Search Results

Search found 14034 results on 562 pages for 'interface inheritance'.

Page 129/562 | < Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >

  • EasyHook Windows Hooking problem/.dll injection

    - by Tom
    Ok can someone try and find the error with this code, it should produce all the registry keys every time something accesses them but i keep getting: System.MissingMethodException: The given method does not exist at EasyHook.LocalHook.GetProcAdress(String InModule, String InChannelName) An example code can be found here: http://www.codeproject.com/KB/DLL/EasyHook64.aspx I can get the CcreateFileW example to work! My code is here: public class Main : EasyHook.IEntryPoint { FileMon.FileMonInterface Interface; LocalHook LocalHook; Stack<String> Queue = new Stack<String>(); public Main(RemoteHooking.IContext InContext,String InChannelName) { // connect to host... Interface = RemoteHooking.IpcConnectClient<FileMon.FileMonInterface>(InChannelName); Interface.Ping(); } public void Run(RemoteHooking.IContext InContext,String InChannelName) { // install hook... try { LocalHook localHook = LocalHook.Create(LocalHook.GetProcAddress("Advapi32.dll", "RegOpenKeyExW"),new DMyRegOpenKeyExW(MyRegOpenKeyExW),this); localHook.ThreadACL.SetExclusiveACL(new int[] { }); } catch (Exception ExtInfo) { Interface.ReportException(ExtInfo); return; } Interface.IsInstalled(RemoteHooking.GetCurrentProcessId()); RemoteHooking.WakeUpProcess(); // wait for host process termination... try { while (true) { Thread.Sleep(500); // transmit newly monitored file accesses... if (Queue.Count > 0) { String[] Package = null; lock (Queue) { Package = Queue.ToArray(); Queue.Clear(); } Interface.OnCreateFile(RemoteHooking.GetCurrentProcessId(), Package); } else Interface.Ping(); } } catch { // Ping() will raise an exception if host is unreachable } } [DllImport("Advapi32.dll", CharSet = CharSet.Unicode, SetLastError = true, CallingConvention = CallingConvention.StdCall)] static extern int RegOpenKeyExW(UIntPtr hKey,string subKey,int ulOptions,int samDesired,out UIntPtr hkResult); [UnmanagedFunctionPointer(CallingConvention.StdCall, CharSet = CharSet.Unicode, SetLastError = true)] delegate int DMyRegOpenKeyExW(UIntPtr hKey,string subKey,int ulOptions,int samDesired,out UIntPtr hkResult); int MyRegOpenKeyExW(UIntPtr hKey,string subKey,int ulOptions,int samDesired,out UIntPtr hkResult) { Console.WriteLine(string.Format("Accessing: {0}", subKey)); return RegOpenKeyExW(hKey, subKey, ulOptions, samDesired, out hkResult); } }

    Read the article

  • Is there a pattern for initializing objects created wth a DI container

    - by Igor Zevaka
    I am trying to get Unity to manage the creation of my objects and I want to have some initialization parameters that are not known until run-time: At the moment the only way I could think of the way to do it is to have an Init method on the interface. interface IMyIntf { void Initialize(string runTimeParam); string RunTimeParam { get; } } Then to use it (in Unity) I would do this: var IMyIntf = unityContainer.Resolve<IMyIntf>(); IMyIntf.Initialize("somevalue"); In this scenario runTimeParam param is determined at run-time based on user input. The trivial case here simply returns the value of runTimeParam but in reality the parameter will be something like file name and initialize method will do something with the file. This creates a number of issues, namely that the Initialize method is available on the interface and can be called multiple times. Setting a flag in the implementation and throwing exception on repeated call to Initialize seems way clunky. At the point where I resolve my interface I don't want to know anything about the implementation of IMyIntf. What I do want, though, is the knowledge that this interface needs certain one time initialization parameters. Is there a way to somehow annotate(attributes?) the interface with this information and pass those to framework when the object is created? Edit: Described the interface a bit more.

    Read the article

  • IPMI not fucntioning with Network Bonding

    - by muhammed sameer
    Hey, I am having problems with running IPMI on my servers that have network bonding enabled. Platform: CentOS release 5.3 (Final) Kernel: 2.6.18-92.el5 64bit Dell PowerEdge 1950 Ethernet controller: Broadcom Corporation NetXtreme II BCM5708 Gigabit Ethernet I have bonded the interface eth0 and eth1 as active passive, with eth0 as the active interface, below is conf description from /proc Bonding Mode: fault-tolerance (active-backup) Primary Slave: eth0 Currently Active Slave: eth0 MII Status: up MII Polling Interval (ms): 30 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth0 MII Status: up Link Failure Count: 0 Permanent HW addr: 00:22:19:56:b9:cd Slave Interface: eth1 MII Status: up Link Failure Count: 0 Permanent HW addr: 00:22:19:56:b9:cf My IPMI device is as follows IPMI Device Information Interface Type: KCS (Keyboard Control Style) Specification Version: 2.0 I2C Slave Address: 0x10 NV Storage Device: Not Present Base Address: 0x0000000000000CA8 (I/O) Register Spacing: 32-bit Boundaries I Have used openIPMI as well as freeipmi both to control the chassis via the IPMI card, but on servers which have bonding enabled, the command times out, below is the full run of the command with debug info. ipmi_lan_send_cmd:opened=[0], open=[4482848] IPMI LAN host 70.87.28.115 port 623 Sending IPMI/RMCP presence ping packet ipmi_lan_send_cmd:opened=[1], open=[4482848] No response from remote controller Get Auth Capabilities command failed ipmi_lan_send_cmd:opened=[1], open=[4482848] No response from remote controller Get Auth Capabilities command failed Error: Unable to establish LAN session Failed to open LAN interface Unable to get Chassis Power Status On the other hand I configured IPMI on a box with the same specs as mentioned above without bonding and IPMI works perfectly. Has anyone faced this problem with IPMI + Bonding ? I would be thankful is someone helps circumvent this issue. Muhammed Sameer

    Read the article

  • Fortinet: Is there any equivalent of the ASA's packet-tracer command?

    - by Kedare
    I would like to know if there is not Fortigates an equivalent of the packet-tracer command that we can find on the ASA. Here is an example of execution for those who don't know it: NAT and pass : lev5505# packet-tracer input inside tcp 192.168.3.20 9876 8.8.8.8 80 Phase: 1 Type: ACCESS-LIST Subtype: Result: ALLOW Config: Implicit Rule Additional Information: MAC Access list Phase: 2 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 3 Type: ACCESS-LIST Subtype: log Result: ALLOW Config: access-group inside-in in interface inside access-list inside-in extended permit tcp any any eq www access-list inside-in remark Allows DNS Additional Information: Phase: 4 Type: IP-OPTIONS Subtype: Result: ALLOW Config: Additional Information: Phase: 5 Type: VPN Subtype: ipsec-tunnel-flow Result: ALLOW Config: Additional Information: Phase: 6 Type: NAT Subtype: Result: ALLOW Config: object network inside-network nat (inside,outside) dynamic interface Additional Information: Dynamic translate 192.168.3.20/9876 to 81.56.15.183/9876 Phase: 7 Type: IP-OPTIONS Subtype: Result: ALLOW Config: Additional Information: Phase: 8 Type: FLOW-CREATION Subtype: Result: ALLOW Config: Additional Information: New flow created with id 94755, packet dispatched to next module Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: allow Blocked by ACL: lev5505# packet-tracer input inside tcp 192.168.3.20 9876 8.8.8.8 81 Phase: 1 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 2 Type: ACCESS-LIST Subtype: Result: DROP Config: Implicit Rule Additional Information: Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule Is there any equivalent on the Fortigates ?

    Read the article

  • Force netsh/arp binding multicast IP addres with specific MAC address

    - by Olivier
    I would like to setup an binding from an IP address to a MAC address using netsh. Goal is to bond an IP address which is a multicast address (224.224.x.y) to a given MAC address (which is NOT the calculated one from the multicast IP address : 01:00:5e:X:Y:Z It used to work with Windows XP (was it a bug that used to be "perfect" for my needs?), but Windows 7/8/8.1 forces the MAC address to the calculated one instead of letting me put what I want! (http://nettools.aqwnet.com/ipmaccalc/ipmaccalc.php shows MAC address calculation for multicast IP address) Thus I'm doing the following. Listing existing mappings: netsh.exe interface ip show neighbors "Ethernet" Interface 12 : Ethernet Internet address Physical address Type 224.0.0.22 01-00-5e-XX-YY-ZZ static Then adding my interface mapping manually: netsh.exe interface ip add neighbors "Ethernet" "224.xxx.yyy.zzz" "00-80-EE-UU-VV-WW" Finally, listing again my mappings: netsh.exe interface ip show neighbors "Ethernet" Interface 12 : Ethernet Internet address Physical address Type 224.0.0.22 01-00-5e-XX-YY-ZZ static **224.xxx.yyy.zzz 01-00-5e-UU-VV-WW static** As you can see, the MAC Address of the second entry (the one I just made) has been dynamically replaced by the calculated MAC Address corresponding to my IP Address... Calculation is done as follow (and displayed in hexa): UU=(xxx-128) VV=yyy WW=zzz But I don't want that behavior. My IP address and MAC address cannot be changed, and I must associate them accurately. Does anybody know how to disable MAC address substitution/calculation in netsh? Thanks, Olivier.

    Read the article

  • VMware virtual machine network devices malfunctioning

    - by sheepz
    I'm running Ubuntu 10.04 LTS and VMvware workstation 7.0.1 build-227600. The virtual machine i'm running in VMware is a custom distribution built on Debian Linux version 3.1. I'm still pretty much a beginner with UNIX administration. After having messed around with the vmware (changed only the name of the folder, the vmx and and other .v* files accordingly in which the .vmx was situated, and the configuration in the vmx file accordingly), the network devices on the virtual machine do not work anymore. The virtual machine is used for securely sending messages. The virtual machine: As far as I know, this perl file called proxy-gen-ifalias eth0 is responsible for properly setting up the two virtual network devices eth0 and eth1. The Virtual machine comes with a GUI interface in which I have set up two ethernet network devices, one internal, the other external. Now, after having messed around with this, the UI gives me this error message: perl proxy-gen-ifalias eth0 /etc/modprobe.d/alias-eth0 /sbin/update-modules perl proxy-gen-ifalias eth1 /etc/modprobe.d/alias-eth1 /sbin/update-modules ifdown eth0 ifdown: interface eth0 not configured ifdown eth1 ifdown: interface eth1 not configured perl proxy-gen-netcfg /etc/network/interfaces ifup eth0 SICCSIFADDR: No such device eth0: ERROR while getting interface flags: No such device SIOCSIFNETMASK: No such device eth0: ERROR while getting interface flags: No such device Failed to bring up eth0. ifconfig eth0 eth0: error fetching interface information: Device not found make: *** [/etc/network/interfaces] Error 1 ~ Here are the contents of the two perl files referred to in the message: paste.pocoo.org/show/2AMzAYhoCRZqlGY7wUFk/ proxy-gen-netcfg

    Read the article

  • OpenVPN Client timing out

    - by Austin
    I recently installed OpenVPN on my Ubuntu VPS. Whenenver I try to connect to it, I can establish a connection just fine. However, everything I try to connect to times out. If I try to ping something, it will resolve the IP, but will time out after resolving the IP. (So DNS Server seems to be working correctly) My server.conf has this relevant information (At least I think it's relevant. I'm not sure if you need more or not) # Which local IP address should OpenVPN # listen on? (optional) ;local a.b.c.d # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. port 1194 # TCP or UDP server? ;proto tcp proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca ca.crt cert server.crt key server.key # This file should be kept secret # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh dh1024.pem # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. ;server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. ;push "route 192.168.10.0 255.255.255.0" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). push "redirect-gateway def1 bypass-dhcp" push "dhcp-option DNS 8.8.8.8" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 8.8.8.8" push "dhcp-option DNS 8.8.4.4" # Uncomment this directive to allow different # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. ;user nobody ;group nogroup # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I've tried on multiple computers by the way. The same result on all of them. What could be wrong? Thanks in advance, and if you need other information I'll gladly post it. Information for new comments root@vps:~# iptables -L -n -v Chain INPUT (policy ACCEPT 862K packets, 51M bytes) pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 3 packets, 382 bytes) pkts bytes target prot opt in out source destination 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 4641 298K ACCEPT all -- * * 10.8.0.0/24 0.0.0.0/0 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT 1671K packets, 2378M bytes) pkts bytes target prot opt in out source destination And root@vps:~# iptables -t nat -L -n -v Chain PREROUTING (policy ACCEPT 17937 packets, 2013K bytes) pkts bytes target prot opt in out source destination Chain POSTROUTING (policy ACCEPT 8975 packets, 562K bytes) pkts bytes target prot opt in out source destination 1579 103K SNAT all -- * * 10.8.0.0/24 0.0.0.0/0 to:SERVERIP Chain OUTPUT (policy ACCEPT 8972 packets, 562K bytes) pkts bytes target prot opt in out source destination

    Read the article

  • NAT confusion regarding cisco ASA5510

    - by LonelyLonelyNetworkN00b
    I'm setting up my first cisco firewalls. A little information first:I have two asa5510 setup in a working active/standby pair. From my ISP i have two public subnets. A /29 and a /26. On my DMZ interface i have the /26 configured. On my WAN Interface i have configured the /29 IPs. My isp routes the /26 via the /29 primary IP. I'm running ASA 8.2. I've turned NAT-Control off, because i don't want to use nat for for other than some internal interfaces. In essence i don't want to use NAT unless i specify it. I have a internal interface with the network of 192.168.100.0/24. I've tried setting up nat limke this: nat (inside) 1 192.168.100.0 255.255.255.0 global (WAN) 1 interface I was under the impression that this would let connections that was going from 192.168.100.0/24 and out the WAN interface to be Port-Address-translated. I'm not getting this to work for some reason. Inside interface has security level of 100, and wan has security level of 0.

    Read the article

  • Assistance on setup to Connect an offsite server to the LAN via RRAS VPN - Server 2008 R2

    - by Paul D'Ambra
    I have an office LAN protected using a Zyxel Zywall USG 300. I've set up an L2TP/ipsec VPN on that which accepts connections using a shared secret and I've tested this from multiple clients. I have a server offsite and want to set up RRAS to use a persistent connection to the VPN so that it can carry out network jobs even with no one logged in (I'm using it for Micorosft DPM secondary backup). If I create a vpn as if I were setting up a users laptop it can dial in no problem but if I set up a demand dial interface in RRAS it errors. I enable RRAS ticking only demand dial interface (branch office routing) Select network interfaces, right click and choose new demand dial interface Name the VPN ToCompany Select connect using VPN And then L2TP as the vpn type enter the IP address (double-checked for typos!) select Route IP packets on this interface specify static route to remote network as 10.0.0.0/24 with metric of 1 add dial out credentials (again double checked for typos and confirmed with other vpn connections click finish now I right-click on the new interface and choose properties and then the security tab I change Data encryption to optional select only PAP for Authentication (both as per manufacturer of Zywall) click advanced settings against type of vpn and set shared secret then I select the new interface, right-click and choose connect this dials and then errors with either 720 or 811 as the error codes. However, if I create a VPN by going to Network & Sharing center and setting up as if I was creating a VPN from my laptop to the office (say) it dials successfully so I know the VPN settings are correct and the machine can connect to the VPN. Suggests very strongly the problem is how I'm setting up RRAS. Can anyone help?

    Read the article

  • Unable to PPTP through NAT on Cisco 881

    - by MasterRoot24
    I'm trying to connect to a PPTP server which is sat behind a Cisco 881 NAT router. The server is running Ubuntu Server 12.04 and is running Poptop pptpd as the PPTP daemon listening for connections. As discussed in my other question, I'm trying to setup a Cisco 881 router to replace my old Linksys WAG320N. This same server and WAN connection worked fine with the WAG320N with no special configuration, other than allowing 1723 in through the firewall. On the Cisco 881, I'm using the newer ip nat enable or NAT NVI to setup static routes in through the firewall for the services running behind the router. My reason being that I can't run another copy of my live DNS domains internally with local IP addresses in. For the purposes of this question, though, I have rebuilt the router with ip nat inside/outside style NAT'ing, but this issue is still apparent. HTTP/SMTP/IMAP etc. all work ok from both the WAN and LAN interfaces of the router. I'm only having issues with SIP (see other question) and PPTP. My issue is that the GRE doesn't appear to be passing through NAT correctly and one end of the connection is not receiving GRE traffic when it should be, so the server hangs up the connection. Here's an example of /var/log/syslog with debug enabled in /etc/pptpd.conf: Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: MGR: Launching /usr/sbin/pptpctrl to handle client Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: local address = 192.168.1.50 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: remote address = 192.168.1.51 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: pppd options file = /etc/ppp/pptpd-options Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Client 82.132.248.216 control connection started Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 1) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Made a START CTRL CONN RPLY packet Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: I wrote 156 bytes to the client. Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Sent packet to client Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 7) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Set parameters to 100000000 maxbps, 64 window size Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Made a OUT CALL RPLY packet Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Starting call (launching pppd, opening GRE) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: pty_fd = 6 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: tty_fd = 7 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: I wrote 32 bytes to the client. Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Sent packet to client Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): program binary = /usr/sbin/pppd Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): local address = 192.168.1.50 Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): remote address = 192.168.1.51 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Plugin /usr/lib/pptpd/pptpd-logwtmp.so loaded. Dec 11 21:06:30 <HOSTNAME> pppd[22627]: pppd 2.4.5 started by root, uid 0 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Using interface ppp0 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Connect: ppp0 <--> /dev/pts/3 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: GRE: Bad checksum from pppd. Dec 11 21:06:31 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 15) Dec 11 21:06:31 <HOSTNAME> pptpd[22626]: CTRL: Got a SET LINK INFO packet with standard ACCMs Dec 11 21:07:00 <HOSTNAME> pppd[22627]: LCP: timeout sending Config-Requests Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Connection terminated. Dec 11 21:07:00 <HOSTNAME> avahi-daemon[1042]: Withdrawing workstation service for ppp0. Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Modem hangup Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Exit. Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: GRE: read(fd=6,buffer=6075a0,len=8196) from PTY failed: status = -1 error = Input/output error, usually caused by unexpected termination of pppd, check option syntax and pppd logs Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: PTY read or GRE write failed (pty,gre)=(6,7) Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Reaping child PPP[22627] Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Client 82.132.248.216 control connection finished Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Exiting now Dec 11 21:07:00 <HOSTNAME> pptpd[5803]: MGR: Reaped child 22626 As far as Cisco are concerned, all I need is ip nat source static tcp <SERVER LAN IP> 1723 interface FastEthernet4 1723 but of course this doesn't seem to the be helping the GRE traffic through as it should. Trying the connection to the LAN IP of the server from the same LAN as the server (behind the router), the PPTP connection works fine, so I'm confident that the server's config is ok. Furthermore, all I needed on my WAG320N was to open 1723 in the firewall. Here's my current router config: ! ! Last configuration change at 20:20:15 UTC Tue Dec 11 2012 by xxx version 15.2 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname xxx ! boot-start-marker boot-end-marker ! ! enable secret 4 xxxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 xxx quit ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! ip domain list dmz.xxx.local ip domain list xxx.local ip domain name dmz.xxx.local ip name-server 192.168.1.x ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn xxx ! ! username admin privilege 15 secret 4 xxx username joe secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.x 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.x 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ! ! ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ! ! access-list 1 permit 192.168.0.0 0.0.0.255 access-list 2 permit 192.168.1.0 0.0.0.255 ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 exec-timeout 15 0 login authentication local_auth line aux 0 exec-timeout 15 0 login authentication local_auth line vty 0 4 access-class 2 in login authentication local_auth length 0 transport input all ! ! end UPDATE 16/12/2012: The only progress that I have been able to make on this issue is that I'm confident that the issue is caused by the GRE tunnels (which are required for the PPTP connection to complete) are being blocked. When attempting a connection, I can see in show ip nat nvi translations that both a TCP translation on 1723 is setup and also a GRE translation is setup also. I appear to be able to see GRE related packets on the LAN that the server is on, so I am lead to believe that the server is sending(?) GRE packets, however running Wireshark on a client PC when attempting a connection shows absolutely no GRE packets. Whilst there are no configuration directives in my config posted above (that I can pin point) which would specifically block them, it would appear that the GRE packets are not being allowed in/out of the router's firewall, even though a NAT translation entry is setup to the server's LAN address. Would anyone be able to provide me with some help to ensure that GRE packets are not blocked by the router's firewall, so that this can be ruled out as a possible issue please?

    Read the article

  • Configuring https access on HP A5120 Switch

    - by GerryEgan
    I am trying to configure HTTPS management on a HP a5120 switch running Version 5.20.99, Release 2215 and not having much luck. I have followed the manual by creating an SSL policy first and then enabling the HTTPS server with the SSL policy: ssl server-policy sslpol ip https ssl-server-policy sslpol ip https enable When I try and log onto the switch with Google Chrome I get the following error: Error 107 (net::ERR_SSL_PROTOCOL_ERROR): SSL protocol error. When I look this up I have found references to errors due to TLS being used in SSL. I can find no way to specify the SSL version in the server policy. The manual has a configuration example that uses MSCEP to retrieve a certificate but in Windows 2008 R2 that feature is only available in Enterprise and Datacentre editions which I don't have. I have SSH configured and it is using a locally generated certificate so I'm not sure if I can use that but I'd like to if possible. Has anybody been able to setup HTTPS management on HP A series switches without MSCEP? Any and all help appreciated! here is a copy of my config with the interfaces removed: version 5.20.99, Release 2215 # sysname MYSYSNAME # irf domain 10 irf mac-address persistent timer irf auto-update enable undo irf link-delay # domain default enable system # telnet server enable # vlan 1 # vlan 100 description Management # radius scheme system primary authentication 127.0.0.1 1645 primary accounting 127.0.0.1 1646 user-name-format without-domain # domain system access-limit disable state active idle-cut disable self-service-url disable # user-group system group-attribute allow-guest # local-user admin password cipher authorization-attribute level 3 service-type ssh telnet terminal service-type web # stp enable # ssl server-policy sslpol pki-domain MYDOMAIN # interface NULL0 # interface Vlan-interface199 ip address 192.168.199.140 255.255.255.0 # interface GigabitEthernet1/0/1 poe enable stp edged-port enable # interface Ten-GigabitEthernet2/1/2 # dhcp-snooping # ntp-service unicast-server 192.168.1.71 # ssh server enable # ip https ssl-server-policy sslpol ip https enable # load xml-configuration # user-interface aux 0 1 user-interface vty 0 15 authentication-mode scheme

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var john = new Person("John Galt", 50); console.log(john.toString()); var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • Static IPv6 address in Windows unused for outgoing connections

    - by Luc
    I'm running a Windows server and trying to get it to use a static IPv6 address for outgoing connections to other IPv6 hosts (such as Gmail). I need this because Gmail requires a ptr record, and I can't set one for random addresses. The static address is configured on the host, but it also has a temporary privacy address as well as a random address from the router it seems. By default Windows uses the privacy address; it seems this is the expected behavior (and it makes perfect sense for people/users that did not set a static address, but I did!). I've tried disabling the privacy address with: netsh int ipv6 set privacy disabled This indeed gets rid of the privacy address, but I still have the random address that the router assigned. To disable this, it was said I needed to disable "router discovery" using this command: net interface ipv6 set interface 14 routerdiscovery=disabled Upon doing this, all IPv6 connectivity is lost. If I do this while pinging Gmail, it will report "Destination host unreachable" as soon as I enter the command. In the static IPv6 configuration, I did configure the default gateway and prefix length, so I don't see why it's unable to connect. Probably has something to do with the lack of ARP in IPv6 and somehow being unable to resolve the router's MAC, but I wouldn't know how to fix this. Finally I've tried disabling the DHCPv6 lease with these commands: netsh interface ipv6 set interface "IDMZ Team" managedaddress=disabled netsh interface ipv6 set interface "IDMZ Team" otherstateful=disabled Which was to no avail; the host continues to obtain and use the router-assigned IPv6 address. The router is a FritzBox 7340, which shows me all the IPv4 and IPv6 addresses that the host (identified by MAC) utilizes, but I'm unable to change the assigned address. Maybe this could be done over the telnet interface of the router somehow, but again, I wouldn't know how to do this even if it's the way to go. In short, any of the following would probably solve my problem: Change Windows' source address selection behavior. Have Windows not get an address from the router and not generate a privacy address; Have the router hand out a static address and make Windows use that as source address. Recover connectivity after disabling router discovery on Windows. Alternatively I might use some (batch, perl, ...) script to throw away all IPv6 addresses except the desired one, but this feels rather hacky. If it's the only way (or less hacky than another hacky solution), it might be an option though. Thanks!

    Read the article

  • Class hierarchy problem (with generic's variance!)

    - by devoured elysium
    The problem: class StatesChain : IState, IHasStateList { private TasksChain tasks = new TasksChain(); ... public IList<IState> States { get { return _taskChain.Tasks; } } IList<ITask> IHasTasksCollection.Tasks { get { return _taskChain.Tasks; } <-- ERROR! You can't do this in C#! I want to return an IList<ITask> from an IList<IStates>. } } Assuming the IList returned will be read-only, I know that what I'm trying to achieve is safe (or is it not?). Is there any way I can accomplish what I'm trying? I wouldn't want to try to implement myself the TasksChain algorithm (again!), as it would be error prone and would lead to code duplication. Maybe I could just define an abstract Chain and then implement both TasksChain and StatesChain from there? Or maybe implementing a Chain<T> class? How would you approach this situation? The Details: I have defined an ITask interface: public interface ITask { bool Run(); ITask FailureTask { get; } } and a IState interface that inherits from ITask: public interface IState : ITask { IState FailureState { get; } } I have also defined an IHasTasksList interface: interface IHasTasksList { List<Tasks> Tasks { get; } } and an IHasStatesList: interface IHasTasksList { List<Tasks> States { get; } } Now, I have defined a TasksChain, that is a class that has some code logic that will manipulate a chain of tasks (beware that TasksChain is itself a kind of ITask!): class TasksChain : ITask, IHasTasksList { IList<ITask> tasks = new List<ITask>(); ... public List<ITask> Tasks { get { return _tasks; } } ... } I am implementing a State the following way: public class State : IState { private readonly TaskChain _taskChain = new TaskChain(); public State(Precondition precondition, Execution execution) { _taskChain.Tasks.Add(precondition); _taskChain.Tasks.Add(execution); } public bool Run() { return _taskChain.Run(); } public IState FailureState { get { return (IState)_taskChain.Tasks[0].FailureTask; } } ITask ITask.FailureTask { get { return FailureState; } } } which, as you can see, makes use of explicit interface implementations to "hide" FailureTask and instead show FailureState property. The problem comes from the fact that I also want to define a StatesChain, that inherits both from IState and IHasStateList (and that also imples ITask and IHasTaskList, implemented as explicit interfaces) and I want it to also hide IHasTaskList's Tasks and only show IHasStateList's States. (What is contained in "The problem" section should really be after this, but I thought puting it first would be way more reader friendly). (pff..long text) Thanks!

    Read the article

  • LACP : Cisco ASA 5515 & Switch ProCurve 2920

    - by user979276
    I've two ASAs 5515 connected in failover Active/Stand by (on Gi0/5) My two ASAs are connected to two Switch ProCurve 2920 to have HA if something happens. So I plug something like that (don't pay attention to the arrows) : So one the ASA, I created a Port-Channel like that : interface GigabitEthernet0/0 nameif outside security-level 0 ip address 192.168.1.3 255.255.255.0 standby 192.168.1.4 ! interface GigabitEthernet0/1 speed 1000 duplex full channel-group 1 mode passive no nameif no security-level no ip address ! interface GigabitEthernet0/2 speed 1000 duplex full channel-group 1 mode passive no nameif no security-level no ip address ! interface Port-channel1.1 vlan 1 nameif inside security-level 100 ip address 192.168.8.1 255.255.255.0 standby 192.168.8.2 ! interface Port-channel1.10 vlan 10 nameif guest security-level 50 ip address 172.16.100.2 255.255.255.224 standby 172.16.100.3 ! interface Port-channel1.16 vlan 16 nameif dmz security-level 50 ip address 192.168.16.1 255.255.255.0 standby 192.168.16.2 On the switch, I created a trunk LACP capable with the port 1 and 2 on each switch, force the speed to 1000 and put the port un full duplex mode. BUT this is not working... I tried many things and I can't make it work. In this configuration, I can't ping anything between my ASA and my Switch (or any object connected). Here what I get on my ASA : Channel group 1 LACP port Admin Oper Port Port Port Flags State Priority Key Key Number State ----------------------------------------------------------------------------- Gi0/2 SP not-bndl 32768 0x1 0x1 0x3 0xc Gi0/1 FP not-bndl 32768 0x1 0x1 0x2 0x6 And on the Switchs : PORT LACP TRUNK PORT LACP LACP NUMB ENABLED GROUP STATUS PARTNER STATUS ----- ------- ----- ------ ------- ------ 1 Active trk1 Broken Yes Failure 2 Active trk1 Broken Yes Failure If I change the Cisco interface to LACP mode On, I can ping the switch from the ASA but nothing other objects conneted on the switch. If I look at the statut of LACP on the switch I see this : PORT LACP TRUNK PORT LACP LACP NUMB ENABLED GROUP STATUS PARTNER STATUS ----- ------- ----- ------ ------- ------ 1 Active trk1 Up No Success 2 Active trk1 Up No Success I don't have any clue on what's going on so If someone have any idea and help me on this, it would be great ! Feel free to ask me anything if you need any more information ! Thanks a lot !

    Read the article

  • Anyone have experience calling Rake from MSBuild for code gen and other benefits? How did it go? Wha

    - by Charlie Flowers
    While programming in C# using Visual Studio 2008, I often wish for "automatic" code generation. If possible, I'd like to achieve it by making my MSBuild solution file call out to Rake, which would call Ruby code for the code generation, having the resulting generated files automatically appear in my solution. Here's one business example (of many possible examples I could name) where this kind of automatic code generation would be helpful. In a recent project I had an interface with some properties that contained dollar amounts. I wanted a second interface and a third interface that had the same properties as the first interface, except they were "qualified" with a business unit name. Something like this: public interface IQuarterlyResults { double TotalRevenue { get; set; } double NetProfit { get; set; } } public interface IConsumerQuarterlyResults { double ConsumerTotalRevenue { get; set; } double ConsumerNetProfit { get; set; } } public interface ICorporateQuarterResults { double CorporateTotalRevenue { get; set; } double CorporateNetProfit { get; set; } } In this example, there is a "Consumer Business Unit" and a "Corporate Business Unit". Every property on IQuarterlyResults becomes a property called "Corporate" + [property name] on ICorporateQuarterlyResults, and likewise for IConsumerQuarterlyResults. Why make interfaces for these, rather than merely having an instance of IQuarterlyResults for Consumer and another instance for Corporate? Because, when working with the calculator object I was building, the user had to deal with 100's of properties, and it is much less confusing if he can deal with "fully qualified" property names such as "ConsumerNetProfit". But let's not get bogged down in this example. It is only an example and not the main question. The main question is this: I love using Ruby and ERB for code generation, and I love using Rake to manage dependencies between tasks. To solve the problem above, what I'd like to do is have MSBuild call out to Rake, and have Rake / Ruby read the list of properties on the "core" interface and then generate the code to make all the dependent interfaces and their properties. This would get triggered every time I do a build, because I'd put it into the MSBuild file for the VS.NET solution. Has anyone tried anything like this? How did it work out for you? What insights can you share about pros, cons, tips for success, etc.? Thanks!

    Read the article

  • How can I compose a WCF contract out of multiple interfaces?

    - by mafutrct
    I've got multiple interfaces. All of them should be inherited and exposed by a single contract interface. interface A { void X(); } interface B { void Y(); } interface C: A, B {} // this is the public contract How is this possible? I can't add ServiceContract to A and B because that would lead to multiple endpoints. And I don't want to new-override every method in C.

    Read the article

  • tc rules block traffic from some hosts at network

    - by user139430
    I have a problem I can not solve. The script, which sets the rules for traffic shaping is blocking the traffic from some hosts.If I remove all the rules, then it works. I can not understand why? Here is my script... #!/bin/sh cmdTC=/sbin/tc rateLANDl="60mbit" ceilLANDl="60mbit" rateLANUl="40mbit" ceilLANUl="40mbit" quantLAN="1514" # Nowaday bandwidth limit set to 100mbit. # We devide it with 60mbit download and 40mbit upload bandthes. rateHiDl="30mbit" ceilHiDl="60mbit" rateHiUl="20mbit" ceilHiUl="40mbit" quantHi="1514" rateLoDl="30mbit" ceilLoDl="60mbit" rateLoUl="20mbit" ceilLoUl="40mbit" quantLo="1514" devNIF=eth0 devFIF=ifb0 modprobe ifb ip link set $devFIF up 2>/dev/null #exit 0 ################################################################################################ # Remove discuiplines from network and fake interfaces ################################################################################################ $cmdTC qdisc del dev $devNIF root 2>/dev/null $cmdTC qdisc del dev $devFIF root 2>/dev/null $cmdTC qdisc del dev $devNIF ingress 2>/dev/null if [ "$1" = "down" ]; then exit 0 fi ################################################################################################ # Create discuiplines for network interface ################################################################################################ $cmdTC qdisc add dev $devNIF root handle 1:0 htb default 12 # Create classes for network interface $cmdTC class add dev $devNIF parent 1:0 classid 1:1 htb rate ${rateLANDl} ceil ${ceilLANDl} quantum ${quantLAN} $cmdTC class add dev $devNIF parent 1:1 classid 1:11 htb rate ${rateHiDl} ceil ${ceilHiDl} quantum ${quantHi} $cmdTC class add dev $devNIF parent 1:1 classid 1:12 htb rate ${rateLoDl} ceil ${ceilLoDl} quantum ${quantLo} $cmdTC qdisc add dev $devNIF parent 1:11 handle 111: sfq perturb 10 $cmdTC qdisc add dev $devNIF parent 1:12 handle 112: sfq perturb 10 # Create filters for network interface $cmdTC filter add dev $devNIF protocol all parent 1:0 u32 match ip dst 10.252.2.0/24 flowid 1:11 $cmdTC filter add dev $devNIF protocol all parent 111: handle 111 flow hash keys dst divisor 1024 baseclass 1:11 $cmdTC filter add dev $devNIF protocol all parent 112: handle 112 flow hash keys dst divisor 1024 baseclass 1:12 ################################################################################################ # Create discuiplines for fake interface ################################################################################################ $cmdTC qdisc add dev $devFIF root handle 1:0 htb default 12 # Create classes for network interface $cmdTC class add dev $devFIF parent 1:0 classid 1:1 htb rate ${rateLANUl} ceil ${ceilLANUl} quantum ${quantLAN} $cmdTC class add dev $devFIF parent 1:1 classid 1:11 htb rate ${rateHiUl} ceil ${ceilHiUl} quantum ${quantHi} $cmdTC class add dev $devFIF parent 1:1 classid 1:12 htb rate ${rateLoUl} ceil ${ceilLoUl} quantum ${quantLo} $cmdTC qdisc add dev $devFIF parent 1:11 handle 111: sfq perturb 10 $cmdTC qdisc add dev $devFIF parent 1:12 handle 112: sfq perturb 10 # Create filters for network interface $cmdTC filter add dev $devFIF protocol all parent 1:0 u32 match ip src 10.252.2.0/24 flowid 1:11 $cmdTC filter add dev $devFIF protocol all parent 111: handle 111 flow hash keys src divisor 1024 baseclass 1:11 $cmdTC filter add dev $devFIF protocol all parent 112: handle 112 flow hash keys src divisor 1024 baseclass 1:12 ################################################################################################ # Create redirect discuiplines from network to fake interface ################################################################################################ $cmdTC qdisc add dev $devNIF handle ffff:0 ingress $cmdTC filter add dev $devNIF parent ffff:0 protocol all u32 match u32 0 0 action mirred egress redirect dev $devFIF Here is my /etc/modules: loop ifb ppp_mppe nf_conntrack_pptp nt_conntrack_proto_gre nf_nat_pptp nf_nat_proto_gre The system is Linux wall 2.6.32-5-amd64 #1 SMP Sun Sep 23 10:07:46 UTC 2012 x86_64 GNU/Linux

    Read the article

  • explain interfaces in C#

    - by Ashish
    //inteface i11 public interface i11 { void m11(); } //interface i22 public interface i22 { void m11(); } //class ab implements interfaces i11 and i22 public class ab : i11, i22 { public void m11() { Console.WriteLine("class"); } } now when in Main() method we create an object of class ab which interface method will get called please explain all.

    Read the article

  • Understanding Covariant and Contravariant interfaces in C#

    - by SLC
    I've come across these in a textbook I am reading on C#, but I am having difficulty understanding them, probably due to lack of context. Is there a good concise explanation of what they are and what they are useful for out there? Edit for clarification: Covariant interface: interface IBibble<out T> . . Contravariant interface: interface IBibble<in T> . .

    Read the article

  • How to remove unwanted charecters using split in tcl

    - by Mallikarjunarao
    Here is an example Interface {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} IP-Address {} {} {} {} {} OK? Method Status {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {Protocol FastEthernet0/0} {} {} {} {} {} {} {} {} {} {} {} unassigned {} {} {} {} {} YES unset {} administratively down down {} {} {} { FastEthernet0/1} {} {} {} {} {} {} {} {} {} {} {} unassigned {} {} {} {} {} YES unset {} administratively down down I want remove {} in this. I assumed all the above string interface variable set interface [string trimright [string trimleft $interface "{}"] "{}"] but it doesn't work. How to remove the {} in my example?

    Read the article

  • Why are interfaces unusable in PHP?

    - by streetparade
    I mean an interface definition without defining the return type makes it unusable? This makes more Clear Interface run { public function getInteger(); } class MyString implements run { public function myNumber() { } public function getInteger() { return "Not a number"; } } In Java every Interface has a return type like Integer,String,Void I know that PHP is unfortunately a loosly typed Language but isnt there a Solution for that Problem? Is it Possible to defining a Interface with a Return type like Integer?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Static route works on one computer, not the other

    - by Dan
    I have been struggling with this for a couple days now, maybe I just need some people with a fresh perspective to figure out what the issue is. Basically I have a bunch of computers that are being routed through a specific gateway in order to access a web page that is hosted internally on a separate subnet. I set up static routes on all of the computers, and they all work... except one. Here's what a route print -4 looks like for a working computer (Windows 7): =========================================================================== Interface List 14...xx xx xx xx xx xx ......Broadcom 802.11n Network Adapter 11...xx xx xx xx xx xx ......Realtek PCIe GBE Family Controller 1...........................Software Loopback Interface 1 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 13...00 00 00 00 00 00 00 e0 Microsoft 6to4 Adapter 17...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.xxx.xxx.230 10.xxx.xxx.94 20 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 10.xxx.xxx.94 21 10.xxx.xxx.0 255.255.255.0 On-link 10.xxx.xxx.94 276 10.xxx.xxx.94 255.255.255.255 On-link 10.xxx.xxx.94 276 10.xxx.xxx.255 255.255.255.255 On-link 10.xxx.xxx.94 276 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.xxx.xxx.94 276 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.xxx.xxx.94 276 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 1 =========================================================================== And here's a route print -4 from the station that doesn't work (also Windows 7): =========================================================================== Interface List 10...xx xx xx xx xx xx ......Realtek PCIe GBE Family Controller 1...........................Software Loopback Interface 1 12...00 00 00 00 00 00 00 e0 Microsoft 6to4 Adapter 14...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2 16...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 10.xxx.xxx.230 10.xxx.xxx.132 276 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 10.xxx.xxx.132 21 10.xxx.xxx.0 255.255.255.0 On-link 10.xxx.xxx.132 276 10.xxx.xxx.132 255.255.255.255 On-link 10.xxx.xxx.132 276 10.xxx.xxx.255 255.255.255.255 On-link 10.xxx.xxx.132 276 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 10.xxx.xxx.132 276 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 10.xxx.xxx.132 276 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 10.zzz.zzz.0 255.255.255.0 10.xxx.xxx.147 1 =========================================================================== Both of these stations are running Windows 7. So essentially what I am trying to do here is route all traffic to the 10.zzz.zzz.0 subnet through the 10.xxx.xxx.147 gateway. Everything else should go through the 10.xxx.xxx.230 gateway. This is the intended behavior, and again it is working everywhere but that one station. I noticed that the Active Route metric costs differ between the two stations, but I am new to the routing table and I am not sure how that is impacting the behavior. I hope I have been able to explain the situation clearly. Any help would be much appreciated. I can provide any additional information if needed!

    Read the article

< Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >