Search Results

Search found 19628 results on 786 pages for 'late static binding'.

Page 127/786 | < Previous Page | 123 124 125 126 127 128 129 130 131 132 133 134  | Next Page >

  • Why attached property Set and Get static methods are not called in XAML?

    - by JD
    Hi, I have set break points on my attached properties SetXXX and GetXXX static methods. In Xaml, I have assigned values to the attached property. However, I was expecting the Set or Get static methods to be called but they are not. The attached property works as expected and if I call SetXXX and GetXXX methods in code, then it works are expected. Why are the methods not called when set from Xaml? JD.

    Read the article

  • What does a static modifier on a constructor means?

    - by the_drow
    I saw this kind of code at work: class FooPlugin : IPlugin // IPlugin is a Microsoft CRM component, it has something special about it's execution { static FooPlugin() { SomeObject.StaticFunction(); // The guy who wrote it said it's meaningful to this question but he can't remember why. } } Any idea what does a static modifier on a constructor mean and why in this case it is required?

    Read the article

  • Is there any way static block is executed more than once? if so then how?

    - by learner
    My Understanding Static block is executed during class loading, If a class is already loaded then there is no way to load the class other than class reloading Doubt/Question 1) Is there any time JVM reloads the class? My Understanding In Class Loading JVM loads source of the Java file, so it can not keep all thousands files source is a memory, it should discard the rarely used code and reload again when it is necessary and during reload JVM is not initializing static variables and locks again(may be using some tracking mechanism) Doubt/Question 2) If my above understanding is incorrect then please correct me

    Read the article

  • Is there any way I can add alternative key binding to a feature in compiz?

    - by vava
    I was wondering is there any way to add additional, alternative key binding to a particular feature in compiz? I am using Wall plugin and on my ThinkPad it is convenient to switch between horizontal workspaces with media buttons for browser navigation. But there just two of them, so I have to use completely different combinations to switch between workspaces vertically and that would very helpful if I can also use similar kind of combination to switch horizontally as well in addition to those media buttons. Is there a way maybe to send a message to the compiz to execute particular command? That would solve the issue.

    Read the article

  • After binding Mac to AD, first login successfully creates mobile account and logs in, after that next login locks AD account

    - by user132844
    Mac os x 10.7 and 10.8 AD Server 2008 R2 Binding using AD Plugin or dsconfigad -add mydomain -username myuser -ou "OU=Computers,OU=Sites,OU=Mysite,DC=mycompany,DC=com" Works fine. First login happens fine. Creates mobile account, no issues noticed. After I logout, the next login attempt fails, and after only shaking one time, their AD account is locked out. opendirectory.log makes a vague mention of account being expired but honestly I don't see much in the logs that pops out as useful. Any help?

    Read the article

  • WPF DataGrid: Make cells readonly

    - by crauscher
    I use the following DataGrid <DataGrid Grid.Row="1" Grid.Column="1" Name="Grid" ItemsSource="{Binding}" AutoGenerateColumns="False" > <DataGrid.Columns> <DataGridTextColumn Header="Name" Width="100" Binding="{Binding Path=Name}"></DataGridTextColumn> <DataGridTextColumn Header="OldValue" Width="100" Binding="{Binding Path=OldValue}"></DataGridTextColumn> <DataGridTextColumn Header="NewValue" Width="100*" Binding="{Binding Path=NewValue}"></DataGridTextColumn> </DataGrid.Columns> </DataGrid> How can I make the cells readonly?

    Read the article

  • XAML Parsing Exception

    - by e28Makaveli
    I have a simple XAML page that load fine when it is loaded as part of any application within Visual Studio. However, when I deploy this application using ClickOnce, I get the following exception: Type : System.Windows.Markup.XamlParseException, PresentationFramework, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 Message : Unable to cast object of type 'System.Windows.Controls.Grid' to type 'EMS.Controls.Dictionary.StatusBarControl'. Error at object 'System.Windows.Controls.Grid' in markup file 'EMS.Controls.Dictionary;component/views/statusbarcontrol.xaml'. Source : PresentationFramework Help link : LineNumber : 0 LinePosition : 0 KeyContext : UidContext : NameContext : BaseUri : pack://application:,,,/EMS.Controls.Dictionary;component/views/statusbarcontrol.xaml Data : System.Collections.ListDictionaryInternal TargetSite : Void ThrowException(System.String, System.Exception, Int32, Int32, System.Uri, System.Windows.Markup.XamlObjectIds, System.Windows.Markup.XamlObjectIds, System.Type) Stack Trace : at System.Windows.Markup.XamlParseException.ThrowException(String message, Exception innerException, Int32 lineNumber, Int32 linePosition, Uri baseUri, XamlObjectIds currentXamlObjectIds, XamlObjectIds contextXamlObjectIds, Type objectType) at System.Windows.Markup.XamlParseException.ThrowException(ParserContext parserContext, Int32 lineNumber, Int32 linePosition, String message, Exception innerException) at System.Windows.Markup.BamlRecordReader.ReadRecord(BamlRecord bamlRecord) at System.Windows.Markup.BamlRecordReader.Read(Boolean singleRecord) at System.Windows.Markup.TreeBuilderBamlTranslator.ParseFragment() at System.Windows.Markup.TreeBuilder.Parse() at System.Windows.Markup.XamlReader.LoadBaml(Stream stream, ParserContext parserContext, Object parent, Boolean closeStream) at System.Windows.Application.LoadComponent(Object component, Uri resourceLocator) at EMS.Controls.Dictionary.StatusBarControl.InitializeComponent() at EMS.Controls.Dictionary.StatusBarControl..ctor(IDataView content) at OCC600.ReportManager.ReportPresenter.ShowQueryView(Object arg, Boolean bringForward, Type selectedDataType) at OCC600.ReportManager.ReportPresenter..ctor(IUnityContainer container) at OCC600.ReportManager.Module.Initialize() at Microsoft.Practices.Composite.Modularity.ModuleLoader.Initialize(ModuleInfo[] moduleInfos) Inner Exception --------------- Type : System.InvalidCastException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Message : Unable to cast object of type 'System.Windows.Controls.Grid' to type 'EMS.Controls.Dictionary.StatusBarControl'. Source : EMS.Controls.Dictionary Help link : Data : System.Collections.ListDictionaryInternal TargetSite : Void System.Windows.Markup.IComponentConnector.Connect(Int32, System.Object) Stack Trace : at EMS.Controls.Dictionary.StatusBarControl.System.Windows.Markup.IComponentConnector.Connect(Int32 connectionId, Object target) at System.Windows.Markup.BamlRecordReader.ReadConnectionId(BamlConnectionIdRecord bamlConnectionIdRecord) at System.Windows.Markup.BamlRecordReader.ReadRecord(BamlRecord bamlRecord) The XAML page is given below: xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:cdic="clr-namespace:EMS.Controls.Dictionary.Primitives" xmlns:dicutil="clr-namespace:OCC600.Infrastructure.Dictionary.Utility;assembly=EMS.Infrastructure.Dictionary" Loaded="ResultSetControl_Loaded" <StatusBarItem Margin="10,0, 10, 0"> <TextBlock Text="{Binding CountText}" Padding="5,0"/> </StatusBarItem> <StatusBarItem Margin="10,0"> <TextBlock Text="{Binding MemoryUsageText}" Padding="5,0"/> </StatusBarItem> <StatusBarItem Margin="10,0" MaxWidth="400"> <TextBlock Text="{Binding StatusReport.Summary}" Padding="5,0" /> </StatusBarItem> <ProgressBar Margin="20,0" Name="progBar" Width="150" Height="13" Visibility="Collapsed" > <ProgressBar.ContextMenu> <ContextMenu Name="ctxMenu" ItemsSource="{Binding ActiveWorkItems}" Visibility="{Binding Path=ActiveWorkItems.HasItems, Converter={StaticResource BooToVisConv}}"> <ContextMenu.ItemContainerStyle> <Style TargetType="{x:Type MenuItem}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type MenuItem}"> <StackPanel Height="20" Margin="10,0" Orientation="Horizontal" HorizontalAlignment="Left"> <TextBlock Text="{Binding Path=Name, Mode=OneTime}" Foreground="Black" VerticalAlignment="Center" HorizontalAlignment="Left" /> <ToggleButton Style="{StaticResource vistaGoldenToggleButtonStyle}" Padding="5,0" Content="Cancel" IsChecked="{Binding Cancel}" Margin="10,0,0,0" > </ToggleButton> </StackPanel> </ControlTemplate> </Setter.Value> </Setter> </Style> </ContextMenu.ItemContainerStyle> </ContextMenu> </ProgressBar.ContextMenu> </ProgressBar> <StatusBarItem Margin="10,0" MaxWidth="400" HorizontalAlignment="Right"> <StackPanel Orientation="Horizontal"> <TextBlock Text="Last Update:" Padding="5,0" /> <TextBlock Text="{Binding TimeStamp}" Padding="5,0" /> </StackPanel> </StatusBarItem> <!-- TODO: Put checkmark if all is well, or error if connection failed--> <StatusBarItem Style="{DynamicResource {ComponentResourceKey TypeInTargetAssembly=dc:Ribbon, ResourceId=StatusBarItemAlt}}" DockPanel.Dock="Right" Padding="6,0,32,0" > <cdic:SplitButton Margin="5,0" Padding="5,2" Style="{DynamicResource {ComponentResourceKey TypeInTargetAssembly={x:Type cdic:SplitButtonResources}, ResourceId=vistaSplitButtonStyle}}" Mode="Split"> <cdic:SplitButton.ContextMenu> <ContextMenu > <MenuItem Header="Refresh Now" Command="{Binding ToggleConnectivityCmd}" CommandParameter="false"/> <MenuItem IsCheckable="True" IsChecked="{Binding ConnectState, Converter={StaticResource isFailedConverter}}" CommandParameter="{Binding RelativeSource={x:Static RelativeSource.Self}, Path=IsChecked}" Header="Work Offline" Command="{Binding ToggleConnectivityCmd}"/> </ContextMenu> </cdic:SplitButton.ContextMenu> <cdic:SplitButton.Content> <StackPanel Orientation="Horizontal"> <Image x:Name="img" Source="{Binding ConnectState, Converter={StaticResource imageConverter}}" Width="16" Height="16" HorizontalAlignment="Center" VerticalAlignment="Center"/> <TextBlock Text="{Binding ConnectState}" Padding="3,0,0,0"/> </StackPanel> </cdic:SplitButton.Content> </cdic:SplitButton> </StatusBarItem> </StatusBar> </Grid> The error just seems to have come out of no where. Any ideas? TIA.

    Read the article

  • Windows store apps: ScrollViewer with dinamic content

    - by Alexandru Circus
    I have a scrollViewer with an ItemsControl (which holds rows with data) as content. The data from these rows is grabbed from the server so I want to display a ProgressRing with a text until the data arrives. Basically I want the content of the ScrollViewer to be a grid with progress ring and a text and after the data arrives the content to be changed with my ItemsControl. The problem is that the ScrollViewer does not accept more than 1 element as content. Please tell me how can I solve this problem. (I'm a C# beginner) <FlipView x:Name="OptionPagesFlipView" Grid.Row="1" TabNavigation="Cycle" SelectionChanged="OptionPagesFlipView_SelectionChanged" ItemsSource="{Binding OptionsPageItems}"> <FlipView.ItemTemplate> <DataTemplate x:Name="OptionMonthPageTemplate"> <ScrollViewer x:Name="OptionsScrollViewer" HorizontalScrollMode="Disabled" HorizontalAlignment="Stretch" VerticalScrollBarVisibility="Auto"> <ItemsControl x:Name="OptionItemsControl" ItemsSource="{Binding OptionItems, Mode=OneWay}" Visibility="Collapsed"> <ItemsControl.ItemTemplate> <DataTemplate x:Name="OptionsChainItemTemplate"> <Grid x:Name="OptionItemGrid" Background="#FF9DBDF7" HorizontalAlignment="Stretch"> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="*" /> <ColumnDefinition Width="*" /> <ColumnDefinition Width="*" /> <ColumnDefinition Width="*" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <!-- CALL BID --> <TextBlock Text="Bid" Foreground="Gray" HorizontalAlignment="Left" Grid.Row="0" Grid.Column="0" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="CallBidTextBlock" Text="{Binding CallBid}" Foreground="Blue" HorizontalAlignment="Left" Grid.Row="1" Grid.Column="0" Margin="5,0,5,5" FontSize="18"/> <!-- CALL ASK --> <TextBlock Text="Ask" Foreground="Gray" HorizontalAlignment="Left" Grid.Row="2" Grid.Column="0" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="CallAskTextBlock" Text="{Binding CallAsk}" Foreground="Blue" HorizontalAlignment="Left" Grid.Row="3" Grid.Column="0" Margin="5,0,5,0" FontSize="18"/> <!-- CALL LAST --> <TextBlock Text="Last" Foreground="Gray" HorizontalAlignment="Left" Grid.Row="0" Grid.Column="1" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="CallLastTextBlock" Text="{Binding CallLast}" Foreground="Blue" HorizontalAlignment="Left" Grid.Row="1" Grid.Column="1" Margin="5,0,5,5" FontSize="18"/> <!-- CALL NET CHANGE --> <TextBlock Text="Net Ch" Foreground="Gray" HorizontalAlignment="Left" Grid.Row="2" Grid.Column="1" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="CallNetChTextBlock" Text="{Binding CallNetChange}" Foreground="{Binding CallNetChangeForeground}" HorizontalAlignment="Left" Grid.Row="3" Grid.Column="1" Margin="5,0,5,5" FontSize="18"/> <!-- STRIKE --> <TextBlock Text="Strike" Foreground="Gray" HorizontalAlignment="Center" Grid.Row="1" Grid.Column="2" FontSize="18" Margin="5,0,5,0"/> <Border Background="{Binding StrikeBackground}" HorizontalAlignment="Center" Grid.Row="2" Grid.Column="2" Margin="5,0,5,5"> <TextBlock x:Name="StrikeTextBlock" Text="{Binding Strike}" Foreground="Blue" FontSize="18"/> </Border> <!-- PUT LAST --> <TextBlock Text="Last" Foreground="Gray" HorizontalAlignment="Right" Grid.Row="0" Grid.Column="3" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="PutLastTextBlock" Text="{Binding PutLast}" Foreground="Blue" HorizontalAlignment="Right" Grid.Row="1" Grid.Column="3" Margin="5,0,5,5" FontSize="18"/> <!-- PUT NET CHANGE --> <TextBlock Text="Net Ch" Foreground="Gray" HorizontalAlignment="Right" Grid.Row="2" Grid.Column="3" FontSize="18" Margin="5,0,5,0"/> <TextBlock x:Name="PutNetChangeTextBlock" Text="{Binding PutNetChange}" Foreground="{Binding PutNetChangeForeground}" HorizontalAlignment="Right" Grid.Row="3" Grid.Column="3" Margin="5,0,5,5" FontSize="18"/> <!-- PUT BID --> <TextBlock Text="Bid" Foreground="Gray" HorizontalAlignment="Right" Grid.Row="0" Grid.Column="4" FontSize="18" Margin="5,0,15,0"/> <TextBlock x:Name="PutBidTextBlock" Text="{Binding PutBid}" Foreground="Blue" HorizontalAlignment="Right" Grid.Row="1" Grid.Column="4" Margin="5,0,15,5" FontSize="18"/> <!-- PUT ASK --> <TextBlock Text="Ask" Foreground="Gray" HorizontalAlignment="Right" Grid.Row="2" Grid.Column="4" FontSize="18" Margin="5,0,15,0"/> <TextBlock x:Name="PutAskTextBlock" Text="{Binding PutAsk}" Foreground="Blue" HorizontalAlignment="Right" Grid.Row="3" Grid.Column="4" Margin="5,0,15,5" FontSize="18"/> <!-- BOTTOM LINE SEPARATOR--> <Rectangle Fill="Black" Height="1" Grid.ColumnSpan="5" VerticalAlignment="Bottom" Grid.Row="3"/> </Grid> </DataTemplate> </ItemsControl.ItemTemplate> </ItemsControl> <!--<Grid> <Grid.RowDefinitions> <RowDefinition/> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition/> <ColumnDefinition/> </Grid.ColumnDefinitions> <ProgressRing x:Name="CustomProgressRing" Height="40" Width="40" IsActive="true" Grid.Column="0" Margin="20" Foreground="White"/> <TextBlock x:Name="CustomTextBlock" Height="auto" Width="auto" FontSize="25" Grid.Column="1" Margin="20"/> <Border BorderBrush="#FFFFFF" BorderThickness="1" Grid.ColumnSpan="2"/> </Grid>--> </ScrollViewer> </DataTemplate> </FlipView.ItemTemplate>

    Read the article

  • WCF: what timeout property to use?

    - by Tom234
    I have a piece of code like so NetTcpBinding binding = new NetTcpBinding(SecurityMode.Transport); binding.Security.Message.ClientCredentialType = MessageCredentialType.Windows; binding.CloseTimeout = new TimeSpan(0, 0, 1); binding.OpenTimeout = new TimeSpan(0, 0, 1); binding.SendTimeout = new TimeSpan(0, 0, 1); binding.ReceiveTimeout = new TimeSpan(0, 0, 1); EndpointAddress endPoint = new EndpointAddress(new Uri(clientPath)); DuplexChannelFactory<Iservice> channel = new DuplexChannelFactory<Iservice>(new ClientCallBack(clientName), binding, endPoint); channel.Ping() When the endpoint doesn't exist it still waits 20seconds before throwing an EndpointNotFoundException. The weird thing is that when i changed the SendTimeout the exception message changed from The connection attempt lasted for a time span of 00:00:20 to ....01 but still took 20seconds to throw the exception! How can i change this timeout?

    Read the article

  • WCF Service error received when using TCP: "The message could not be dispatched..."

    - by StM
    I am new to creating WCF services. I have created a WCF web service in VS2008 that is running on IIS 7. When I use http the service works perfectly. When I configure the service for TCP and run I get the following error message. There was a communication problem. The message could not be dispatched because the service at the endpoint address 'net:tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc is unavailable for the protocol of the address. I have searched a lot of forums, including this one, for a resolution but nothing has worked. Everything appears to be set up correctly on IIS 7. WAS has been set up to run. The default web site has a net.tcp binding and the application has net.tcp under the enabled protocols. I am including what I think is the important part of the web.config from the host project and also the app.config from the client project I am using to test the service. Hopefully someone can spot my error. Thanks in advance for any help or recommendations that anyone can provide. Web.Config <bindings> <wsHttpBinding> <binding name="wsHttpBindingNoMsgs"> <security mode="None" /> </binding> </wsHttpBinding> </bindings> <services> <service behaviorConfiguration="CogIDServiceHost.ServiceBehavior" name="CogIDServiceLibrary.CogIdService"> <endpoint address="" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsgs" contract="CogIDServiceLibrary.CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" bindingConfiguration="" contract="IMetadataExchange" /> <endpoint name="CoordinateIdService_TCP" address="net.tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc" binding="netTcpBinding" bindingConfiguration="" contract="CogIDServiceLibrary.CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> </service> </services> <behaviors> <serviceBehaviors> <behavior name="CogIDServiceHost.ServiceBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> App.Config <system.serviceModel> <diagnostics performanceCounters="Off"> <messageLogging logEntireMessage="true" logMalformedMessages="false" logMessagesAtServiceLevel="false" logMessagesAtTransportLevel="false" /> </diagnostics> <behaviors /> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_CogIdTool" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="None"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" establishSecurityContext="true" /> </security> </binding> <binding name="wsHttpBindingNoMsg"> <security mode="None"> <transport clientCredentialType="Windows" /> <message clientCredentialType="Windows" /> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="http://sdet/CogId_WCF/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsg" contract="CogIdServiceReference.CogIdTool" name="IISHostWsHttpBinding"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="http://localhost:1890/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_CogIdTool" contract="CogIdServiceReference.CogIdTool" name="WSHttpBinding_CogIdTool"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="http://elec/CoordinateIdTool/IdToolService.svc" binding="wsHttpBinding" bindingConfiguration="wsHttpBindingNoMsg" contract="CogIdServiceReference.CogIdTool" name="IIS7HostWsHttpBinding_Elec"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="net.tcp://elec:9090/CoordinateIdTool_Tcp/IdToolService.svc" binding="netTcpBinding" bindingConfiguration="" contract="CogIdServiceReference.CogIdTool" name="IIS7HostTcpBinding_Elec" > <identity> <dns value="localhost"/> </identity> </endpoint> </client> </system.serviceModel>

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Extended Logging with Caller Info Attributes

    - by João Angelo
    .NET 4.5 caller info attributes may be one of those features that do not get much airtime, but nonetheless are a great addition to the framework. These attributes will allow you to programmatically access information about the caller of a given method, more specifically, the code file full path, the member name of the caller and the line number at which the method was called. They are implemented by taking advantage of C# 4.0 optional parameters and are a compile time feature so as an added bonus the returned member name is not affected by obfuscation. The main usage scenario will be for tracing and debugging routines as will see right now. In this sample code I’ll be using NLog, but the example is also applicable to other logging frameworks like log4net. First an helper class, without any dependencies and that can be used anywhere to obtain caller information: using System; using System.IO; using System.Runtime.CompilerServices; public sealed class CallerInfo { private CallerInfo(string filePath, string memberName, int lineNumber) { this.FilePath = filePath; this.MemberName = memberName; this.LineNumber = lineNumber; } public static CallerInfo Create( [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { return new CallerInfo(filePath, memberName, lineNumber); } public string FilePath { get; private set; } public string FileName { get { return this.fileName ?? (this.fileName = Path.GetFileName(this.FilePath)); } } public string MemberName { get; private set; } public int LineNumber { get; private set; } public override string ToString() { return string.Concat(this.FilePath, "|", this.MemberName, "|", this.LineNumber); } private string fileName; } Then an extension class specific for NLog Logger: using System; using System.Runtime.CompilerServices; using NLog; public static class LoggerExtensions { public static void TraceMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void TraceMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void DebugMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void DebugMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void LogMemberEntry( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Entering member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } public static void LogMemberExit( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Exiting member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } private static void InternalLog( Logger logger, LogLevel logLevel, string format, string filePath, string memberName, int lineNumber) { if (logger == null) throw new ArgumentNullException("logger"); if (logLevel == null) throw new ArgumentNullException("logLevel"); logger.Log(logLevel, format, filePath, memberName, lineNumber); } } Finally an usage example: using NLog; internal static class Program { private static readonly Logger Logger = LogManager.GetCurrentClassLogger(); private static void Main(string[] args) { Logger.TraceMemberEntry(); // Compile time feature // Next three lines output the same except for line number Logger.Trace(CallerInfo.Create().ToString()); Logger.Trace(() => CallerInfo.Create().ToString()); Logger.Trace(delegate() { return CallerInfo.Create().ToString(); }); Logger.TraceMemberExit(); } } NOTE: Code for helper class and Logger extension also available here.

    Read the article

  • Exception Handling Frequency/Log Detail

    - by Cyborgx37
    I am working on a fairly complex .NET application that interacts with another application. Many single-line statements are possible culprits for throwing an Exception and there is often nothing I can do to check the state before executing them to prevent these Exceptions. The question is, based on best practices and seasoned experience, how frequently should I lace my code with try/catch blocks? I've listed three examples below, but I'm open to any advice. I'm really hoping to get some pros/cons of various approaches. I can certainly come up with some of my own (greater log granularity for the O-C approach, better performance for the Monolithic approach), so I'm looking for experience over opinion. EDIT: I should add that this application is a batch program. The only "recovery" necessary in most cases is to log the error, clean up gracefully, and quit. So this could be seen to be as much a question of log granularity as exception handling. In my mind's eye I can imagine good reasons for both, so I'm looking for some general advice to help me find an appropriate balance. Monolitich Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } catch (Exception e) { Log(e); } finally { CleanUp(); } } public static void Step1(){ ExternalApp.Dangerous1(); ExternalApp.Dangerous2(); } public static void Step2(){ ExternalApp.Dangerous3(); ExternalApp.Dangerous4(); } public static void Step3(){ ExternalApp.Dangerous5(); ExternalApp.Dangerous6(); } } Delegated Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } finally { CleanUp(); } } public static void Step1(){ try{ ExternalApp.Dangerous1(); ExternalApp.Dangerous2(); } catch (Exception e) { Log(e); throw; } } public static void Step2(){ try{ ExternalApp.Dangerous3(); ExternalApp.Dangerous4(); } catch (Exception e) { Log(e); throw; } } public static void Step3(){ try{ ExternalApp.Dangerous5(); ExternalApp.Dangerous6(); } catch (Exception e) { Log(e); throw; } } } Obsessive-Compulsive Approach class Program{ public static void Main(){ try{ Step1(); Step2(); Step3(); } finally { CleanUp(); } } public static void Step1(){ try{ ExternalApp.Dangerous1(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous2(); } catch (Exception e) { Log(e); throw; } } public static void Step2(){ try{ ExternalApp.Dangerous3(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous4(); } catch (Exception e) { Log(e); throw; } } public static void Step3(){ try{ ExternalApp.Dangerous5(); } catch (Exception e) { Log(e); throw; } try{ ExternalApp.Dangerous6(); } catch (Exception e) { Log(e); throw; } } } Other approaches welcomed and encouraged. Above are examples only.

    Read the article

  • Validation in Silverlight

    - by Timmy Kokke
    Getting started with the basics Validation in Silverlight can get very complex pretty easy. The DataGrid control is the only control that does data validation automatically, but often you want to validate your own entry form. Values a user may enter in this form can be restricted by the customer and have to fit an exact fit to a list of requirements or you just want to prevent problems when saving the data to the database. Showing a message to the user when a value is entered is pretty straight forward as I’ll show you in the following example.     This (default) Silverlight textbox is data-bound to a simple data class. It has to be bound in “Two-way” mode to be sure the source value is updated when the target value changes. The INotifyPropertyChanged interface must be implemented by the data class to get the notification system to work. When the property changes a simple check is performed and when it doesn’t match some criteria an ValidationException is thrown. The ValidatesOnExceptions binding attribute is set to True to tell the textbox it should handle the thrown ValidationException. Let’s have a look at some code now. The xaml should contain something like below. The most important part is inside the binding. In this case the Text property is bound to the “Name” property in TwoWay mode. It is also told to validate on exceptions. This property is false by default.   <StackPanel Orientation="Horizontal"> <TextBox Width="150" x:Name="Name" Text="{Binding Path=Name, Mode=TwoWay, ValidatesOnExceptions=True}"/> <TextBlock Text="Name"/> </StackPanel>   The data class in this first example is a very simplified person class with only one property: string Name. The INotifyPropertyChanged interface is implemented and the PropertyChanged event is fired when the Name property changes. When the property changes a check is performed to see if the new string is null or empty. If this is the case a ValidationException is thrown explaining that the entered value is invalid.   public class PersonData:INotifyPropertyChanged { private string _name; public string Name { get { return _name; } set { if (_name != value) { if(string.IsNullOrEmpty(value)) throw new ValidationException("Name is required"); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } } public event PropertyChangedEventHandler PropertyChanged=delegate { }; } The last thing that has to be done is letting binding an instance of the PersonData class to the DataContext of the control. This is done in the code behind file. public partial class Demo1 : UserControl { public Demo1() { InitializeComponent(); this.DataContext = new PersonData() {Name = "Johnny Walker"}; } }   Error Summary In many cases you would have more than one entry control. A summary of errors would be nice in such case. With a few changes to the xaml an error summary, like below, can be added.           First, add a namespace to the xaml so the control can be used. Add the following line to the header of the .xaml file. xmlns:Controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"   Next, add the control to the layout. To get the result as in the image showed earlier, add the control right above the StackPanel from the first example. It’s got a small margin to separate it from the textbox a little.   <Controls:ValidationSummary Margin="8"/>   The ValidationSummary control has to be notified that an ValidationException occurred. This can be done with a small change to the xaml too. Add the NotifyOnValidationError to the binding expression. By default this value is set to false, so nothing would be notified. Set the property to true to get it to work.   <TextBox Width="150" x:Name="Name" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True}"/>   Data annotation Validating data in the setter is one option, but not my personal favorite. It’s the easiest way if you have a single required value you want to check, but often you want to validate more. Besides, I don’t consider it best practice to write logic in setters. The way used by frameworks like WCF Ria Services is the use of attributes on the properties. Instead of throwing exceptions you have to call the static method ValidateProperty on the Validator class. This call stays always the same for a particular property, not even when you change the attributes on the property. To mark a property “Required” you can use the RequiredAttribute. This is what the Name property is going to look like:   [Required] public string Name { get { return _name; } set { if (_name != value) { Validator.ValidateProperty(value, new ValidationContext(this, null, null){ MemberName = "Name" }); _name = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("Name")); } } }   The ValidateProperty method takes the new value for the property and an instance of ValidationContext. The properties passed to the constructor of the ValidationContextclass are very straight forward. This part is the same every time. The only thing that changes is the MemberName property of the ValidationContext. Property has to hold the name of the property you want to validate. It’s the same value you provide the PropertyChangedEventArgs with. The System.ComponentModel.DataAnnotation contains eight different validation attributes including a base class to create your own. They are: RequiredAttribute Specifies that a value must be provided. RangeAttribute The provide value must fall in the specified range. RegularExpressionAttribute Validates is the value matches the regular expression. StringLengthAttribute Checks if the number of characters in a string falls between a minimum and maximum amount. CustomValidationAttribute Use a custom method to validate the value. DataTypeAttribute Specify a data type using an enum or a custom data type. EnumDataTypeAttribute Makes sure the value is found in a enum. ValidationAttribute A base class for custom validation attributes All of these will ensure that an validation exception is thrown, except the DataTypeAttribute. This attribute is used to provide some additional information about the property. You can use this information in your own code.   [Required] [Range(0,125,ErrorMessage = "Value is not a valid age")] public int Age {   It’s no problem to stack different validation attributes together. For example, when an Age is required and must fall in the range from 0 to 125:   [Required, StringLength(255,MinimumLength = 3)] public string Name {   Or in one row like this, for a required Name with at least 3 characters and a maximum of 255:   Delayed validation Having properties marked as required can be very useful. The only downside to the technique described earlier is that you have to change the value in order to get it validated. What if you start out with empty an empty entry form? All fields are empty and thus won’t be validated. With this small trick you can validate at the moment the user click the submit button.   <TextBox Width="150" x:Name="NameField" Text="{Binding Name, Mode=TwoWay, ValidatesOnExceptions=True, NotifyOnValidationError=True, UpdateSourceTrigger=Explicit}"/>   By default, when a TwoWay bound control looses focus the value is updated. When you added validation like I’ve shown you earlier, the value is validated. To overcome this, you have to tell the binding update explicitly by setting the UpdateSourceTrigger binding property to Explicit:   private void SubmitButtonClick(object sender, RoutedEventArgs e) { NameField.GetBindingExpression(TextBox.TextProperty).UpdateSource(); }   This way, the binding is in two direction but the source is only updated, thus validated, when you tell it to. In the code behind you have to call the UpdateSource method on the binding expression, which you can get from the TextBox.   Conclusion Data validation is something you’ll probably want on almost every entry form. I always thought it was hard to do, but it wasn’t. If you can throw an exception you can do validation. If you want to know anything more in depth about something I talked about in this article let me know. I might write an entire post to that.

    Read the article

  • How can I prevent static when PC is plugged into an amplified speaker system?

    - by Kyle
    I've plugged a computer into an amp, using a 1/8 inch male extension cord, into a female adapter, that adapts into a male microphone 1/4 end. That being said, the amp sits at about half volume all the time because there are other things that play on it. (This issue is not flexible, nor is changing the amp) The problem is that now, even when I mute out the computer, you hear some static in the background. I was wondering some about some solutions (preferably multiple).

    Read the article

  • Log Blog

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Logging – A log blog In a another blog (Missing Fields and Defaults) I spoke about not doing a blog about log files, but then I looked at it again and realized that this is a nice opportunity to show a simple yet powerful tool and also deal with static variables and functions in C#. My log had to be able to answer a few simple logging rules:   To log or not to log? That is the question – Always log! That is the answer  Do we share a log? Even when a file is opened with a minimal lock, it does not share well and performance greatly suffers. So sharing a log is not a good idea. Also, when sharing, it is harder to find your particular entries and you have to establish rules about retention. My recommendation – Do Not Share!  How verbose? Your log can be very verbose – a good thing when testing, very terse – a good thing in day-to-day runs, or somewhere in between. You must be the judge. In my Blog, I elect to always report a run with start and end times, and always report errors. I normally use 5 levels of logging: 4 – write all, 3 – write more, 2 – write some, 1 – write errors and timing, 0 – write none. The code sample below is more general than that. It uses the config file to set the max log level and each call to the log assigns a level to the call itself. If the level is above the .config highest level, the line will not be written. Programmers decide which log belongs to which level and thus we can set the .config differently for production and testing.  Where do I keep the log? If your career is important to you, discuss this with the boss and with the system admin. We keep logs in the L: drive of our server and make sure that we have a directory for each app that needs a log. When adding a new app, add a new directory. The default location for the log is also found in the .config file Print One or Many? There are two options here:   1.     Print many, Open but once once – you start the stream and close it only when the program ends. This is what you can do when you perform in “batch” mode like in a console app or a stsadm extension.The advantage to this is that starting a closing a stream is expensive and time consuming and because we use a unique file, keeping it open for a long time does not cause contention problems. 2.     Print one entry at a time or Open many – every time you write a line, you start the stream, write to it and close it. This work for event receivers, feature receivers, and web parts. Here scalability requires us to create objects on the fly and get rid of them as soon as possible.  A default value of the onceOrMany resides in the .config.  All of the above applies to any windows or web application, not just SharePoint.  So as usual, here is a routine that does it all, and a few simple functions that call it for a variety of purposes.   So without further ado, here is app.config  <?xml version="1.0" encoding="utf-8" ?> <configuration>     <configSections>         <sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup, System, Version=2.0.0.0, Culture=neutral, ublicKeyToken=b77a5c561934e089" >         <section name="statics.Properties.Settings" type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" />         </sectionGroup>     </configSections>     <applicationSettings>         <statics.Properties.Settings>             <setting name="oneOrMany" serializeAs="String">                 <value>False</value>             </setting>             <setting name="logURI" serializeAs="String">                 <value>C:\staticLog.txt</value>             </setting>             <setting name="highestLevel" serializeAs="String">                 <value>2</value>             </setting>         </statics.Properties.Settings>     </applicationSettings> </configuration>   And now the code:  In order to persist the variables between calls and also to be able to persist (or not to persist) the log file itself, I created an EventLog class with static variables and functions. Static functions do not need an instance of the class in order to work. If you ever wondered why our Main function is static, the answer is that something needs to run before instantiation so that other objects may be instantiated, and this is what the “static” Main does. The various logging functions and variables are created as static because they do not need instantiation and as a fringe benefit they remain un-destroyed between calls. The Main function here is just used for testing. Note that it does not instantiate anything, just uses the log functions. This is possible because the functions are static. Also note that the function calls are of the form: Class.Function.  using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.IO; namespace statics {       class Program     {         static void Main(string[] args)         {             //write a single line             EventLog.LogEvents("ha ha", 3, "C:\\hahafile.txt", 4, true, false);             //this single line will not be written because the msgLevel is too high             EventLog.LogEvents("baba", 3, "C:\\babafile.txt", 2, true, false);             //The next 4 lines will be written in succession - no closing             EventLog.LogLine("blah blah", 1);             EventLog.LogLine("da da", 1);             EventLog.LogLine("ma ma", 1);             EventLog.LogLine("lah lah", 1);             EventLog.CloseLog(); // log will close             //now with specific functions             EventLog.LogSingleLine("one line", 1);             //this is just a test, the log is already closed             EventLog.CloseLog();         }     }     public class EventLog     {         public static string logURI = Properties.Settings.Default.logURI;         public static bool isOneLine = Properties.Settings.Default.oneOrMany;         public static bool isOpen = false;         public static int highestLevel = Properties.Settings.Default.highestLevel;         public static StreamWriter sw;         /// <summary>         /// the program will "print" the msg into the log         /// unless msgLevel is > msgLimit         /// onceOrMany is true when once - the program will open the log         /// print the msg and close the log. False when many the program will         /// keep the log open until close = true         /// normally all the arguments will come from the app.config         /// called by many overloads of logLine         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         /// <param name="logFileName"></param>         /// <param name="msgLimit"></param>         /// <param name="onceOrMany"></param>         /// <param name="close"></param>         public static void LogEvents(string msg, int msgLevel, string logFileName, int msgLimit, bool oneOrMany, bool close)         {             //to print or not to print             if (msgLevel <= msgLimit)             {                 //open the file. from the argument (logFileName) or from the config (logURI)                 if (!isOpen)                 {                     string logFile = logFileName;                     if (logFileName == "")                     {                         logFile = logURI;                     }                     sw = new StreamWriter(logFile, true);                     sw.WriteLine("Started At: " + DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"));                     isOpen = true;                 }                 //print                 sw.WriteLine(msg);             }             //close when instructed             if (close || oneOrMany)             {                 if (isOpen)                 {                     sw.WriteLine("Ended At: " + DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"));                     sw.Close();                     isOpen = false;                 }             }         }           /// <summary>         /// The simplest, just msg and level         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         public static void LogLine(string msg, int msgLevel)         {             //use the given msg and msgLevel and all others are defaults             LogEvents(msg, msgLevel, "", highestLevel, isOneLine, false);         }                 /// <summary>         /// one line at a time - open print close         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         public static void LogSingleLine(string msg, int msgLevel)         {             LogEvents(msg, msgLevel, "", highestLevel, true, true);         }           /// <summary>         /// used to close. high level, low limit, once and close are set         /// </summary>         /// <param name="close"></param>         public static void CloseLog()         {             LogEvents("", 15, "", 1, true, true);         }           }     }   }   That’s all folks!

    Read the article

< Previous Page | 123 124 125 126 127 128 129 130 131 132 133 134  | Next Page >