Search Results

Search found 59964 results on 2399 pages for 'asp net mvc views'.

Page 13/2399 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • ASP.NET 4 Unleashed in Bookstores!

    - by Stephen Walther
    I’m happy to announce that ASP.NET 4 Unleashed is now in bookstores! The book is over 1,800 pages and it is packed with code samples and tutorials on all the features of ASP.NET 4. Given the size of the book – did I mention that it is over 1,800 pages? -- I can safely say that it is the most comprehensive book on ASP.NET  This edition of the book has several new chapters written by Kevin Hoffman and Nate Dudek. Kevin and Nate did a fantastic job of covering the new features of ASP.NET 4 including: The new ASP.NET Chart Control The new ASP.NET QueryExtender Control The new ASP.NET routing framework jQuery You can buy the book from your local bookstore or buy the book from Amazon:

    Read the article

  • Table sorting & pagination with jQuery and Razor in ASP.NET MVC

    - by hajan
    Introduction jQuery enjoys living inside pages which are built on top of ASP.NET MVC Framework. The ASP.NET MVC is a place where things are organized very well and it is quite hard to make them dirty, especially because the pattern enforces you on purity (you can still make it dirty if you want so ;) ). We all know how easy is to build a HTML table with a header row, footer row and table rows showing some data. With ASP.NET MVC we can do this pretty easy, but, the result will be pure HTML table which only shows data, but does not includes sorting, pagination or some other advanced features that we were used to have in the ASP.NET WebForms GridView. Ok, there is the WebGrid MVC Helper, but what if we want to make something from pure table in our own clean style? In one of my recent projects, I’ve been using the jQuery tablesorter and tablesorter.pager plugins that go along. You don’t need to know jQuery to make this work… You need to know little CSS to create nice design for your table, but of course you can use mine from the demo… So, what you will see in this blog is how to attach this plugin to your pure html table and a div for pagination and make your table with advanced sorting and pagination features.   Demo Project Resources The resources I’m using for this demo project are shown in the following solution explorer window print screen: Content/images – folder that contains all the up/down arrow images, pagination buttons etc. You can freely replace them with your own, but keep the names the same if you don’t want to change anything in the CSS we will built later. Content/Site.css – The main css theme, where we will add the theme for our table too Controllers/HomeController.cs – The controller I’m using for this project Models/Person.cs – For this demo, I’m using Person.cs class Scripts – jquery-1.4.4.min.js, jquery.tablesorter.js, jquery.tablesorter.pager.js – required script to make the magic happens Views/Home/Index.cshtml – Index view (razor view engine) the other items are not important for the demo. ASP.NET MVC 1. Model In this demo I use only one Person class which defines Person entity with several properties. You can use your own model, maybe one which will access data from database or any other resource. Person.cs public class Person {     public string Name { get; set; }     public string Surname { get; set; }     public string Email { get; set; }     public int? Phone { get; set; }     public DateTime? DateAdded { get; set; }     public int? Age { get; set; }     public Person(string name, string surname, string email,         int? phone, DateTime? dateadded, int? age)     {         Name = name;         Surname = surname;         Email = email;         Phone = phone;         DateAdded = dateadded;         Age = age;     } } 2. View In our example, we have only one Index.chtml page where Razor View engine is used. Razor view engine is my favorite for ASP.NET MVC because it’s very intuitive, fluid and keeps your code clean. 3. Controller Since this is simple example with one page, we use one HomeController.cs where we have two methods, one of ActionResult type (Index) and another GetPeople() used to create and return list of people. HomeController.cs public class HomeController : Controller {     //     // GET: /Home/     public ActionResult Index()     {         ViewBag.People = GetPeople();         return View();     }     public List<Person> GetPeople()     {         List<Person> listPeople = new List<Person>();                  listPeople.Add(new Person("Hajan", "Selmani", "[email protected]", 070070070,DateTime.Now, 25));                     listPeople.Add(new Person("Straight", "Dean", "[email protected]", 123456789, DateTime.Now.AddDays(-5), 35));         listPeople.Add(new Person("Karsen", "Livia", "[email protected]", 46874651, DateTime.Now.AddDays(-2), 31));         listPeople.Add(new Person("Ringer", "Anne", "[email protected]", null, DateTime.Now, null));         listPeople.Add(new Person("O'Leary", "Michael", "[email protected]", 32424344, DateTime.Now, 44));         listPeople.Add(new Person("Gringlesby", "Anne", "[email protected]", null, DateTime.Now.AddDays(-9), 18));         listPeople.Add(new Person("Locksley", "Stearns", "[email protected]", 2135345, DateTime.Now, null));         listPeople.Add(new Person("DeFrance", "Michel", "[email protected]", 235325352, DateTime.Now.AddDays(-18), null));         listPeople.Add(new Person("White", "Johnson", null, null, DateTime.Now.AddDays(-22), 55));         listPeople.Add(new Person("Panteley", "Sylvia", null, 23233223, DateTime.Now.AddDays(-1), 32));         listPeople.Add(new Person("Blotchet-Halls", "Reginald", null, 323243423, DateTime.Now, 26));         listPeople.Add(new Person("Merr", "South", "[email protected]", 3232442, DateTime.Now.AddDays(-5), 85));         listPeople.Add(new Person("MacFeather", "Stearns", "[email protected]", null, DateTime.Now, null));         return listPeople;     } }   TABLE CSS/HTML DESIGN Now, lets start with the implementation. First of all, lets create the table structure and the main CSS. 1. HTML Structure @{     Layout = null;     } <!DOCTYPE html> <html> <head>     <title>ASP.NET & jQuery</title>     <!-- referencing styles, scripts and writing custom js scripts will go here --> </head> <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th> value </th>                 </tr>             </thead>             <tbody>                 <tr>                     <td>value</td>                 </tr>             </tbody>             <tfoot>                 <tr>                     <th> value </th>                 </tr>             </tfoot>         </table>         <div id="pager">                      </div>     </div> </body> </html> So, this is the main structure you need to create for each of your tables where you want to apply the functionality we will create. Of course the scripts are referenced once ;). As you see, our table has class tablesorter and also we have a div with id pager. In the next steps we will use both these to create the needed functionalities. The complete Index.cshtml coded to get the data from controller and display in the page is: <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </thead>             <tbody>                 @{                     foreach (var p in ViewBag.People)                     {                                 <tr>                         <td>@p.Name</td>                         <td>@p.Surname</td>                         <td>@p.Email</td>                         <td>@p.Phone</td>                         <td>@p.DateAdded</td>                     </tr>                     }                 }             </tbody>             <tfoot>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </tfoot>         </table>         <div id="pager" style="position: none;">             <form>             <img src="@Url.Content("~/Content/images/first.png")" class="first" />             <img src="@Url.Content("~/Content/images/prev.png")" class="prev" />             <input type="text" class="pagedisplay" />             <img src="@Url.Content("~/Content/images/next.png")" class="next" />             <img src="@Url.Content("~/Content/images/last.png")" class="last" />             <select class="pagesize">                 <option selected="selected" value="5">5</option>                 <option value="10">10</option>                 <option value="20">20</option>                 <option value="30">30</option>                 <option value="40">40</option>             </select>             </form>         </div>     </div> </body> So, mainly the structure is the same. I have added @Razor code to create table with data retrieved from the ViewBag.People which has been filled with data in the home controller. 2. CSS Design The CSS code I’ve created is: /* DEMO TABLE */ body {     font-size: 75%;     font-family: Verdana, Tahoma, Arial, "Helvetica Neue", Helvetica, Sans-Serif;     color: #232323;     background-color: #fff; } table { border-spacing:0; border:1px solid gray;} table.tablesorter thead tr .header {     background-image: url(images/bg.png);     background-repeat: no-repeat;     background-position: center right;     cursor: pointer; } table.tablesorter tbody td {     color: #3D3D3D;     padding: 4px;     background-color: #FFF;     vertical-align: top; } table.tablesorter tbody tr.odd td {     background-color:#F0F0F6; } table.tablesorter thead tr .headerSortUp {     background-image: url(images/asc.png); } table.tablesorter thead tr .headerSortDown {     background-image: url(images/desc.png); } table th { width:150px;            border:1px outset gray;            background-color:#3C78B5;            color:White;            cursor:pointer; } table thead th:hover { background-color:Yellow; color:Black;} table td { width:150px; border:1px solid gray;} PAGINATION AND SORTING Now, when everything is ready and we have the data, lets make pagination and sorting functionalities 1. jQuery Scripts referencing <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.pager.js")" type="text/javascript"></script> 2. jQuery Sorting and Pagination script   <script type="text/javascript">     $(function () {         $("table.tablesorter").tablesorter({ widthFixed: true, sortList: [[0, 0]] })         .tablesorterPager({ container: $("#pager"), size: $(".pagesize option:selected").val() });     }); </script> So, with only two lines of code, I’m using both tablesorter and tablesorterPager plugins, giving some options to both these. Options added: tablesorter - widthFixed: true – gives fixed width of the columns tablesorter - sortList[[0,0]] – An array of instructions for per-column sorting and direction in the format: [[columnIndex, sortDirection], ... ] where columnIndex is a zero-based index for your columns left-to-right and sortDirection is 0 for Ascending and 1 for Descending. A valid argument that sorts ascending first by column 1 and then column 2 looks like: [[0,0],[1,0]] (source: http://tablesorter.com/docs/) tablesorterPager – container: $(“#pager”) – tells the pager container, the div with id pager in our case. tablesorterPager – size: the default size of each page, where I get the default value selected, so if you put selected to any other of the options in your select list, you will have this number of rows as default per page for the table too. END RESULTS 1. Table once the page is loaded (default results per page is 5 and is automatically sorted by 1st column as sortList is specified) 2. Sorted by Phone Descending 3. Changed pagination to 10 items per page 4. Sorted by Phone and Name (use SHIFT to sort on multiple columns) 5. Sorted by Date Added 6. Page 3, 5 items per page   ADDITIONAL ENHANCEMENTS We can do additional enhancements to the table. We can make search for each column. I will cover this in one of my next blogs. Stay tuned. DEMO PROJECT You can download demo project source code from HERE.CONCLUSION Once you finish with the demo, run your page and open the source code. You will be amazed of the purity of your code.Working with pagination in client side can be very useful. One of the benefits is performance, but if you have thousands of rows in your tables, you will get opposite result when talking about performance. Hence, sometimes it is nice idea to make pagination on back-end. So, the compromise between both approaches would be best to combine both of them. I use at most up to 500 rows on client-side and once the user reach the last page, we can trigger ajax postback which can get the next 500 rows using server-side pagination of the same data. I would like to recommend the following blog post http://weblogs.asp.net/gunnarpeipman/archive/2010/09/14/returning-paged-results-from-repositories-using-pagedresult-lt-t-gt.aspx, which will help you understand how to return page results from repository. I hope this was helpful post for you. Wait for my next posts ;). Please do let me know your feedback. Best Regards, Hajan

    Read the article

  • Web 2.0 Extension for ASP.NET

    - by Visual WebGui
    ASP.NET is now much extended to support line of business and data centric applications, providing Web 2.0 rich user interfaces within a native web environment. New capabilities allowed by the Visual WebGui extension turn Visual Studio into a rapid development tool for the web, leveraging the wide set of ASP.NET web infrastructures runtime and extending its paradigms to support highly interactive applications. Taking advantage of the ASP.NET infrastructures Using the native ASP.NET ISAPI filter: aspnet_isapi...(read more)

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Editing Routes in ASP.NET MVC

    - by imran_ku07
    Introduction :        Phil Haack's had written two great articles about Editable Routes, Editable Routes or Editable Routes Using App_Code.These Article are great. But if you not need to unit test your Routes and don't care about restart Application Domian during editing your Routes then global.asax file is the fastest and easiest to achieve the same. In this Article I will use Global.asax file instead of Global.asax.cs file for defining Routes and you will also see how this whole process will works.   Description :          You just need to Cut (or Copy) the code inside Global.asax.cs and paste it in Global.asax inside runat server tag.          You can simply do this by cutting the code of Global.asax.cs,          and paste it inside Global.asax,               Easy and quick ,Now you can change Global.asax without compiling the application. How this works :        I think it is worth here to see what is happening here.        Actually, ASP.NET will use Global.asax file to create a class named global_asax within ASP namespace and place all the code in Global.asax inside the class global_asax class which is created at runtime,                namespace ASP               {                    public class global_asax: NerdDinner.MvcApplication                    {                         //Any definitions defined in Global.asax like Application_Start method                                     }               }         Which inherits from class defined in Application tag,      <%@ Application Codebehind="Global.asax.cs" Inherits="NerdDinner.MvcApplication" Language="C#" %>          Actually ASP.NET creates a pool of application objects of this class, which varies from 1 to 100. Every request take one of these application objects to a serve incoming requests. After receiving an application object then it will call application specific events, like Application_Start(for only firstRequest), Application_BeginRequest(for every request), and so on. Therefore if these methods are defined in global_asax class then ASP.NET will call these method from global_asax, if not then it will use base class methods may be defined in Global.asax.cs(the concept known as shadowing or hiding). Summary :        In this article, I showed how easily and quickly you can make your Routes Editable. But also note that any change in global.asax results in Application Domain restart and this technique also makes your Route Unit Test difficult.

    Read the article

  • ASP.NET MVC Strongly Typed Partial View, gives could not load type error

    - by Matt
    I am attempting to create a strongly typed view with a "MVC View User Control" that is being rendered using Html.RenderPartial(). The top of my ascx file looks like this: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<System.Collections.IEnumerable<string>>" %> There is nothing else on this page, currently. When I execute the app and load the page that renders this control, I get the following error: Could not load type 'System.Web.Mvc.ViewUserControl<System.Collections.IEnumerable<string>>'. So, then I simplified it: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<String>" %> And then, just in case it needed to be fully qualified: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<System.String>" %> Everytime I get the same error (substituting type). what am I doing wrong here? I'm on .NET 3.5 with ASP.NET MVC 1.0 RTM.

    Read the article

  • Working with partial views

    - by MrW
    Hi. I'm trying to create a page that contains a grid and searching. The issue is that I want to have a partial view for the grid and one for the searching. If doing a search, this should render the grid partial view with the new information. At the moment I need information, such as what column I'm sorting by and so on, from the grid (currently stored in viewdata), in order to do the search as I want to keep those settings. This information is only available in the grid partial though. What's the best approach of this to make it neat and nice in the code, but not a mess to work with? Where can I store information that I need in the other partial view? Partial View 1; <table> <%= Html.CreateGrid(Model, "Grid", "Grid", (int)ViewData["SortColumn"], (bool)ViewData["SortedASC"])%> </table> Partial View 2; <div class="searchControl"> <input type="text" class="SearchBox" href="<%= Url.Action("Grid", "Grid", new {page = 1, columnToSortBy=/* would like to access viewdata from partial view 1 here. */, sortASC = /* would like to access viewdata from partial view 1 here. */ } ) %>" /> <input type="submit" value="Search" class="SearchButton" /> </div> I know I might take the completely wrong approach on this, so feel free to point me in the right one! Thanks!

    Read the article

  • Defining Views Based On Selection

    - by Wayne
    Well the title isn't very descriptive but I'm not exactly sure how to explain but here goes! I have a web application (can use either MVC or standard web forms) which a user signs in to. If the user has signed up for more than one product they will have the option to switch between them. For the sakes of this example lets say User1 signs in and has access to Product1, Product2 and Product3. Now, each product will be very different and offer different functionally. What I want is the main view to be focused around the product they have selected and not redirected to a sub domain. What I don't want to have to do is get them to go to www.mysite.com/product1 or www.mysite.com/product2 but simply www.mysite.com regardless of the product they have selected and have the site render the views etc for that product. Wow does any of that make any sense? I was thinking mabe the use of sessions or something and URL rewriting? Are there any sample apps out there that make use of the same kind of functionallity that I could take a look at? Thanks for any help I appreciate it!

    Read the article

  • Daily tech links for .net and related technologies - Mar 26-28, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Mar 26-28, 2010 Web Development Creating Rich View Components in ASP.NET MVC - manzurrashid Diagnosing ASP.NET MVC Problems - Brad Wilson Templated Helpers & Custom Model Binders in ASP.NET MVC 2 - gshackles The jQuery Templating Plugin and Why You Should Be Excited! - Chris Love Web Deployment Made Awesome: If You're Using XCopy, You're Doing It Wrong - Scott Hansleman Dynamic User Specific CSS Selection at Run Time - Misfit Geek Sending email...(read more)

    Read the article

  • Daily tech links for .net and related technologies - June 8-11, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - June 8-11, 2010 Web Development ASPNET MVC: Handling Multiple Buttons on a Form with jQuery - Donn Building a MVC2 Template, Part 14, Logging Services - Eric Simple Accordion Menu With jQuery & ASP.NET - Steve Boschi Conditional Validation in MVC -Simonince Creating a RESTful Web Service Using ASP.Net MVC Part 23 – Bug Fixes and Area Support - Shoulders of Giants Web Design The Principles Of Cross-Browser CSS Coding - Louis Lazaris Transparency...(read more)

    Read the article

  • MVC Pattern, ViewModels, Location of conversion.

    - by Pino
    I've been working with ASP.Net MVC for around a year now and have created my applications in the following way. X.Web - MVC Application Contains Controller and Views X.Lib - Contains Data Access, Repositories and Services. This allows us to drop the .Lib into any application that requires it. At the moment we are using Entity Framework, the conversion from EntityO to a more specific model is done in the controller. This set-up means if a service method returns an EntityO and then the Controller will do a conversion before the data is passed to a view. I'm interested to know if I should move the conversion to the Service so that the app doesn't have Entity Objects being passed around.

    Read the article

  • POST from edit/create partial views loaded into Twitter Bootstrap modal

    - by mare
    I'm struggling with AJAX POST from the form that was loaded into Twitter Bootstrap modal dialog. Partial view form goes like this: @using (Html.BeginForm()) { // fields // ... // submit <input type="submit" value="@ButtonsRes.button_save" /> } Now this is being used in non AJAX editing with classic postbacks. Is it possible to use the same partial for AJAX functionality? Or should I abstract away the inputs into it's own partial view? Like this: @using (Ajax.BeginForm()) { @Html.Partial("~/Views/Shared/ImageEditInputs.cshtml") // but what to do with this one then? <input type="submit" value="@ButtonsRes.button_save" /> } I know how to load this into Bootstrap modal but few changes should be done on the fly: the buttons in Bootstrap modal should be placed in a special container (the modal footer), the AJAX POST should be done when clicking Save which would first, validate the form and keep the modal opened if not valid (display the errors of course) second, post and close the modal if everything went fine in the view that opened the modal, display some feedback information at the top that save was succesful. I'm mostly struggling where to put what JS code. So far I have this within the List view, which wires up the modals: $(document).ready(function () { $('.openModalDialog').click(function (event) { event.preventDefault(); var url = $(this).attr('href'); $.get(url, function (data) { $('#modalContent').html(data); $('#modal').modal('show'); }); }); }); The above code, however, doesn't take into the account the special Bootstrap modal content placeholder (header, content, footer). Is it possible to achieve what I want without having multiple partial views with the same inputs but different @using and without having to do hacks with moving the Submit button around?

    Read the article

  • How to configure Visual Studio 2010 code coverage for ASP.NET MVC unit tests

    - by DigiMortal
    I just got Visual Studio 2010 code coverage work with ASP.NET MVC application unit tests. Everything is simple after you have spent some time with forums, blogs and Google. To save your valuable time I wrote this posting to guide you through the process of making code coverage work with ASP.NET MVC application unit tests. After some fighting with Visual Studio I got everything to work as expected. I am still not very sure why users must deal with this mess, but okay – I survived it. Before you start configuring Visual Studio I expect your solution meets the following needs: there are at least one library that will be tested, there is at least on library that contains tests to be run, there are some classes and some tests for them, and, of course, you are using version of Visual Studio 2010 that supports tests (I have Visual Studio 2010 Ultimate). Now open the following screenshot to separate windows and follow the steps given below. Visual Studio 2010 Test Settings window. Click on image to see it at original size.  Double click on Local.testsettings under Solution Items. Test settings window will be opened. Select “Data and Diagnostics” from left pane. Mark checkboxes “ASP.NET Profiler” and “Code Coverage”. Move cursor to “Code Coverage” line and press Configure button or make double click on line. Assemblies selection window will be opened. Mark checkboxes that are located before assemblies about what you want code coverage reports and apply settings. Save your project and close Visual Studio. Run Visual Studio as Administrator and run tests. NB! Select Test => Run => Tests in Current Context from menu. When tests are run you can open code coverage results by selecting Test => Windows => Code Coverage Results from menu. Here you can see my example test results. Visual Studio 2010 Test Results window. All my tests passed this time. :) Click on image to see it at original size.  And here are the code coverage results. Visual Studio 2101 Code Coverage Results. I need a lot more tests for sure. Click on image to see it at original size.  As you can see everything was pretty simple. But it took me sometime to figure out how to get everything work as expected. Problems? You may face some problems when making code coverage work. Here is my short list of possible problems. Make sure you have all assemblies available for code coverage. In some cases it needs more libraries to be referenced as you currently have. By example, I had to add some more Enterprise Library assemblies to my project. You can use EventViewer to discover errors that where given during testing. Make sure you selected all testable assemblies from Code Coverage settings like shown above. Otherwise you may get empty results. Tests with code coverage are slower because we need ASP.NET profiler. If your machine slows down then try to free more resources.

    Read the article

  • What is New in ASP.NET 4 Web Development Overview

    - by Aamir Hasan
     Microsoft Recently Microsoft introduce Visual  studio 2010 which have new feature's Name of some new Features are given below. In ASP.NET 4.O has focus on performance and Search Engine Optimization. I'll be taking a look at what I think are the most important new features in ASP.NET 4.Output cache extensibility Session state compression View state mode for individual control Page.MetaKeyword and Page.MetaDescription properties Response.RedirectPermanent method Routing in ASP.NET Increase the URL character length New syntax for Html Encode Predictable Client IDs Web.config file refactoring Auto-Start ASP.NET applications Improvements on Microsoft Ajax LibraryReference:ASP.NET 4 and Visual Studio 2010 Web Development Overview 

    Read the article

  • Creating Wizard in ASP.NET MVC (Part 3 - jQuery)

    - by bipinjoshi
    In Part 1 and Part 2 of this article series you developed a wizard in an ASP.NET MVC application using full page postback and Ajax helper respectively. In this final part of this series you will develop a client side wizard using jQuery. The navigation between various wizard steps (Next, Previous) happens without any postback (neither full nor partial). The only step that causes form submission to the server is clicking on the Finish wizard button.http://www.binaryintellect.net/articles/d278e8aa-3f37-40c5-92a2-74e65b1b5653.aspx 

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Html5 Input Validation Presentation

    - by srkirkland
    Last week I gave a presentations to the 2011 UC Davis IT Security Symposium that covered input validation features in HTML5.  I mostly discussed the following three topics: New Html5 Input Types (like <input type=”email” />) Html5 Constraints (like <input type=”text” required maxlength=”8” />) Polyfills The slides only cover part of the story since there are a few “live demos.”  You can find all of the demo code on my github repository https://github.com/srkirkland/ITSecuritySymposium.  You’ll need ASP.NET Mvc 3 installed to run them. The slides are also available in my GitHub repository, but I’ve also added them to slideshare as well because that’s what the cool kids do: http://www.slideshare.net/srkirkland/data-validation-in-web-applications. I believe the presentation was well received and most people learned something, so I just wanted to share.  When loading up the Html5 demo just click on the Html5 tab and go through each example. Enjoy!   [Examples from the Slides and Demos]  

    Read the article

  • Using Razor together with ASP.NET Web API

    - by Fredrik N
    On the blog post “If Then, If Then, If Then, MVC” I found the following code example: [HttpGet]public ActionResult List() { var list = new[] { "John", "Pete", "Ben" }; if (Request.AcceptTypes.Contains("application/json")) { return Json(list, JsonRequestBehavior.AllowGet); } if (Request.IsAjaxRequest()) [ return PartialView("_List", list); } return View(list); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is a ASP.NET MVC Controller where it reuse the same “business” code but returns JSON if the request require JSON, a partial view when the request is an AJAX request or a normal ASP.NET MVC View. The above code may have several reasons to be changed, and also do several things, the code is not closed for modifications. To extend the code with a new way of presenting the model, the code need to be modified. So I started to think about how the above code could be rewritten so it will follow the Single Responsibility and open-close principle. I came up with the following result and with the use of ASP.NET Web API: public String[] Get() { return new[] { "John", "Pete", "Ben" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   It just returns the model, nothing more. The code will do one thing and it will do it well. But it will not solve the problem when it comes to return Views. If we use the ASP.NET Web Api we can get the result as JSON or XML, but not as a partial view or as a ASP.NET MVC view. Wouldn’t it be nice if we could do the following against the Get() method?   Accept: application/json JSON will be returned – Already part of the Web API   Accept: text/html Returns the model as HTML by using a View   The best thing, it’s possible!   By using the RazorEngine I created a custom MediaTypeFormatter (RazorFormatter, code at the end of this blog post) and associate it with the media type “text/html”. I decided to use convention before configuration to decide which Razor view should be used to render the model. To register the formatter I added the following code to Global.asax: GlobalConfiguration.Configuration.Formatters.Add(new RazorFormatter()); Here is an example of a ApiController that just simply returns a model: using System.Web.Http; namespace WebApiRazor.Controllers { public class CustomersController : ApiController { // GET api/values public Customer Get() { return new Customer { Name = "John Doe", Country = "Sweden" }; } } public class Customer { public string Name { get; set; } public string Country { get; set; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Because I decided to use convention before configuration I only need to add a view with the same name as the model, Customer.cshtml, here is the example of the View:   <!DOCTYPE html> <html> <head> <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.min.js" type="text/javascript"></script> </head> <body> <div id="body"> <section> <div> <hgroup> <h1>Welcome '@Model.Name' to ASP.NET Web API Razor Formatter!</h1> </hgroup> </div> <p> Using the same URL "api/values" but using AJAX: <button>Press to show content!</button> </p> <p> </p> </section> </div> </body> <script type="text/javascript"> $("button").click(function () { $.ajax({ url: '/api/values', type: "GET", contentType: "application/json; charset=utf-8", success: function(data, status, xhr) { alert(data.Name); }, error: function(xhr, status, error) { alert(error); }}); }); </script> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Now when I open up a browser and enter the following URL: http://localhost/api/customers the above View will be displayed and it will render the model the ApiController returns. If I use Ajax against the same ApiController with the content type set to “json”, the ApiController will now return the model as JSON. Here is a part of a really early prototype of the Razor formatter (The code is far from perfect, just use it for testing). I will rewrite the code and also make it possible to specify an attribute to the returned model, so it can decide which view to be used when the media type is “text/html”, but by default the formatter will use convention: using System; using System.Net.Http.Formatting; namespace WebApiRazor.Models { using System.IO; using System.Net; using System.Net.Http.Headers; using System.Reflection; using System.Threading.Tasks; using RazorEngine; public class RazorFormatter : MediaTypeFormatter { public RazorFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/html")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xhtml+xml")); } //... public override Task WriteToStreamAsync( Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { var task = Task.Factory.StartNew(() => { var viewPath = // Get path to the view by the name of the type var template = File.ReadAllText(viewPath); Razor.Compile(template, type, type.Name); var razor = Razor.Run(type.Name, value); var buf = System.Text.Encoding.Default.GetBytes(razor); stream.Write(buf, 0, buf.Length); stream.Flush(); }); return task; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using formatters and the ASP.NET Web API we can easily just extend our code without doing any changes to our ApiControllers when we want to return a new format. This blog post just showed how we can extend the Web API to use Razor to format a returned model into HTML.   If you want to know when I will post more blog posts, please feel free to follow me on twitter:   @fredrikn

    Read the article

  • WP7 Tips–Part I– Media File Coding Techniques to help pass the Windows Phone 7 Marketplace Certification Requirements

    - by seaniannuzzi
    Overview Developing an application that plays media files on a Windows Phone 7 Device seems fairly straight forward.  However, what can make this a bit frustrating are the necessary requirements in order to pass the WP7 marketplace requirements so that your application can be published.  If you are new to this development, be aware of these common challenges that are likely to be made.  Below are some techniques and recommendations on how optimize your application to handle playing MP3 and/or WMA files that needs to adhere to the marketplace requirements.   Windows Phone 7 Certification Requirements Windows Phone 7 Developers Blog   Some common challenges are: Not prompting the user if another media file is playing in the background before playing your media file Not allowing the user to control the volume Not allowing the user to mute the sound Not allowing the media to be interrupted by a phone call  To keep this as simple as possible I am only going to focus on what “not to do” and what “to do” in order to implement a simple media solution. Things you will need or may be useful to you before you begin: Visual Studio 2010 Visual Studio 2010 Feature Packs Windows Phone 7 Developer Tools Visual Studio 2010 Express for Windows Phone Windows Phone Emulator Resources Silverlight 4 Tools For Visual Studio XNA Game Studio 4.0 Microsoft Expression Blend for Windows Phone Note: Please keep in mind you do not need all of these downloaded and installed, it is just easier to have all that you need now rather than add them on later.   Objective Summary Create a Windows Phone 7 – Windows Media Sample Application.  The application will implement many of the required features in order to pass the WP7 marketplace certification requirements in order to publish an application to WP7’s marketplace. (Disclaimer: I am not trying to indicate that this application will always pass as the requirements may change or be updated)   Step 1: – Create a New Windows Phone 7 Project   Step 2: – Update the Title and Application Name of your WP7 Application For this example I changed: the Title to: “DOTNETNUZZI WP7 MEDIA SAMPLE - v1.00” and the Page Title to:  “media magic”. Note: I also updated the background.   Step 3: – XAML - Media Element Preparation and Best Practice Before we begin the next step I just wanted to point out a few things that you should not do as a best practice when developing an application for WP7 that is playing music.  Please keep in mind that these requirements are not the same if you are playing Sound Effects and are geared towards playing media in the background.   If you have coded this – be prepared to change it:   To avoid a failure from the market place remove all of your media source elements from your XAML or simply create them dynamically.  To keep this simple we will remove the source and set the AutoPlay property to false to ensure that there are no media elements are active when the application is started. Proper example of the media element with No Source:   Some Additional Settings - Add XAML Support for a Mute Button   Step 4: – Boolean to handle toggle of Mute Feature Step 5: – Add Event Handler for Main Page Load   Step 6: – Add Reference to the XNA Framework   Step 7: – Add two Using Statements to Resolve the Namespace of Media and the Application Bar using Microsoft.Xna.Framework.Media; using Microsoft.Phone.Shell;   Step 8: – Add the Method to Check the Media State as Shown Below   Step 9: – Add Code to Mute the Media File Step 10: – Add Code to Play the Media File //if the state of the media has been checked you are good to go. media_sample.Play(); Note: If we tried to perform this operation at this point you will receive the following error: System.InvalidOperationException was unhandled Message=FrameworkDispatcher.Update has not been called. Regular FrameworkDispatcher.Update calls are necessary for fire and forget sound effects and framework events to function correctly. See http://go.microsoft.com/fwlink/?LinkId=193853 for details. StackTrace:        at Microsoft.Xna.Framework.FrameworkDispatcher.AddNewPendingCall(ManagedCallType callType, UInt32 arg)        at Microsoft.Xna.Framework.UserAsyncDispatcher.HandleManagedCallback(ManagedCallType managedCallType, UInt32 managedCallArgs) at Microsoft.Xna.Framework.UserAsyncDispatcher.AsyncDispatcherThreadFunction()            It is not recommended that you just add the FrameworkDispatcher.Update(); call before playing the media file. It is recommended that you implement the following class to your solution and implement this class in the app.xaml.cs file.   Step 11: – Add FrameworkDispatcher Features I recommend creating a class named XNAAsyncDispatcher and adding the following code:   After you have added the code accordingly, you can now implement this into your app.xaml.cs file as highlighted below.   Note:  If you application sound file is not playing make sure you have the proper “Build Action” set such as Content.   Running the Sample Now that we have some of the foundation created you should be able to run the application successfully.  When the application launches your sound options should be set accordingly when the “checkMediaState” method is called.  As a result the application will properly setup the media options and/or alert the user accordinglyper the certification requirements.  In addition, the sample also shows a quick way to mute the sound in your application by simply removing the URI source of the media file.  If everything successfully compiled the application should look similar to below.                 <sound playing>   Summary At this point we have a fully functional application that provides techniques on how to avoid some common challenges when working with media files and developing applications for Windows Phone 7.  The techniques mentioned above should make things a little easier and helpful in getting your WP7 application approved and published on the Marketplace.  The next blog post will be titled: WP7 Tips–Part II - How to write code that will pass the Windows Phone 7 Marketplace Requirements for Themes (light and dark). If anyone has any questions or comments please comment on this blog. 

    Read the article

  • ASP.NET4.0-Compatibility Settings for rendering controls

    - by Jalpesh P. Vadgama
    With asp.net 4.0 Microsoft has taken a great step for rendering controls. Now it will have more cleaner html there are lots of enhancement for rendering html controls in asp.net 4.0 now all controls like Menu, List View and other controls renders more cleaner html. But recently i have faced strange problem in rendering controls I have my site in asp.net 3.5 and i want to convert it in asp.net 4.0. I have applied my style as per 3.5 rendering and some of items are obsolete in asp.net 4.0. Modifying style sheet was a tedious job here asp.net 4.0 compatibility  setting comes into help. Asp.net 4.0 compatibility settings provides full backward compatibility in terms of the rendering controls. You can assign this in your web.config section like following. XML, using GeSHi 1.0.8.6<system.web> <pages controlRenderingCompatibilityVersion="3.5|4.0"/> </system.web>  Parsed in 0.001 seconds at 84.92 KB/s Here the values of controlRenderingCompatibility is a string which will indicate on which way control should render in browser if you provide 4.0 then it will controls with more cleaner html and while if you want to go with old legacy rendering like 3.5 then you can put 3.5 and it will render same way as you are doing in asp.net 3.5. Hope this help you!!! Technorati Tags: ASP.NET 4.0,controlRenderingCompatibility

    Read the article

  • Ban HTML comments from your pages and views

    - by Bertrand Le Roy
    Too many people don’t realize that there are other options than <!-- --> comments to annotate HTML. These comments are harmful because they are sent to the client and thus make your page heavier than it needs to be. When doing ASP.NET, a simple drop-in replacement is server comments, which are delimited by <%-- --%> instead of <!-- -->. Those server comments are visible in your source code, but will never be rendered to the client. Here’s a simple way to sanitize a web site. From Visual Studio, hit CTRL+H to bring the search and replace dialog. Choose “Replace in Files” from the second meny on top of the dialog. Open the find options, check “use” and make sure “Regular expressions” are selected. Use “*.aspx;*.ascx;” as the file types to examine. Choose “Entire Solution” under “Look in”. Here’s the expression to search for comments: \<!--{[^-]*}--\> And here’s the replacement string: <%--\1--%> I usually use the “Find Next” and “Replace” buttons rather than the more brutal “Replace All” in order to not apply the fix blindingly. Once this is done, I do a second manual pass of finds with the same expression to make sure I didn’t miss anything.

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >