much better than no documentation at all.  The "go read the code" answer always doesn't fulfill the need for a quick summary of an API. To summarize, I think that the extremes of no comments and too many comments are less than desirable approaches. I prefer documentation comments to explain each class and member (API level) and code comments as necessary to supplement well-written code. Joe

    Read the article

  • Independence Day for Software Components &ndash; Loosening Coupling by Reducing Connascence

    - by Brian Schroer
    Today is Independence Day in the USA, which got me thinking about loosely-coupled “independent” software components. I was reminded of a video I bookmarked quite a while ago of Jim Weirich’s “Grand Unified Theory of Software Design” talk at MountainWest RubyConf 2009. I finally watched that video this morning. I highly recommend it. In the video, Jim talks about software connascence. The dictionary definition of connascence (con-NAY-sense) is: 1. The common birth of two or more at the same time 2. That which is born or produced with another. 3. The act of growing together. The brief Wikipedia page about Connascent Software Components says that: Two software components are connascent if a change in one would require the other to be modified in order to maintain the overall correctness of the system. Connascence is a way to characterize and reason about certain types of complexity in software systems. The term was introduced to the software world in Meilir Page-Jones’ 1996 book “What Every Programmer Should Know About Object-Oriented Design”. The middle third of that book is the author’s proposed graphical notation for describing OO designs. UML became the standard about a year later, so a revised version of the book was published in 1999 as “Fundamentals of Object-Oriented Design in UML”. Weirich says that the third part of the book, in which Page-Jones introduces the concept of connascence “is worth the price of the entire book”. (The price of the entire book, by the way, is not much – I just bought a used copy on Amazon for $1.36, so that was a pretty low-risk investment. I’m looking forward to getting the book and learning about connascence from the original source.) Meanwhile, here’s my summary of Weirich’s summary of Page-Jones writings about connascence: The stronger the form of connascence, the more difficult and costly it is to change the elements in the relationship. Some of the connascence types, ordered from weak to strong are: Connascence of Name Connascence of name is when multiple components must agree on the name of an entity. If you change the name of a method or property, then you need to change all references to that method or property. Duh. Connascence of name is unavoidable, assuming your objects are actually used. My main takeaway about connascence of name is that it emphasizes the importance of giving things good names so you don’t need to go changing them later. Connascence of Type Connascence of type is when multiple components must agree on the type of an entity. I assume this is more of a problem for languages without compilers (especially when used in apps without tests). I know it’s an issue with evil JavaScript type coercion. Connascence of Meaning Connascence of meaning is when multiple components must agree on the meaning of particular values, e.g that “1” means normal customer and “2” means preferred customer. The solution to this is to use constants or enums instead of “magic” strings or numbers, which reduces the coupling by changing the connascence form from “meaning” to “name”. Connascence of Position Connascence of positions is when multiple components must agree on the order of values. This refers to methods with multiple parameters, e.g.: eMailer.Send("[email protected]", "[email protected]", "Your order is complete", "Order completion notification"); The more parameters there are, the stronger the connascence of position is between the component and its callers. In the example above, it’s not immediately clear when reading the code which email addresses are sender and receiver, and which of the final two strings are subject vs. body. Connascence of position could be improved to connascence of type by replacing the parameter list with a struct or class. This “introduce parameter object” refactoring might be overkill for a method with 2 parameters, but would definitely be an improvement for a method with 10 parameters. This points out two “rules” of connascence:  The Rule of Degree: The acceptability of connascence is related to the degree of its occurrence. The Rule of Locality: Stronger forms of connascence are more acceptable if the elements involved are closely related. For example, positional arguments in private methods are less problematic than in public methods. Connascence of Algorithm Connascence of algorithm is when multiple components must agree on a particular algorithm. Be DRY – Don’t Repeat Yourself. If you have “cloned” code in multiple locations, refactor it into a common function.   Those are the “static” forms of connascence. There are also “dynamic” forms, including… Connascence of Execution Connascence of execution is when the order of execution of multiple components is important. Consumers of your class shouldn’t have to know that they have to call an .Initialize method before it’s safe to call a .DoSomething method. Connascence of Timing Connascence of timing is when the timing of the execution of multiple components is important. I’ll have to read up on this one when I get the book, but assume it’s largely about threading. Connascence of Identity Connascence of identity is when multiple components must reference the entity. The example Weirich gives is when you have two instances of the “Bob” Employee class and you call the .RaiseSalary method on one and then the .Pay method on the other does the payment use the updated salary?   Again, this is my summary of a summary, so please be forgiving if I misunderstood anything. Once I get/read the book, I’ll make corrections if necessary and share any other useful information I might learn.   See Also: Gregory Brown: Ruby Best Practices Issue #24: Connascence as a Software Design Metric (That link is failing at the time I write this, so I had to go to the Google cache of the page.)

    Read the article

  • Implementing a Custom Coherence PartitionAssignmentStrategy

    - by jpurdy
    A recent A-Team engagement required the development of a custom PartitionAssignmentStrategy (PAS). By way of background, a PAS is an implementation of a Java interface that controls how a Coherence partitioned cache service assigns partitions (primary and backup copies) across the available set of storage-enabled members. While seemingly straightforward, this is actually a very difficult problem to solve. Traditionally, Coherence used a distributed algorithm spread across the cache servers (and as of Coherence 3.7, this is still the default implementation). With the introduction of the PAS interface, the model of operation was changed so that the logic would run solely in the cache service senior member. Obviously, this makes the development of a custom PAS vastly less complex, and in practice does not introduce a significant single point of failure/bottleneck. Note that Coherence ships with a default PAS implementation but it is not used by default. Further, custom PAS implementations are uncommon (this engagement was the first custom implementation that we know of). The particular implementation mentioned above also faced challenges related to managing multiple backup copies but that won't be discussed here. There were a few challenges that arose during design and implementation: Naive algorithms had an unreasonable upper bound of computational cost. There was significant complexity associated with configurations where the member count varied significantly between physical machines. Most of the complexity of a PAS is related to rebalancing, not initial assignment (which is usually fairly simple). A custom PAS may need to solve several problems simultaneously, such as: Ensuring that each member has a similar number of primary and backup partitions (e.g. each member has the same number of primary and backup partitions) Ensuring that each member carries similar responsibility (e.g. the most heavily loaded member has no more than one partition more than the least loaded). Ensuring that each partition is on the same member as a corresponding local resource (e.g. for applications that use partitioning across message queues, to ensure that each partition is collocated with its corresponding message queue). Ensuring that a given member holds no more than a given number of partitions (e.g. no member has more than 10 partitions) Ensuring that backups are placed far enough away from the primaries (e.g. on a different physical machine or a different blade enclosure) Achieving the above goals while ensuring that partition movement is minimized. These objectives can be even more complicated when the topology of the cluster is irregular. For example, if multiple cluster members may exist on each physical machine, then clearly the possibility exists that at certain points (e.g. following a member failure), the number of members on each machine may vary, in certain cases significantly so. Consider the case where there are three physical machines, with 3, 3 and 9 members each (respectively). This introduces complexity since the backups for the 9 members on the the largest machine must be spread across the other 6 members (to ensure placement on different physical machines), preventing an even distribution. For any given problem like this, there are usually reasonable compromises available, but the key point is that objectives may conflict under extreme (but not at all unlikely) circumstances. The most obvious general purpose partition assignment algorithm (possibly the only general purpose one) is to define a scoring function for a given mapping of partitions to members, and then apply that function to each possible permutation, selecting the most optimal permutation. This would result in N! (factorial) evaluations of the scoring function. This is clearly impractical for all but the smallest values of N (e.g. a partition count in the single digits). It's difficult to prove that more efficient general purpose algorithms don't exist, but the key take away from this is that algorithms will tend to either have exorbitant worst case performance or may fail to find optimal solutions (or both) -- it is very important to be able to show that worst case performance is acceptable. This quickly leads to the conclusion that the problem must be further constrained, perhaps by limiting functionality or by using domain-specific optimizations. Unfortunately, it can be very difficult to design these more focused algorithms. In the specific case mentioned, we constrained the solution space to very small clusters (in terms of machine count) with small partition counts and supported exactly two backup copies, and accepted the fact that partition movement could potentially be significant (preferring to solve that issue through brute force). We then used the out-of-the-box PAS implementation as a fallback, delegating to it for configurations that were not supported by our algorithm. Our experience was that the PAS interface is quite usable, but there are intrinsic challenges to designing PAS implementations that should be very carefully evaluated before committing to that approach.

    Read the article

  • INFORMATION ON BO VOYAGER AND SOFTWARE

    - by praveen
    Hi All, I would like to know information on BO VOYAGER and its text books and how to get software for practice. We have developed OLAP cubes using SSAS 2008 and we are concern to look for VOYAGER. any opinions on the VOYAGER and how to start learning VOYAGER. I would like to know the complete information. thanks all prav

    Read the article

  • A polygon creation program, adjacent face ignoring not working right. Any solutions?

    - by user292767
    I'm working on a simple program that converts a 3d array into a polygon structure similar to voxels. It reads the array and creates cubes for positions with a value and checks adjacent directions (North,south,east,west,up,down) for a null value before setting up a cube's face. A link that displays the full code is below, written in GLBasic. Some snapshots to show you whats up. link text

    Read the article

  • missing subscript c++

    - by Makenshi
    right now c++ is giving me this error: error C2087 'color' missing subscript first time i get this and i dont know what to do .< hope any1 can help me struct Color{ float r; float g; float b; };Color color[][]; and im using it here for(int i=0;i<cubes;i++) { color[i][0].r = fRand();color[i][0].g=fRand(.5);color[i][0].b=fRand(); ...etc

    Read the article

  • vir-install virtual machine hang on Probbing EDD

    - by user2256235
    I'm using vir-stall virtual machine, and my command is virt-install --name=gust --vcpus=4 --ram=8192 --network bridge:br0 --cdrom=/opt/rhel-server-6.2-x86_64-dvd.iso --disk path=/opt/as1/as1.img,size=50 --accelerate After running the command, it hangs on probing EDD, - Press the <ENTER> key to begin the installation process. +----------------------------------------------------------+ | Welcome to Red Hat Enterprise Linux 6.2! | |----------------------------------------------------------| | Install or upgrade an existing system | | Install system with basic video driver | | Rescue installed system | | Boot from local drive | | Memory test | | | | | | | | | | | | | | | +----------------------------------------------------------+ Press [Tab] to edit options Automatic boot in 57 seconds... Loading vmlinuz...... Loading initrd.img...............................ready. Probing EDD (edd=off to disable)... ok ÿ Previously, I wait a long time, it seems no marching. After I press ctrl + ] and stop it. I find it was running using virsh list, but I cannot console it using virsh concole gust. Any problem and how should I do. Many Thanks

    Read the article

  • Weighted random selection using Walker's Alias Method (c# implementation)

    - by Chuck Norris
    I was looking for this algorithm (algorithm which will randomly select from a list of elements where each element has different probability of being picked (weight) ) and found only python and c implementations, after I did a C# one, a bit different (but I think simpler) I thought I should share it, and ask your opinion ? this is it: using System; using System.Collections.Generic; using System.Linq; namespace ChuckNorris { class Program { static void Main(string[] args) { var oo = new Dictionary<string, int> { {"A",7}, {"B",1}, {"C",9}, {"D",8}, {"E",11}, }; var rnd = new Random(); var pick = rnd.Next(oo.Values.Sum()); var sum = 0; var res = ""; foreach (var o in oo) { sum += o.Value; if(sum >= pick) { res = o.Key; break; } } Console.WriteLine("result is "+ res); } } } if anyone can remake it in f# please post your code

    Read the article

  • NLP - Word Alignment

    - by mgj
    Hi..:) I am looking for word alignment tools and algorithms, I am dealing with bilingual English - Hindi text, Currently I am working on DTW(Dynamic Time Warping) algorithm, CLA(Competitive Linking Algorithm) , NATool, Giza++. Could you please suggest me any other alogrithm/tool which is language independent which could achieve Statistical word alignment for parallel English Hindi Corpora and its Evaluation, some tools languages are best for certain languages.. Could one please tell me how true is that and if so could you please give me an example what would suite better for Asian languages like Hindi and what shouldn't I use for such languages. I have heard a bit about uplug word aligner.. could one tell me if I could use it as a tool for my purpose. Thank you.. :)

    Read the article

  • Searching a large list of words in another large list

    - by Christian
    I have a list of 1,000,000 strings with a maximum length of 256 with protein names. Every string has an associated ID. I have another list of 4,000,000,000 strings with a maximum length of 256 with words out of articles and every word has an ID. I want to find all matches between the list of protein names and the list of words of the articles. Which algorithm should I use? Should I use some prebuild API? It would be good if the algorithm runs on a normal PC without special hardware.

    Read the article

  • Hashing words to numbers with respect to definition

    - by thornate
    As part of a larger project, I need to read in text and represent each word as a number. For example, if the program reads in "Every good boy deserves fruit", then I would get a table that converts 'every' to '1742', 'good' to '977513', etc. Now, obviously I can just use a hashing algorithm to get these numbers. However, it would be more useful if words with similar meanings had numerical values close to each other, so that 'good' becomes '6827' and 'great' becomes '6835', etc. As another option, instead of a simple integer representing each number, it would be even better to have a vector made up of multiple numbers, eg (lexical_category, tense, classification, specific_word) where lexical_category is noun/verb/adjective/etc, tense is future/past/present, classification defines a wide set of general topics and specific_word is much the same as described in the previous paragraph. Does any such an algorithm exist? If not, can you give me any tips on how to get started on developing one myself? I code in C++.

    Read the article

  • unzip strings in javascript

    - by sopppas
    anyone knows a simple JS library implementing the UNZIP algorithm? No disk-file access, only zip and unzip a string of values. there are ActiveX, using WinZIP and other client dependent software for ZIP, written in JS. but no pure algorithm implementation, is it really difficult or non-functional? i would use it for displaying KMZ files in a HTML page with the GMap object (google maps). The KMZ file is just a zipped KML file. I want to unzip a KMZ file and feed the KML to GMap.

    Read the article

  • How to best design a date/geographic proximity query on GAE?

    - by Dane
    Hi all, I'm building a directory for finding athletic tournaments on GAE with web2py and a Flex front end. The user selects a location, a radius, and a maximum date from a set of choices. I have a basic version of this query implemented, but it's inefficient and slow. One way I know I can improve it is by condensing the many individual queries I'm using to assemble the objects into bulk queries. I just learned that was possible. But I'm also thinking about a more extensive redesign that utilizes memcache. The main problem is that I can't query the datastore by location because GAE won't allow multiple numerical comparison statements (<,<=,=,) in one query. I'm already using one for date, and I'd need TWO to check both latitude and longitude, so it's a no go. Currently, my algorithm looks like this: 1.) Query by date and select 2.) Use destination function from geopy's distance module to find the max and min latitude and longitudes for supplied distance 3.) Loop through results and remove all with lat/lng outside max/min 4.) Loop through again and use distance function to check exact distance, because step 2 will include some areas outside the radius. Remove results outside supplied distance (is this 2/3/4 combination inefficent?) 5.) Assemble many-to-many lists and attach to objects (this is where I need to switch to bulk operations) 6.) Return to client Here's my plan for using memcache.. let me know if I'm way out in left field on this as I have no prior experience with memcache or server caching in general. -Keep a list in the cache filled with "geo objects" that represent all my data. These have five properties: latitude, longitude, event_id, event_type (in anticipation of expanding beyond tournaments), and start_date. This list will be sorted by date. -Also keep a dict of pointers in the cache which represent the start and end indices in the cache for all the date ranges my app uses (next week, 2 weeks, month, 3 months, 6 months, year, 2 years). -Have a scheduled task that updates the pointers daily at 12am. -Add new inserts to the cache as well as the datastore; update pointers. Using this design, the algorithm would now look like: 1.) Use pointers to slice off appropriate chunk of list based on supplied date. 2-4.) Same as above algorithm, except with geo objects 5.) Use bulk operation to select full tournaments using remaining geo objects' event_ids 6.) Assemble many-to-manys 7.) Return to client Thoughts on this approach? Many thanks for reading and any advice you can give. -Dane

    Read the article

  • OpenGL FrameBuffer Objects weird behavior

    - by Ben Jones
    My algorithm is this: Render the scene to a FBO with shadow mapping from multiple locations Render the scene to the screen with shadow mapping ...black magic that I still have to imlement... Combine the samples from step 1 with the image from step 2 I'm trying to debug steps 1 and 2 and am coming across STRANGE behavior. My algorithm for each shadow mapped pass is: render the scene to a FBO connected to a depth array texture from the POV of each light render the scene from the viewpoint and use vertex/frag shaders to compare the depths When I run my algorithm this way: render from point to FBO render from point to screen glutSwapBuffers() The normal vectors in the screen pass appear to be incorrect (inverted possibly). I'm pretty sure that's the issue because my diffuse lighting calculation is incorrect, but the material colors are correct, and the shadows appear in the correct places. So, it seems like the only thing that could be the culprit is the normals. However if I do render from point to FBO render from point to Screen glutSwapBuffers() //wrong here render from point to Screen glutSwapBuffers() the second pass is correct. I assume there's a problem with my framebuffer calls. Can anyone see what the problem is from the log below? Its from a bugle trace grepped for 'buffer' with a few edits to make it a little more clear. Thanks! [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfeb90 - { 1 }) [INFO] trace.call: glGenFramebuffersEXT(1, 0xdfebac - { 2 }) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glDrawBuffer(GL_NONE) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) //start render to FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glReadBuffer(GL_NONE) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 2, 0) [INFO] trace.call: glFramebufferTexture2DEXT(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 3, 0) [INFO] trace.call: glDrawBuffer(GL_COLOR_ATTACHMENT0) //bind to the FBO attached to a depth tex array for shadows [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the FBO I want the shadow mapped image rendered to [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 2) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //draw geometry //draw to screen pass //again shadow mapping FBO [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry //bind to the screen [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) //finished, swap buffers [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //INCORRECT OUTPUT //second try at render to screen: [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 1) [INFO] trace.call: glFramebufferTextureLayerARB(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 1, 0, 0) [INFO] trace.call: glClear(GL_DEPTH_BUFFER_BIT) //draw geometry [INFO] trace.call: glBindFramebufferEXT(GL_FRAMEBUFFER, 0) [INFO] trace.call: glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) draw geometry [INFO] trace.call: glXSwapBuffers(0xd5fc10, 0x05800002) //correct output

    Read the article

  • Compute bounding quad of a sphere with vertex shader

    - by Ben Jones
    I'm trying to implement an algorithm from a graphics paper and part of the algorithm is rendering spheres of known radius to a buffer. They say that they render the spheres by computing the location and size in a vertex shader and then doing appropriate shading in a fragment shader. Any guesses as to how they actually did this? The position and radius are known in world coordinates and the projection is perspective. Does that mean that the sphere will be projected as a circle? Thanks!

    Read the article

  • Face recognition Library

    - by Janusz
    I'm looking for a free face recognition library for a university project. I'm not looking for face detection. I'm looking for actual recognition. That means finding images that contain specified faces or libraries that calculate distances between specific faces. I'm using OpenCV for detecting the faces and a rough Eigenfaces Algorithm for the recognition now. But I thought there should be something out there with a better performance then a self written Eigenfaces Algorithm. I don't talk about speed as performance I'm looking for a library with better results as an simple Eigenfaces approach I took a look at faint but it seems the library is not very reusable for my own applications. I'm happy with a library in Python, Java, C++, C or something like that. The best thing would be if it can be run on a Windowsmachine

    Read the article

  • Explain BFS and DFS in terms of backtracking

    - by HH
    Wikipedia about DFS Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph. One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking. So is BFS? "an algorithm that choose a starting node, checks all nodes -- backtracks --, chooses the shortest path, chose neighbour nodes -- backtracks --, chose the shortest path -- finally finds the optimal path because of traversing each path due to continuos backtracking. Regex, find's pruning -- backtracking? The term backtracking confuseses due to its variety of use. UNIX find's pruning an SO-user explained with backtracking. Regex Buddy uses the term "catastrophic backtracking" if you do not limit the scope of your Regexes. It seems to be too wide umbrella-term. So: how do you define "Backtracking" GRAPH-theoretically? what is "backtracking" in BFS and DFS?

    Read the article

  • Made an interview mistake. Should I try to correct after the fact?

    - by AT Developer
    Ever been in a situation where you were in an interview, and realized immediately afterwards (after the nervousness wore off) that you did something wrong? I had a phone interview today. I was asked an n-ary tree problem, and coded an algorithm that used a space overhead, then a different algorithm with no space overhead. However, my solution was inefficient, since I traversed the tree top-down rather than bottom-up. The interviewer said I did a good job, but I'm still wondering if he noticed and marked down for my choice of implementation. Should I follow up with an email correcting myself, or just let it and avoid making things worse?

    Read the article

< Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >