Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 128/226 | < Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >

  • GPU based procedual terrain borders?

    - by OnePie
    I'm working on a game that preferibly should feature a combination of designed and procedually generated terrain where the designer specifies in somewhat detailed terms what type of terrain a given area will have (grasslands, forest etc...) and then a precedual algorithm takes care of the rest. I'm not talking about minecraft style biomoes, but rather the game map for a strategy game. Each 'area' will not take up that much of the screen, and thus be more akin to a tile whose texture is procedually generated. While procedually generating terrain textures on the GPU are not that difficult, the hard part is making the borders between them look good. Currently, the 'tiles' are large enough to be visible (due to memory constraints mainly, we are talking planetary sized textures for a game taking place in space and on a continental ground view with seamless transitions between them) and creating good borders between them with an algorithm that is fast enough to be useful has proven difficult. Sampling the n-surrounding pixels and using the combiened result did not yield very good borders and was fairly slow on the GPU to boot (ca 12ms for me, that is without any lighning or shading and with very simple terrain texture shaders). So are there any practical known methods to solve this problem?

    Read the article

  • Finding the shortest path through a digraph that visits all nodes

    - by Boluc Papuccuoglu
    I am trying to find the shortest possible path that visits every node through a graph (a node may be visited more than once, the solution may pick any node as the starting node.). The graph is directed, meaning that being able to travel from node A to node B does not mean one can travel from node B to node A. All distances between nodes are equal. I was able to code a brute force search that found a path of only 27 nodes when I had 27 nodes and each node had a connection to 2 or 1 other node. However, the actual problem that I am trying to solve consists of 256 nodes, with each node connecting to either 4 or 3 other nodes. The brute force algorithm that solved the 27 node graph can produce a 415 node solution (not optimal) within a few seconds, but using the processing power I have at my disposal takes about 6 hours to arrive at a 402 node solution. What approach should I use to arrive at a solution that I can be certain is the optimal one? For example, use an optimizer algorithm to shorten a non-optimal solution? Or somehow adopt a brute force search that discards paths that are not optimal? EDIT: (Copying a comment to an answer here to better clarify the question) To clarify, I am not saying that there is a Hamiltonian path and I need to find it, I am trying to find the shortest path in the 256 node graph that visits each node AT LEAST once. With the 27 node run, I was able to find a Hamiltonian path, which assured me that it was an optimal solution. I want to find a solution for the 256 node graph which is the shortest.

    Read the article

  • Android 2D terrain scrolling

    - by Nikola Ninkovic
    I want to make infinite 2D terrain based on my algorithm.Then I want to move it along Y axis (to the left) This is how I did it : public class Terrain { Queue<Integer> _bottom; Paint _paint; Bitmap _texture; Point _screen; int _numberOfColumns = 100; int _columnWidth = 20; public Terrain(int screenWidth, int screenHeight, Bitmap texture) { _bottom = new LinkedList<Integer>(); _screen = new Point(screenWidth, screenHeight); _numberOfColumns = screenWidth / 6; _columnWidth = screenWidth / _numberOfColumns; for(int i=0;i<=_numberOfColumns;i++) { // Generate terrain point and put it into _bottom queue } _paint = new Paint(); _paint.setStyle(Paint.Style.FILL); _paint.setShader(new BitmapShader(texture, Shader.TileMode.REPEAT, Shader.TileMode.REPEAT)); } public void update() { _bottom.remove(); // Algorithm calculates next point _bottom.add(nextPoint); } public void draw(Canvas canvas) { Iterator<Integer> i = _bottom.iterator(); int counter = 0; Path path = new Path(); path.moveTo(0, _screen.y); while (i.hasNext()) { path.lineTo(counter, _screen.y-i.next()); counter += _columnWidth; } path.lineTo(_screen.x, _screen.y); path.lineTo(0, _screen.y); canvas.drawPath(path2, _paint); } } The problem is that the game is too 'fast', so I tried with pausing thread with Thread.sleep(50); in run() method of my game thread but then it looks too torn. Well, is there any way to slow down drawing of my terrain ?

    Read the article

  • How to perform game object smoothing in multiplayer games

    - by spaceOwl
    We're developing an infrastructure to support multiplayer games for our game engine. In simple terms, each client (player) engine sends some pieces of data regarding the relevant game objects at a given time interval. On the receiving end, we step the incoming data to current time (to compensate for latency), followed by a smoothing step (which is the subject of this question). I was wondering how smoothing should be performed ? Currently the algorithm is similar to this: Receive incoming state for an object (position, velocity, acceleration, rotation, custom data like visual properties, etc). Calculate a diff between local object position and the position we have after previous prediction steps. If diff doesn't exceed some threshold value, start a smoothing step: Mark the object's CURRENT POSITION and the TARGET POSITION. Linear interpolate between these values for 0.3 seconds. I wonder if this scheme is any good, or if there is any other common implementation or algorithm that should be used? (For example - should i only smooth out the position? or other values, such as speed, etc) any help will be appreciated.

    Read the article

  • Game engine lib and editor

    - by luke
    I would like to know the best way/best practice to handle the following situation. Suppose the project you are working on is split in two sub-projects: game engine lib editor gui. Now, you have a method bool Method( const MethodParams &params ) that will be called during game-level initialization. So it is a method belonging to the game engine lib. Now, the parameters of this method, passed as a reference the structure MethodParams can be decided via the editor, in the level design phase. Suppose the structure is the following: enum Enum1 { E1_VAL1, E1_VAL2, }; enum Enum2 { E2_VAL1, E2_VAL2, E2_VAL3, }; struct MethodParams { float value; Enum1 e1; Enum2 e2; // some other member } The editor should present a dialog that will let the user set the MethodParams struct. A text control for the field value. Furthermore, the editor needs to let the user set the fields e1 and e2 using, for example, two combo boxes (a combo box is a window control that has a list of choices). Obviously, every enum should be mapped to a string, so the user can make an informed selection (i have used E1_VAL1 etc.., but normally the enum would be more meaningful). One could even want to map every enum to a string more informative (E1_VAL1 to "Image union algorithm", E1_VAL2 to "Image intersection algorithm" and so on...). The editor will include all the relevant game egine lib files (.h etc...), but this mapping is not automatic and i am confused on how to handle it in a way that, if in future i add E1_VAL3 and E1_VAL4, the code change will be minimal.

    Read the article

  • Help with design structure choice: Using classes or library of functions

    - by roverred
    So I have GUI Class that will call another class called ImageProcessor that contains a bunch functions that will perform image processing algorithms like edgeDetection, gaussianblur, contourfinding, contour map generations, etc. The GUI passes an image to ImageProcessor, which performs one of those algorithm on it and it returns the image back to the GUI to display. So essentially ImageProcessor is a library of independent image processing functions right now. It is called in the GUI like so Image image = ImageProcessor.EdgeDetection(oldImage); Some of the algorithms procedures require many functions, and some can be done in a single function or even one line. All these functions for the algorithms jam packed into ImageProcessor can be pretty messy, and ImageProcessor doesn't sound it should be a library. So I was thinking about making every algorithm be a class with a shared interface say IAlgorithm. Then I pass the IAlgorithm interface from the GUI to the ImageProcessor. public interface IAlgorithm{ public Image Process(); } public class ImageProcessor{ public Image Process(IAlgorithm TheAlgorithm){ return IAlgorithm.Process(); } } Calling in the GUI like so Image image = ImageProcessor.Process(new EdgeDetection(oldImage)); I think it makes sense in an object point of view, but the problem is I'll end up with some classes that are just one function. What do you think is a better design, or are they both crap and you have a much better idea? Thanks!

    Read the article

  • A* PathFinding Not Consistent

    - by RedShft
    I just started trying to implement a basic A* algorithm in my 2D tile based game. All of the nodes are tiles on the map, represented by a struct. I believe I understand A* on paper, as I've gone through some pseudo code, but I'm running into problems with the actual implementation. I've double and tripled checked my node graph, and it is correct, so I believe the issue to be with my algorithm. This issue is, that with the enemy still, and the player moving around, the path finding function will write "No Path" an astounding amount of times and only every so often write "Path Found". Which seems like its inconsistent. This is the node struct for reference: struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } Here is the rest: http://pastebin.com/cCHfqKTY This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • Handling timeout in network application

    - by user2175831
    How can I handle timeouts in a network application. I'm implementing a provisioning system on a Linux server, the code is huge so I'm going to put the algorithm, it works as like this Read provisioning commands from file Send it to another server using TCP Save the request in hash. Receive the response then if successful response received then remove request from hash if failed response received then retry the message The problem I'm in now is when the program didn't receive the response for a timeout reason then the request will be waiting for a response forever and won't be retried. And please note that I'll be sending hundreds of commands and I have to monitor the timeout commands for all of them. I tried to use timer but that didn't help because I'll end up with so many waiting timers and I'm not sure if this is a good way of doing this. The question is how can I save the message in some data structure and check to remove or retry it later when there is no response from the other end? Please note that I'm willing to change the algorithm to anything you suggest that could deal with the timeouts.

    Read the article

  • Why does limiting my virtual memory to 512MB with ulimit -v crash the JVM?

    - by Narinder Kumar
    I am trying to enforce maximum memory a program can consume on a Unix system. I thought ulimit -v should do the trick. Here is a sample Java program I have written for testing : import java.util.*; import java.io.*; public class EatMem { public static void main(String[] args) throws IOException, InterruptedException { System.out.println("Starting up..."); System.out.println("Allocating 128 MB of Memory"); List<byte[]> list = new LinkedList<byte[]>(); list.add(new byte[134217728]); //128 MB System.out.println("Done...."); } } By default, my ulimit settings are (output of ulimit -a) : core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 31398 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 31398 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited When I execute my java program (java EatMem), it executes without any problems. Now I try to limit max memory available to any program launched in the current shell to 512MB by launching the following command : ulimit -v 524288 ulimit -a output shows the limit to be set correctly (I suppose): core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 31398 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 31398 virtual memory (kbytes, -v) 524288 file locks (-x) unlimited If I now try to execute my java program, it gives me the following error: Error occurred during initialization of VM Could not reserve enough space for object heap Could not create the Java virtual machine. Ideally it should not happen as my Java program is only taking around 128MB of memory which is well within my specified ulimit parameters. If I change the arguments to my Java program as below: java -Xmx256m EatMem The program again works fine. While trying to give more memory than limited by ulimit like : java -Xmx800m EatMem results in expected error. Why the program fails to execute in the first case after setting ulimit ? I have tried the above test on Ubuntu 11.10 and 12.0.4 with Java 1.6 and Java 7

    Read the article

  • Run VISTA disk check without reboot

    - by Chau
    I want to perform a surface scan on my harddisks (S-ATA, P-ATA, USB and E-SATA) in windows VISTA. Is it possible to do this without scheduling the scan on next reboot? It takes a lot of time and I would like to be able to use the computer during the scan. I can accept that this might not be possible on the window partition disk, but I cannot see why it shouldn't be possible on other disks.

    Read the article

  • Ways to use ClamWin Antivirus

    - by Charles Gargent
    I dont use on On Access AV scanner, I just use Clamwin. My download manager invokes a scan on any files I download, and I dont share files. Apart from scheduling a system scan every week (seems an awful waste of resources) what other ways can I use Clamwin to keep your PC virus free. Ideas such as: scan files in open folders, adaptive batch scripts that scan most frequently used folders / last used folders things like that

    Read the article

  • Does Windows performance degrade past a certain level of CPU utilization?

    - by Mike Taylor
    Is there a recommended average CPU threshold in running Windows boxes based on experience in other shops? Background: We are running with Windows Server 2003 32-bit OS. Servers are handling a major enterprise-level web application suite with a high frequency of small transactions mixed in with much larger transactions - overall average is 13ms. Our average overall CPU utilization of the Windows servers are ~60% during prime-shift. And we question at what level does the Windows OS begin to shimmy on the CPU scheduling road? Thanks.

    Read the article

  • Outlook 2010 cheaper/free replacement

    - by Andrei Rinea
    I am very pleased with Outlook 2010 but since I can't use it anymore I have two big options : buy it or search for a decent cheaper/free replacement. What I need from that programa/suite is : POP/SMTP good management (I have Yahoo mail plus which uses SSL for SMTP and POP3 - not all clients support these) Task management RSS feed reading Calendar / scheduling This is for personal use. Any suggestions?

    Read the article

  • video uploading software

    - by Pennf0lio
    Are there software that lets you upload videos to video hosting sites (youtube,googlevideos, megavideo, etc)? with features like scheduling upload, queuing of videos to upload, multiple sites to upload. etc. Any software with similar capabilities would be a help. Thanks!

    Read the article

  • School Management System

    - by BoundforPNG
    I am looking for a school management system to replace a homegrown Access db. It should be able handle the following for both a Primary and Secondary school Scheduling classes Student Enrollment Allow teacher to enter grades and comments Generate transcripts and report cards Handle attendance Handle tuition billing It should store data in a server database like SQL Server and it would be nice to have a web interface. We are open to a commercial system or an Open Source system that comes with support.

    Read the article

  • Avoiding QoS degradation for video streaming clients

    - by aarege31
    Suppose I have two routers connected via a 1Gbit connection. A client behind router 1 streams to a client behind router 2 while other clients behind router 1 transmit data to other clients behind router 2. Are there any best practice policing, scheduling or queue management algorithms available that help a beginner understand what is necessary to prevent QoS degration in simple cases as above as well as in real world environments?

    Read the article

  • Easy to use booking software?

    - by drozzy
    Looking for an easy to use B&B booking software that will allow the owner to schedule and rent rooms. It would ideally have a windows client (with cloud sync) and thinking mobile app for reminders and such. Calendar with automatic scheduling of some sort would be great too. Anyone heard of something along these lines? If not - any suggestions of API's or services that one could start with to roll their own solution?

    Read the article

  • What is the difference between running a Windows service vs. running through shell?

    - by Zack
    I am trying to troubleshoot an issue on a Windows 2008 server where running attempting to connect to a "Timberline Data Source" ODBC driver crashes if the call is in a "service" context, but succeeds if the call is initiated manually in a Remote Desktop session. I have set the service to run as my user. I'm wondering if, all else being equal (user, machine, etc), are there any fundamental security/environment differences between running a process as a service vs manually? --- Implementation Details --- In case it is helpful for anyone, I had a system that started as an attempt to connect to a Timberline Database using ODBC and a Python CGI script called via IIS 7. The script itself works fine, however, as soon as I attempt to perform the ODBC connect function, the script crashes without throwing an exception. The script was able to connect fine when executed via command line. The same thing happened when using a C#/.net service, attempting to run via Apache, Windows Scheduler or even a 3rd party scheduling tool. With the last option (the 3rd party scheduling tool, pycron) I set the service up log in as my user and had the same issue (I confirmed via Task Manager that the process running user was, in fact, me). It just doesn't make sense to me why a service, which should be running as my user, appears to still be operating in a different security context or environment. Also, if it's important, the Timberline database is referenced by computer name on the network ("\\timberline-server\Timberline Office\Accounts\AT" or something to that effect) I also realized that, as Joel pointed out, the server DOES have a mapped drive ("Y:" which is mapped to "\\timberline-server\Timberline Office") The DSN is set up at the "System DSN" level which, according to the ODBC Administration Tool, means that the DSN is available to users and services Since I'm not allowed to answer this question yet, I'll post the solution that I arrived on: As Joel Coel mentioned, there actually was a mapped drive scenario. I didn't realize this because the DSN specified a path using UNC. However, it seems as though the actual Timberline Driver referred to a mapped drive. Since services don't start with the mapped drive, I was forced to add the drive mapping code into my service. Since it was written in python, I used code from a Stackoverflow answer that was able to map the drive on the fly.

    Read the article

  • Project not publishing start/finish date for custom TFS work items

    - by pete the pagan-gerbil
    I've got a TFS 2012 project set up with custom work items, that include Start and Finish date read-only fields (Microsoft.VSTS.Scheduling.StartDate and FinishDate). When I publish one of those custom work items from within Office Project, it does not populate those fields the same way as when I publish a Task work item (builtin TFS work item). I've looked at the transitions in the work items, and also the TFS project field mapping XML file but can't find anything that explains the difference in behaviour. What am I missing?

    Read the article

  • Comments on Comments

    - by Joe Mayo
    I almost tweeted a reply to Capar Kleijne's question about comments on Twitter, but realized that my opinion exceeded 140 characters. The following is based upon my experience with extremes and approaches that I find useful in code comments. There are a couple extremes that I've seen and reasons why people go the distance in each approach. The most common extreme is no comments in the code at all.  A few bad reasons why this happens is because a developer is in a hurry, sloppy, or is interested in job preservation. The unfortunate result is that the code is difficult to understand and hard to maintain. The drawbacks to no comments in code are a primary reason why teachers drill the need for commenting code into our heads.  This viewpoint assumes the lack of comments are bad because the code is bad, but there is another reason for not commenting that is gaining more popularity. I've heard/and read that code should be self documenting. Following this thought pattern, if code is well written with meaningful names, there should not be a reason for comments.  An addendum to this argument is that comments are often neglected and get out-of-date, but the code is what is kept up-to-date. Presumably, if code contained very good naming, it would be easy to maintain.  This is a noble perspective and I like the practice of meaningful naming of identifiers. However, I think it's also an extreme approach that doesn't cover important cases.  i.e. If an identifier is named badly (subjective differences in opinion) or not changed appropriately during maintenance, then the badly named identifier is no more useful than a stale comment. These were the two no-comment extremes, so let's look at the too many comments extreme. On a regular basis, I'll see cases where the code is over-commented; not nearly as often as the no-comment scenarios, but still prevalent.  These are examples of where every single line in the code is commented.  These comments make the code harder to read because they get in the way of the algorithm.  In most cases, the comments parrot what each line of code does.  If a developer understands the language, then most statements are immediately intuitive.  i.e. what use is it to say that I'm assigning foo to bar when it's clear what the code is doing. I think that over-commenting code is a waste of time that slows down initial development and maintenance.  Understandably, the developer's intentions are admirable because they've had it beaten into their heads that they must comment. However, I think it's an extreme and prefer a more moderate approach. I don't think the extremes do justice to code because each can make maintenance harder.  No comments on bad code is obviously a problem, but the other two extremes are subtle and require qualification to address properly. The problem I see with the code-as-documentation approach is that it doesn't lift the developer out of the algorithm to identify dependencies, intentions, and hacks. Any developer can read code and follow an algorithm, but they still need to know where it fits into the big picture of the application. Because of indirections with language features like interfaces, delegates, and virtual members, code can become complex.  Occasionally, it's useful to point out a nuance or reason why a piece of code is there. i.e. If you've building an app that communicates via HTTP, you'll have certain headers to include for the endpoint, and it could be useful to point out why the code for setting those header values is there and how they affect the application. An argument against this could be that you should extract that code into a separate method with a meaningful name to describe the scenario.  My problem with such an approach would be that your code base becomes even more difficult to navigate and work with because you have all of this extra code just to make the code more meaningful. My opinion is that a simple and well-stated comment stating the reasons and intention for the code is more natural and convenient to the initial developer and maintainer.  I just don't agree with the approach of going out of the way to avoid making a comment.  I'm also concerned that some developers would take this approach as an excuse to not comment their bad code. Another area where I like comments is on documentation comments.  Java has it and so does C# and VB.  It's convenient because we can build automated tools that extract these comments.  These extracted comments are often much better than no documentation at all.  The "go read the code" answer always doesn't fulfill the need for a quick summary of an API. To summarize, I think that the extremes of no comments and too many comments are less than desirable approaches. I prefer documentation comments to explain each class and member (API level) and code comments as necessary to supplement well-written code. Joe

    Read the article

  • Independence Day for Software Components &ndash; Loosening Coupling by Reducing Connascence

    - by Brian Schroer
    Today is Independence Day in the USA, which got me thinking about loosely-coupled “independent” software components. I was reminded of a video I bookmarked quite a while ago of Jim Weirich’s “Grand Unified Theory of Software Design” talk at MountainWest RubyConf 2009. I finally watched that video this morning. I highly recommend it. In the video, Jim talks about software connascence. The dictionary definition of connascence (con-NAY-sense) is: 1. The common birth of two or more at the same time 2. That which is born or produced with another. 3. The act of growing together. The brief Wikipedia page about Connascent Software Components says that: Two software components are connascent if a change in one would require the other to be modified in order to maintain the overall correctness of the system. Connascence is a way to characterize and reason about certain types of complexity in software systems. The term was introduced to the software world in Meilir Page-Jones’ 1996 book “What Every Programmer Should Know About Object-Oriented Design”. The middle third of that book is the author’s proposed graphical notation for describing OO designs. UML became the standard about a year later, so a revised version of the book was published in 1999 as “Fundamentals of Object-Oriented Design in UML”. Weirich says that the third part of the book, in which Page-Jones introduces the concept of connascence “is worth the price of the entire book”. (The price of the entire book, by the way, is not much – I just bought a used copy on Amazon for $1.36, so that was a pretty low-risk investment. I’m looking forward to getting the book and learning about connascence from the original source.) Meanwhile, here’s my summary of Weirich’s summary of Page-Jones writings about connascence: The stronger the form of connascence, the more difficult and costly it is to change the elements in the relationship. Some of the connascence types, ordered from weak to strong are: Connascence of Name Connascence of name is when multiple components must agree on the name of an entity. If you change the name of a method or property, then you need to change all references to that method or property. Duh. Connascence of name is unavoidable, assuming your objects are actually used. My main takeaway about connascence of name is that it emphasizes the importance of giving things good names so you don’t need to go changing them later. Connascence of Type Connascence of type is when multiple components must agree on the type of an entity. I assume this is more of a problem for languages without compilers (especially when used in apps without tests). I know it’s an issue with evil JavaScript type coercion. Connascence of Meaning Connascence of meaning is when multiple components must agree on the meaning of particular values, e.g that “1” means normal customer and “2” means preferred customer. The solution to this is to use constants or enums instead of “magic” strings or numbers, which reduces the coupling by changing the connascence form from “meaning” to “name”. Connascence of Position Connascence of positions is when multiple components must agree on the order of values. This refers to methods with multiple parameters, e.g.: eMailer.Send("[email protected]", "[email protected]", "Your order is complete", "Order completion notification"); The more parameters there are, the stronger the connascence of position is between the component and its callers. In the example above, it’s not immediately clear when reading the code which email addresses are sender and receiver, and which of the final two strings are subject vs. body. Connascence of position could be improved to connascence of type by replacing the parameter list with a struct or class. This “introduce parameter object” refactoring might be overkill for a method with 2 parameters, but would definitely be an improvement for a method with 10 parameters. This points out two “rules” of connascence:  The Rule of Degree: The acceptability of connascence is related to the degree of its occurrence. The Rule of Locality: Stronger forms of connascence are more acceptable if the elements involved are closely related. For example, positional arguments in private methods are less problematic than in public methods. Connascence of Algorithm Connascence of algorithm is when multiple components must agree on a particular algorithm. Be DRY – Don’t Repeat Yourself. If you have “cloned” code in multiple locations, refactor it into a common function.   Those are the “static” forms of connascence. There are also “dynamic” forms, including… Connascence of Execution Connascence of execution is when the order of execution of multiple components is important. Consumers of your class shouldn’t have to know that they have to call an .Initialize method before it’s safe to call a .DoSomething method. Connascence of Timing Connascence of timing is when the timing of the execution of multiple components is important. I’ll have to read up on this one when I get the book, but assume it’s largely about threading. Connascence of Identity Connascence of identity is when multiple components must reference the entity. The example Weirich gives is when you have two instances of the “Bob” Employee class and you call the .RaiseSalary method on one and then the .Pay method on the other does the payment use the updated salary?   Again, this is my summary of a summary, so please be forgiving if I misunderstood anything. Once I get/read the book, I’ll make corrections if necessary and share any other useful information I might learn.   See Also: Gregory Brown: Ruby Best Practices Issue #24: Connascence as a Software Design Metric (That link is failing at the time I write this, so I had to go to the Google cache of the page.)

    Read the article

  • Implementing a Custom Coherence PartitionAssignmentStrategy

    - by jpurdy
    A recent A-Team engagement required the development of a custom PartitionAssignmentStrategy (PAS). By way of background, a PAS is an implementation of a Java interface that controls how a Coherence partitioned cache service assigns partitions (primary and backup copies) across the available set of storage-enabled members. While seemingly straightforward, this is actually a very difficult problem to solve. Traditionally, Coherence used a distributed algorithm spread across the cache servers (and as of Coherence 3.7, this is still the default implementation). With the introduction of the PAS interface, the model of operation was changed so that the logic would run solely in the cache service senior member. Obviously, this makes the development of a custom PAS vastly less complex, and in practice does not introduce a significant single point of failure/bottleneck. Note that Coherence ships with a default PAS implementation but it is not used by default. Further, custom PAS implementations are uncommon (this engagement was the first custom implementation that we know of). The particular implementation mentioned above also faced challenges related to managing multiple backup copies but that won't be discussed here. There were a few challenges that arose during design and implementation: Naive algorithms had an unreasonable upper bound of computational cost. There was significant complexity associated with configurations where the member count varied significantly between physical machines. Most of the complexity of a PAS is related to rebalancing, not initial assignment (which is usually fairly simple). A custom PAS may need to solve several problems simultaneously, such as: Ensuring that each member has a similar number of primary and backup partitions (e.g. each member has the same number of primary and backup partitions) Ensuring that each member carries similar responsibility (e.g. the most heavily loaded member has no more than one partition more than the least loaded). Ensuring that each partition is on the same member as a corresponding local resource (e.g. for applications that use partitioning across message queues, to ensure that each partition is collocated with its corresponding message queue). Ensuring that a given member holds no more than a given number of partitions (e.g. no member has more than 10 partitions) Ensuring that backups are placed far enough away from the primaries (e.g. on a different physical machine or a different blade enclosure) Achieving the above goals while ensuring that partition movement is minimized. These objectives can be even more complicated when the topology of the cluster is irregular. For example, if multiple cluster members may exist on each physical machine, then clearly the possibility exists that at certain points (e.g. following a member failure), the number of members on each machine may vary, in certain cases significantly so. Consider the case where there are three physical machines, with 3, 3 and 9 members each (respectively). This introduces complexity since the backups for the 9 members on the the largest machine must be spread across the other 6 members (to ensure placement on different physical machines), preventing an even distribution. For any given problem like this, there are usually reasonable compromises available, but the key point is that objectives may conflict under extreme (but not at all unlikely) circumstances. The most obvious general purpose partition assignment algorithm (possibly the only general purpose one) is to define a scoring function for a given mapping of partitions to members, and then apply that function to each possible permutation, selecting the most optimal permutation. This would result in N! (factorial) evaluations of the scoring function. This is clearly impractical for all but the smallest values of N (e.g. a partition count in the single digits). It's difficult to prove that more efficient general purpose algorithms don't exist, but the key take away from this is that algorithms will tend to either have exorbitant worst case performance or may fail to find optimal solutions (or both) -- it is very important to be able to show that worst case performance is acceptable. This quickly leads to the conclusion that the problem must be further constrained, perhaps by limiting functionality or by using domain-specific optimizations. Unfortunately, it can be very difficult to design these more focused algorithms. In the specific case mentioned, we constrained the solution space to very small clusters (in terms of machine count) with small partition counts and supported exactly two backup copies, and accepted the fact that partition movement could potentially be significant (preferring to solve that issue through brute force). We then used the out-of-the-box PAS implementation as a fallback, delegating to it for configurations that were not supported by our algorithm. Our experience was that the PAS interface is quite usable, but there are intrinsic challenges to designing PAS implementations that should be very carefully evaluated before committing to that approach.

    Read the article

  • SQLAuthority News – Technology and Online Learning – Personal Technology Tip

    - by pinaldave
    This is the fourth post in my series about Personal Technology Tips and Tricks, and I knew exactly what I wanted to write about.  But at first I was conflicted.   Is online learning really a personal tip?  Is it really a trick that no one knows?  However, I have decided to stick with my original idea because online learning is everywhere.  It’s a trick that we can’t – and shouldn’t – overlook.  Here are ten of my ideas about how we should be taking advantage of online learning. 1) Get ahead in the work place.  We all know that a good way to become better at your job, and to become more competitive for promotions and raises.  Many people overlook online learning as a way to get job training, though, thinking it is a path for people still seeking their high school or college diplomas.  But take a look at what companies like Pluralsight offer, and you might be pleasantly surprised. 2) Flexibility.  Some of us remember the heady days of college with nostalgia, others remember it with loathing.  A lot of bad memories come from remembering the strict scheduling and deadlines of college.  But with online learning, the classes fit into your free time – you don’t have to schedule your life around classes.  Even better, there are usually no homework or test deadlines, only one final deadline where all work must be completed.  This allows students to work at their own pace – my next point. 3) Learn at your own pace.  One thing traditional classes suffer from is that they are highly structured.  If you work more quickly than the rest of the class, or especially if you work more slowly, traditional classes do not work for you.  Online courses let you move as quickly or as slowly as you find necessary. 4) Fill gaps in your knowledge.  I’m sure I am not the only one who has thought to myself “I would love to take a course on X, Y, or Z.”  The problem is that it can be very hard to find the perfect class that teaches exactly what you’re interested in, at a time and a price that’s right.  But online courses are far easier to tailor exactly to your tastes. 5) Fits into your schedule.  Even harder to find than a class you’re interested in is one that fits into your schedule.  If you hold down a job – even a part time job – you know it’s next to impossible to find class times that work for you.  Online classes can be taken anytime, anywhere.  On your lunch break, in your car, or in your pajamas at the end of the day. 6) Student centered.  Online learning has to stay competitive.  There are hundreds, even thousands of options for students, and every provider has to find a way to lure in students and provide them with a good education.  The best kind of online classes know that they need to provide great classes, flexible scheduling, and high quality to attract students – and the student benefit from this kind of attention. 7) You can save money.  The average cost for a college diploma in the US is over $20,000.  I don’t know about you, but that is not the kind of money I just have lying around for a rainy day.  Sometimes I think I’d love to go back to school, but not for that price tag.  Online courses are much, much more affordable.  And even better, you can pick and choose what courses you’d like to take, and avoid all the “electives” in college. 8) Get access to the best minds in the business.  One of the perks of being the best in your field is that you are one person who knows the most about something.  If students are lucky, you will choose to share that knowledge with them on a college campus.  For the hundreds of other students who don’t live in your area and don’t attend your school, they are out of luck.  But luckily for them, more and more online courses is attracting the best minds in the business, and if you enroll online, you can take advantage of these minds, too. 9) Save your time.  Getting a four year degree is a great decision, and I encourage everyone to pursue their Bachelor’s – and beyond.  But if you have already tried to go to school, or already have a degree but are thinking of switching fields, four years of your life is a long time to go back and redo things.  Getting your online degree will save you time by allowing you to work at your own pace, set your own schedule, and take only the classes you’re interested in. 10) Variety of degrees and programs.  If you’re not sure what you’re interested in, or if you only need a few classes here and there to finish a program, online classes are perfect for you.  You can pick and choose what you’d like, and sample a wide variety without spending too much money. I hope I’ve outlined for everyone just a few ways that they could benefit from online learning.  If you’re still unconvinced, just check out a few of my other articles that expand more on these topics. Here are the blog posts relevent to developer trainings: Developer Training - Importance and Significance - Part 1 Developer Training – Employee Morals and Ethics – Part 2 Developer Training – Difficult Questions and Alternative Perspective - Part 3 Developer Training – Various Options for Developer Training – Part 4 Developer Training – A Conclusive Summary- Part 5 Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Developer Training, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Developer Training

    Read the article

< Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >