Search Results

Search found 14034 results on 562 pages for 'interface inheritance'.

Page 125/562 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • Port mirroring on multiple switches

    - by Matt
    So here is the deal, I have a server on switch A where port 3 is monitoring traffic for most of the ports on switch A. However I have other users on switch B that needs to have port 3 on switch A monitor as well. Is this possible? I have been reading about rspan but doesnt seem to work. Switch A: monitor session 1 source interface fast0/1 - 2 monitor session 1 source interface fast0/4 - 46 monitor session 1 destination interface fast0/3 (this works great for switch A, I need a solution to get switch B to also have some ports sent to port 3 on switch A for monitoring.) Onxx, All the traffic on switch A is fine, there will be about 10-15 ports on switch B that I need to send to fa0/3 on switch A as the destination. I have the switches connected with a ethernet cable with a trunk port on both switches on port 48 on switch B and A and port 47 on A connects to our sonicwall. So I am assuming they are daisy chained? What if I did the following: Switch A monitor session 1 source interface fast0/1 - 2 monitor session 1 source interface fast0/4 - 46 monitor session 1 destination interface fast0/3 Put all of the ports on vlan 10 because I made an rspan vlan 10 On switch B monitor the ports I need will say 1-10 monitor session 1 source interface fast0/1 - 10 monitor session 1 destination remote vlan 10 as a prerequisite I would have created vlan 10 as a rspan vlan on switch B. Switch A Monitor session 1 destination remote vlan 10 Would this work? By the way I am working with cisco catalyst 3560 switches.

    Read the article

  • cisco asa + action drop issue

    - by ghp
    Have created a tunnel between 10.x.y.z network and 122.a.b.c ..the tunnel is up and active, but when I try the packet tracer output ..I get the ACTION as drop. I have also enabled same-security-traffic permit intra-interface. Can someone help me what does this drop mean? Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule Packet Tracer output @Shane Madden: please find below the packet tracer output. CASA5K-A# CASA5K-A# config t CASA5K-A(config)# packet-tracer input inside tcp 10.x.y.112 0 122.a.b.c 0 Phase: 1 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 2 Type: ACCESS-LIST Subtype: Result: DROP Config: Implicit Rule Additional Information: Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule CASA5K-A(config)# ======================================================================== The access-group are as follows : access-group acl-inbound in interface outside access-group acl-outbound in interface inside and the access-list's are access-list acl-inbound extended permit tcp any any gt 1023 access-list acl-outbound extended permit ip object-group net-Source object net-dest

    Read the article

  • Renaming VLAN Interfaces in Linux

    - by rhololkeolke
    I need to know how to rename VLAN interfaces. I'm currently running Ubuntu 11.04. I'm running a networking application that takes frames on one interface applies things like delays and errors and then forwards the frames out another interface. The default naming convention which names things <interface>.<vlan> e.g. eth0.2 will not work for my purposes because the program which parses the configuration script for the networking application doesn't like the decimal in the interface name. I ran vconfig set_name_type VLAN_PLUS_VID which solves the decimal in the interface name problem, however, I can then no longer assign the same vlan id to multiple interfaces because they have the same name. I know how to change physical interface names using udev rules, but because the vlan's will have the same MAC address and they aren't physical interfaces I can't use those rules to rename the interfaces. Is there a way to rename any interface in linux, including the virtual ones? Is there a way to specify your own naming convention for config set_name_type option without having to recompile the source of vconfig?

    Read the article

  • Annotation to make available generic type

    - by mdma
    Given an generic interface like interface DomainObjectDAO<T> { T newInstance(); add(T t); remove(T t); T findById(int id); // etc... } I'd like to create a subinterface that specifies the type parameter: interface CustomerDAO extends DomainObjectDAO<Customer> { // customer-specific queries - incidental. } The implementation needs to know the actual template parameter type, but of course type erasure means isn't available at runtime. Is there some annotation that I could include to declare the interface type? Something like @GenericParameter(Customer.class) interface CustomerDAO extends DomainObjectDAO<Customer> { } The implementation could then fetch this annotation from the interface and use it as a substitute for runtime generic type access. Some background: This interface is implemented using JDK dynamic proxies as outlined here. The non-generic version of this interface has been working well, but it would be nicer to use generics and not have to create a subinterface for each domain object type. The actual type is needed at runtime to implement the newInstance method, amongst others.

    Read the article

  • JPA entitylisteners and @embeddable

    - by seanizer
    I have a class hierarchy of JPA entities that all inherit from a BaseEntity class: @MappedSuperclass @EntityListeners( { ValidatorListener.class }) public abstract class BaseEntity implements Serializable { // other stuff } I want all entities that implement a given interface to be validated automatically on persist and/or update. Here's what I've got. My ValidatorListener: public class ValidatorListener { private enum Type { PERSIST, UPDATE } @PrePersist public void checkPersist(final Object entity) { if (entity instanceof Validateable) { this.check((Validateable) entity, Type.PERSIST); } } @PreUpdate public void checkUpdate(final Object entity) { if (entity instanceof Validateable) { this.check((Validateable) entity, Type.UPDATE); } } private void check(final Validateable entity, final Type persist) { switch (persist) { case PERSIST: if (entity instanceof Persist) { ((Persist) entity).persist(); } if (entity instanceof PersistOrUpdate) { ((PersistOrUpdate) entity).persistOrUpdate(); } break; case UPDATE: if (entity instanceof Update) { ((Update) entity).update(); } if (entity instanceof PersistOrUpdate) { ((PersistOrUpdate) entity).persistOrUpdate(); } break; default: break; } } } and here's my Validateable interface that it checks against (the outer interface is just a marker, the inner contain the methods): public interface Validateable { interface Persist extends Validateable { void persist(); } interface PersistOrUpdate extends Validateable { void persistOrUpdate(); } interface Update extends Validateable { void update(); } } All of this works, however I would like to extend this behavior to Embeddable classes. I know two solutions: call the validation method of the embeddable object manually from the entity validation method: public void persistOrUpdate(){ // validate my own properties first // then manually validate the embeddable property: myEmbeddable.persistOrUpdate(); // this works but I'd like something that I don't have to call manually } use reflection, checking all properties to see if their type is of one of their interface types. This would work, but it's not pretty. Is there a more elegant solution?

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • HP to Cisco spanning tree root flapping

    - by Tim Brigham
    Per a recent question I recently configured both my HP (2x 2900) and Cisco (1x 3750) hardware to use MSTP for interoperability. I thought this was functional until I applied the change to the third device (HP switch 1 below) at which time the spanning tree root started flapping causing performance issues (5% packet loss) between my two HP switches. I'm not sure why. HP Switch 1 A4 connected to Cisco 1/0/1. HP Switch 2 B2 connected to Cisco 2/0/1. HP Switch 1 A2 connected to HP Switch 2 A1. I'd prefer the Cisco stack to act as the root. EDIT: There is one specific line - 'spanning-tree 1 path-cost 500000' in the HP switch 2 that I didn't add and was preexisting. I'm not sure if it could have the kind of impact that I'm describing. I'm more a security and monitoring guy then networking. EDIT 2: I'm starting to believe the problem lies in the fact that the value for my MST 0 instance on the Cisco is still at the default 32768. I worked up a diagram: This is based on every show command I could find for STP. I'll make this change after hours and see if it helps. Cisco 3750 Config: version 12.2 spanning-tree mode mst spanning-tree extend system-id spanning-tree mst configuration name mstp revision 1 instance 1 vlan 1, 40, 70, 100, 250 spanning-tree mst 1 priority 0 vlan internal allocation policy ascending interface TenGigabitEthernet1/1/1 switchport trunk encapsulation dot1q switchport mode trunk ! interface TenGigabitEthernet2/1/1 switchport trunk encapsulation dot1q switchport mode trunk ! interface Vlan1 no ip address ! interface Vlan100 ip address 192.168.100.253 255.255.255.0 ! Cisco 3750 show spanning tree: show spanning-tree MST0 Spanning tree enabled protocol mstp Root ID Priority 32768 Address 0004.ea84.5f80 Cost 200000 Port 53 (TenGigabitEthernet1/1/1) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32768 (priority 32768 sys-id-ext 0) Address a44c.11a6.7c80 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Te1/1/1 Root FWD 2000 128.53 P2p MST1 Spanning tree enabled protocol mstp Root ID Priority 1 Address a44c.11a6.7c80 This bridge is the root Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 1 (priority 0 sys-id-ext 1) Address a44c.11a6.7c80 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Te1/1/1 Desg FWD 2000 128.53 P2p Cisco 3750 show logging: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan100, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan100, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up HP Switch 1: ; J9049A Configuration Editor; Created on release #T.13.71 vlan 1 name "DEFAULT_VLAN" untagged 1-8,10,13-16,18-23,A1-A4 ip address 100.100.100.17 255.255.255.0 no untagged 9,11-12,17,24 exit vlan 100 name "192.168.100" untagged 9,11-12,17,24 tagged 1-8,10,13-16,18-23,A1-A4 no ip address exit vlan 21 name "Users_2" tagged 1,A1-A4 no ip address exit vlan 40 name "Cafe" tagged 1,4,7,A1-A4 no ip address exit vlan 250 name "Firewall" tagged 1,4,7,A1-A4 no ip address exit vlan 70 name "DMZ" tagged 1,4,7-8,13,A1-A4 no ip address exit spanning-tree spanning-tree config-name "mstp" spanning-tree config-revision 1 spanning-tree instance 1 vlan 1 40 70 100 250 password manager password operator HP Switch 1 show spanning tree: show spanning-tree Multiple Spanning Tree (MST) Information STP Enabled : Yes Force Version : MSTP-operation IST Mapped VLANs : 2-39,41-69,71-99,101-249,251-4094 Switch MAC Address : 0021f7-126580 Switch Priority : 32768 Max Age : 20 Max Hops : 20 Forward Delay : 15 Topology Change Count : 363,490 Time Since Last Change : 14 hours CST Root MAC Address : 0004ea-845f80 CST Root Priority : 32768 CST Root Path Cost : 200000 CST Root Port : 1 IST Regional Root MAC Address : 0021f7-126580 IST Regional Root Priority : 32768 IST Regional Root Path Cost : 0 IST Remaining Hops : 20 Root Guard Ports : TCN Guard Ports : BPDU Protected Ports : BPDU Filtered Ports : PVST Protected Ports : PVST Filtered Ports : | Prio | Designated Hello Port Type | Cost rity State | Bridge Time PtP Edge ----- --------- + --------- ---- ---------- + ------------- ---- --- ---- A1 | Auto 128 Disabled | A2 10GbE-CX4 | 2000 128 Forwarding | 0021f7-126580 2 Yes No A3 10GbE-CX4 | Auto 128 Disabled | A4 10GbE-SR | Auto 128 Disabled | HP Switch 1 Logging: I removed the date / time fields since they are inaccurate (no NTP configured on these switches) 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to 32768:0021f7-126580 00839 stp: MSTI 1 Root changed from 32768:0021f7-126580 to 0:a44c11-a67c80 00842 stp: MSTI 1 starved for an MSTI Msg Rx on port A4 from 0:a44c11-a67c80 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to 32768:0021f7-126580 00839 stp: MSTI 1 Root changed from 32768:0021f7-126580 to 0:a44c11-a67c80 00839 stp: MSTI 1 Root changed from 0:a44c11-a67c80 to ... HP Switch 2 Configuration: ; J9146A Configuration Editor; Created on release #W.14.49 vlan 1 name "DEFAULT_VLAN" untagged 1,3-17,21-24,A1-A2,B2 ip address 100.100.100.36 255.255.255.0 no untagged 2,18-20,B1 exit vlan 100 name "192.168.100" untagged 2,18-20 tagged 1,3-17,21-24,A1-A2,B1-B2 no ip address exit vlan 21 name "Users_2" tagged 1,A1-A2,B2 no ip address exit vlan 40 name "Cafe" tagged 1,13-14,16,A1-A2,B2 no ip address exit vlan 250 name "Firewall" tagged 1,13-14,16,A1-A2,B2 no ip address exit vlan 70 name "DMZ" tagged 1,13-14,16,A1-A2,B2 no ip address exit logging 192.168.100.18 spanning-tree spanning-tree 1 path-cost 500000 spanning-tree config-name "mstp" spanning-tree config-revision 1 spanning-tree instance 1 vlan 1 40 70 100 250 HP Switch 2 Spanning Tree: show spanning-tree Multiple Spanning Tree (MST) Information STP Enabled : Yes Force Version : MSTP-operation IST Mapped VLANs : 2-39,41-69,71-99,101-249,251-4094 Switch MAC Address : 0024a8-cd6000 Switch Priority : 32768 Max Age : 20 Max Hops : 20 Forward Delay : 15 Topology Change Count : 21,793 Time Since Last Change : 14 hours CST Root MAC Address : 0004ea-845f80 CST Root Priority : 32768 CST Root Path Cost : 200000 CST Root Port : A1 IST Regional Root MAC Address : 0021f7-126580 IST Regional Root Priority : 32768 IST Regional Root Path Cost : 2000 IST Remaining Hops : 19 Root Guard Ports : TCN Guard Ports : BPDU Protected Ports : BPDU Filtered Ports : PVST Protected Ports : PVST Filtered Ports : | Prio | Designated Hello Port Type | Cost rity State | Bridge Time PtP Edge ----- --------- + --------- ---- ---------- + ------------- ---- --- ---- A1 10GbE-CX4 | 2000 128 Forwarding | 0021f7-126580 2 Yes No A2 10GbE-CX4 | Auto 128 Disabled | B1 SFP+SR | 2000 128 Forwarding | 0024a8-cd6000 2 Yes No B2 | Auto 128 Disabled | HP Switch 2 Logging: I removed the date / time fields since they are inaccurate (no NTP configured on these switches) 00839 stp: CST Root changed from 32768:0021f7-126580 to 32768:0004ea-845f80 00839 stp: IST Root changed from 32768:0021f7-126580 to 32768:0024a8-cd6000 00839 stp: CST Root changed from 32768:0004ea-845f80 to 32768:0024a8-cd6000 00839 stp: CST Root changed from 32768:0024a8-cd6000 to 32768:0004ea-845f80 00839 stp: CST Root changed from 32768:0004ea-845f80 to 32768:0024a8-cd6000 00435 ports: port B1 is Blocked by STP 00839 stp: CST Root changed from 32768:0024a8-cd6000 to 32768:0021f7-126580 00839 stp: IST Root changed from 32768:0024a8-cd6000 to 32768:0021f7-126580 00839 stp: CST Root changed from 32768:0021f7-126580 to 32768:0004ea-845f80

    Read the article

  • Where can I get POP/IMAP settings for Windows Live Domain emails

    - by Capt.Nemo
    I have setup email for my custom domain using Windows Live Domains. I then upgraded from the Hotmail interface to the new Outlook.com interface. I cannot seem to find the POP/IMAP settings to connect to in the Settings Sections of the new Outlook.com interface. The only instructions I could find mentioned were using the Hotmail interface, and the corresponding section does not exist in the Outlook.com redesigned settings.

    Read the article

  • How secure is a subnet?

    - by HorusKol
    I have an unfortunate complication in my network - some users/computers are attached to a completely private and firewalled office network that we administer (10.n.n.x/24 intranet), but others are attached to a subnet provided by a third party (129.n.n.x/25) as they need to access the internet via the third party's proxy. I have previously set up a gateway/router to allow the 10.n.n.x/24 network internet access: # Allow established connections, and those !not! coming from the public interface # eth0 = public interface # eth1 = private interface iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A INPUT -m state --state NEW ! -i eth0 -j ACCEPT iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT # Allow outgoing connections from the private interface iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT # Masquerade (NAT) iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # Don't forward any other traffic from the public to the private iptables -A FORWARD -i eth0 -o eth1 -j REJECT However, I now need to enable access to users on our 129.n.n.x/25 subnet to some private servers on the 10.n.n.x/24 network. I figured that I could do something like: # Allow established connections, and those !not! coming from the public interface # eth0 = public interface # eth1 = private interface #1 (10.n.n.x/24) # eth2 = private interface #2 (129.n.n.x/25) iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A INPUT -m state --state NEW ! -i eth0 -j ACCEPT iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT iptables -A FORWARD -i eth0 -o eth2 -m state --state ESTABLISHED,RELATED -j ACCEPT # Allow outgoing connections from the private interfaces iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT iptables -A FORWARD -i eth2 -o eth0 -j ACCEPT # Allow the two public connections to talk to each other iptables -A FORWARD -i eth1 -o eth2 -j ACCEPT iptables -A FORWARD -i eth2 -o eth1 -j ACCEPT # Masquerade (NAT) iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # Don't forward any other traffic from the public to the private iptables -A FORWARD -i eth0 -o eth1 -j REJECT iptables -A FORWARD -i eth0 -o eth2 -j REJECT My concern is that I know that the computers on our 129.n.n.x/25 subnet can be accessed via a VPN through the larger network operated by the provider - therefore, would it be possible for someone on the provider's supernet (correct term? inverse of subnet?) to be able to access our private 10.n.n.x/24 intranet?

    Read the article

  • Trunking at Router Port

    - by singh
    After reading a bit about interVLAN routing got a doubt regarding how trunking takes place at router and at switch.In case of switch we configure a port interface as trunk port and say all vlan's are allowed here but in case of router we configure sub interface as trunk saying particular vlan belongs to particular subinterface .Can't we configure only a single port interface on router just like Switch and say all vlan's are allowed here on this interface ,why to go for sub interfaces? Hope I'm able to put my question in right way.

    Read the article

  • Android: How to obtain Mac Address of WiFi Network Interface?

    - by Gubatron
    It seems the java.net.NetworkInterface implementation of android does not have a byte[] getHardwareAddress() method http://developer.android.com/reference/java/net/NetworkInterface.html I've found several forums of people trying to do this with no definitive answer, I need to get a somewhat cross-device UUID, so I can't rely on phone numbers or in ANDROID_ID (which can be overwritten and which I think depends on the user having a google account) http://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID In linux you can use ifconfig or read from /proc/net/arp and you can easily get the Hardware address. Is there a file in android that I can read? There has to be a way to get this address since it's shown in the "Settings About Phone Status" of the phone.

    Read the article

  • Different Azure blob streams when using .Net client vs. REST interface

    - by knightpfhor
    I have encountered an unusual difference in the way that the .Net client for Azure and the direct REST API bring back streams of binary data. If I use the CloundBlob.DownloadToStream() vs. getting the response stream from the HTTP response, I get streams with the same length, but different content. Specifically the REST response seems to 0 out a series of bytes. I've discovered this issue because I'm trying to use the byte range feature for blobs which is currently not supported in the .Net client (if I'm wrong on this point and someone can point at where I can do this it might make the rest of this question irrelevant). If I upload a binary representation of the first 2k unicode characters with this code: Public Sub WriteFoo() Dim Blob As CloudBlob Dim Stream1 As MemoryStream Dim Container As CloudBlobContainer Dim Builder As StringBuilder Dim NextCharacter As String Dim Formatter As BinaryFormatter Container = CloudStorageAccount.DevelopmentStorageAccount.CreateCloudBlobClient.GetContainerReference("testcontainer") Container.CreateIfNotExist() Blob = Container.GetBlobReference("Foo") Stream1 = New MemoryStream() Builder = New Text.StringBuilder() For Index As Integer = 1 To 2000 Select Case Index Case Is <= 9 NextCharacter = ChrW(9) Case Is <= 31 NextCharacter = Environment.NewLine Case 127 NextCharacter = Environment.NewLine Case Else NextCharacter = ChrW(Index) End Select Builder.Append(NextCharacter) Next Formatter = New BinaryFormatter() Formatter.Serialize(Stream1, Builder.ToString()) Stream1.Position = 0 Blob.UploadFromStream(Stream1) End Sub Then try to access it with the following code: Public Sub ReadFoo() Dim Blob As CloudBlob Dim Request As System.Net.HttpWebRequest Dim Response As System.Net.WebResponse Dim ResponseSize As Integer Dim ResponseBuffer As Byte() Dim ResponseStream As Stream Dim Stream1 As MemoryStream Dim Stream2 As MemoryStream Dim Container As CloudBlobContainer Dim Byte1 As Integer Dim Byte2 As Integer Container = CloudStorageAccount.DevelopmentStorageAccount.CreateCloudBlobClient.GetContainerReference("testcontainer") Container.CreateIfNotExist() Blob = Container.GetBlobReference("Foo") Stream1 = New MemoryStream() Stream2 = New MemoryStream() Blob.DownloadToStream(Stream1) Request = DirectCast(System.Net.WebRequest.Create(Blob.Uri), System.Net.HttpWebRequest) Request.Headers.Add("x-ms-version", "2009-09-19") Request.Headers.Add("x-ms-range", String.Format("bytes={0}-{1}", 0, Integer.MaxValue)) Blob.Container.ServiceClient.Credentials.SignRequest(Request) Response = Request.GetResponse() ResponseStream = Response.GetResponseStream() ResponseSize = CInt(Response.ContentLength) ReDim ResponseBuffer(ResponseSize - 1) ResponseStream.Read(ResponseBuffer, 0, ResponseSize) Stream2.Write(ResponseBuffer, 0, ResponseSize) Stream1.Position = 0 Stream2.Position = 0 If Stream1.Length <> Stream2.Length Then System.Diagnostics.Debug.WriteLine(String.Format("Streams a different length. 1: {0}. 2: {1}", Stream1.Length, Stream2.Length)) Else While Stream1.Position < Stream1.Length Byte1 = Stream1.ReadByte() Byte2 = Stream2.ReadByte() If Byte1 <> Byte2 Then System.Diagnostics.Debug.WriteLine(String.Format("Streams differ at position {0}, 1: {1}. 2: {2}", Stream1.Position - 1, Byte1, Byte2)) End If End While End If End Sub Past all certain point all of the data in Stream2 (the data I've retrieved from the REST api) ends up being 0. To make matters even more confusing, when I reverse the order that I put the characters in the string e.g. For Index As Integer = 2000 To 1 rather than For Index As Integer = 1To 2000 it all works OK. Any help is much appreciated. My computer is sick of me swearing at it.

    Read the article

  • Tips on implementing a custom UITextView interface on the iPhone?

    - by Alex
    I am trying to implement a control to edit text that will display the text in multiple colors. None of the solutions I have attempted yet have been good enough. UITextView cannot accomplish this. All of the text must be the same color. Using CoreGraphics to draw the text does not allow the text to be selected. Using a UIWebView, DIV and PRE tags cannot be set to contentEditable on Mobile Safari. Currently playing with using an off-screen TEXTAREA and an on-screen DIV to show the rendered text. This works pretty well, except supporting all of these at the same time seems impossible: click-to-type, click-to-move-cursor, click-and-hold-select/copy/paste. Anyone have any tips on this predicament? I've been trying to find any preexisting library out there that will accomplish this in a good way, to no luck. I'm open to any ideas!

    Read the article

  • Error CS0117: Namespace.A does not contain definition for Interface..

    - by SnOrfus
    I'm getting the error: 'Namespace.A' does not contain a definition for 'MyObjectInterface' and no extension method 'MyObjectInterface' accepting a first argument of type ... I've looked at this and this and neither seems to apply. The code looks like: public abstract class Base { public IObject MyObjectInterface { get; set; } } public class A : Base { /**/ } public class Implementation { public void Method() { Base obj = new A(); obj.MyObjectInterface = /* something */; // Error here } } IObject is defined in a separate assembly, but: IObject is in a separate assembly/namespace Base and A are in the same assembly/namespace each with correct using directives Implementation is in a third separate assembly namespace, also with correct using directives. Casting to A before trying to set MyObjectInterface doesn't work Specifically, I'm trying to set the value of MyObjectInterface to a mock object (though, I created a fake instead to no avail) I've tried everything I can think of. Please help before I lose more hair. edit I can't reproduce the error by creating a test app either, which is why I'm here and why I'm frustrated. @Reed Copsey: /* something */ is either an NUnit.DynamicMock(IMailer).MockInstance or a Fake object I created that inherits from IObject and just returns canned values. @Preet Sangha: I checked and no other assembly that is referenced has a definition for an IObject (specifically, it's called an IMailer). Thing is that intellisense picks up the Property, but when I compile, I get CS0117. I can even 'Go To Definition' in the implementation, and it takes me to where I defined it.

    Read the article

  • How to roll back a google app engine transaction via web interface?

    - by LoudNPossiblyRight
    I tried to update my app on google appengine by my wireless dropped during the process. When i tried again i got an error "Another transaction by user ajakimov is already in progress for this app and major version." I know i can rollback the update using appcfg.py but i was wondering if it's possible to do this via some sort of a web interfiace (i tried the dashboard i couldn't find anything) ? Thanks.

    Read the article

  • How do you interface with a USB to Parallel adapter?

    - by Hans
    I'm currently doing a project where I have to interact with a circuit I made through the parallel port of a computer. However, my computer doesn't have a parallel port so I borrowed a Parallel to USB adapter cable. The cable didn't come with any drivers, but it's recognized by the device manager as a "USB Printing Support" controller, under the USB section. It seems that old parallel printers can be plugged in and work properly without any problems. So my question is, if I write a program in Java that tries to interact with a parallel port directly, will it work? And if not, can anyone give me some pointers as to what I need to do to interact with it? Thanks.

    Read the article

  • Can protobuf-net serialize this combination of interface and generic collection?

    - by tsupe
    I am trying to serialize a ItemTransaction and protobuf-net (r282) is having a problem. ItemTransaction : IEnumerable<KeyValuePair<Type, IItemCollection>></code> and ItemCollection is like this: FooCollection : ItemCollection<Foo> ItemCollection<T> : BindingList<T>, IItemCollection IItemCollection : IList<Item> where T is a derived type of Item. ItemCollection also has a property of type IItemCollection. I am serializing like this: IItemCollection itemCol = someService.Blah(...); ... SerializeWithLengthPrefix<IItemCollection>(stream, itemCol, PrefixStyle.Base128); My eventual goal is to serialize ItemTransaction, but am snagged with IItemCollection. Item and it's derived types can be [de]serialized with no issues, see [1], but deserializing an IItemCollection fails (serializing works). ItemCollection has a ItemExpression property and when deserializing protobuf can't create an abstract class. This makes sense to me, but I'm not sure how to get through it. ItemExpression<T> : ItemExpression, IItemExpression ItemExpression : Expression ItemExpression is abstract as is Expression How do I get this to work properly? Also, I am concerned that ItemTransaction will fail since the IItemCollections are going to be differing and unknown at compile time (an ItemTransaction will have FooCollection, BarCollection, FlimCollection, FlamCollection, etc). What am I missing (Marc) ? [1] http://stackoverflow.com/questions/2276104/protobuf-net-deserializing-across-assembly-boundaries

    Read the article

  • How to call base abstract or interface from DAL into BLL?

    - by programmerist
    How can i access abstract class in BLL ? i shouldn't see GenAccessor in BLL it must be private class GenAccessor . i should access Save method over _AccessorForSQL. ok? MY BLL cs: public class AccessorForSQL: GenoTip.DAL._AccessorForSQL { public bool Save(string Name, string SurName, string Adress) { ListDictionary ld = new ListDictionary(); ld.Add("@Name", Name); ld.Add("@SurName", SurName); ld.Add("@Adress", Adress); return **base.Save("sp_InsertCustomers", ld, CommandType.StoredProcedure);** } } i can not access base.Save....???????? it is my DAL Layer: namespace GenoTip.DAL { public abstract class _AccessorForSQL { public abstract bool Save(string sp, ListDictionary ld, CommandType cmdType); public abstract bool Update(); public abstract bool Delete(); public abstract DataSet Select(); } private class GenAccessor : _AccessorForSQL { DataSet ds; DataTable dt; public override bool Save(string sp, ListDictionary ld, CommandType cmdType) { SqlConnection con = null; SqlCommand cmd = null; SqlDataReader dr = null; try { con = GetConnection(); cmd = new SqlCommand(sp, con); con.Open(); cmd.CommandType = cmdType; foreach (string ky in ld.Keys) { cmd.Parameters.AddWithValue(ky, ld[ky]); } dr = cmd.ExecuteReader(); ds = new DataSet(); dt = new DataTable(); ds.Tables.Add(dt); ds.Load(dr, LoadOption.OverwriteChanges, dt); } catch (Exception exp) { HttpContext.Current.Trace.Warn("Error in GetCustomerByID()", exp.Message, exp); } finally { if (dr != null) dr.Close(); if (con != null) con.Close(); } return (ds.Tables[0].Rows.Count 0) ? true : false; } public override bool Update() { return true; } public override bool Delete() { return true; } public override DataSet Select() { DataSet dst = new DataSet(); return dst; } private static SqlConnection GetConnection() { string connStr = WebConfigurationManager.ConnectionStrings["ConnectionString"].ConnectionString; SqlConnection conn = new SqlConnection(connStr); return conn; }

    Read the article

  • How can I access the JavaScript global object ("window") inside an embedded browser object (the IWebBrowser2 interface)?

    - by John Factorial
    I have an HTML page which embeds an IWebBrowser2 ActiveX (i.e. the control is essentially an Internet Explorer browser). I need to write JavaScript in this HTML page which will remove any window.onresize handler from the page loaded in the IWebBrowser2 control. IWebBrowser2 exposes the DOM through IWebBrowser2::Document, but this is equivalent to window.document. Is there any way I can get access to window or window.onresize?

    Read the article

  • VS 2010 Layer Diagram Validation Error is Showing A Dependency That Doesn't Even Exist (AV0001)

    - by Dan
    I'm getting the following validation error on my layer diagram Error 65 AV0001 : Invalid Dependency : Weld.Interface.Core(Assembly) -- Weld.Interface(Namespace) Layers: Application Framework Core, Application Framework | Dependencies: Namespace Reference D:\Projects\Windows Projects\Weld\Weld\ModelingProject1\Weld.layerdiagram 0 0 ModelingProject1 Weld.Interface.Core: This assembly and namespace does not have a reference to Weld.Interface and only references .NET Framework classes Weld.Interface: This assembly and namespace does not have a reference to Weld.Interface There is no dependancy between these two layers in the dependency diagram. I am confused why I am getting this error. No dependency in the project or code, and no dependency is even setup in the layer diagram. Somehow the Validation logic in the layer diagram is seeing a non existant dependency and saying it is an error. Any ideas what either I might have missed or what is causing this problem?

    Read the article

  • iPhone: custom UITableViewCell with Interface Builder -> how to release cell objects?

    - by Stefan Klumpp
    The official documentation tells me I've to do these 3 things in order to manage the my memory for "nib objects" correctly. @property (nonatomic, retain) IBOutlet UIUserInterfaceElementClass *anOutlet; "You should then either synthesize the corresponding accessor methods, or implement them according to the declaration, and (in iPhone OS) release the corresponding variable in dealloc." - (void)viewDidUnload { self.anOutlet = nil; [super viewDidUnload]; } That makes sense for a normal view. However, how am I gonna do that for a UITableView with custom UITableViewCells loaded through a .nib-file? There the IBOutlets are in MyCustomCell.h (inherited from UITableViewCell), but that is not the place where I load the nib and apply it to the cell instances, because that happens in MyTableView.m So do I still release the IBOutlets in the dealloc of MyCustomCell.m or do I have to do something in MyTableView.m? Also MyCustomCell.m doesn't have a - (void)viewDidUnload {} where I can set my IBOutlets to nil, while my MyTableView.m does.

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >