Search Results

Search found 1184 results on 48 pages for 'movement prediction'.

Page 13/48 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • How can I scale movement physics functions to frames per second (in a game engine)?

    - by Richard
    I am working on a game in Javascript (HTML5 Canvas). I implemented a simple algorithm that allows an object to follow another object with basic physics mixed in (a force vector to drive the object in the right direction, and the velocity stacks momentum, but is slowed by a constant drag force). At the moment, I set it up as a rectangle following the mouse (x, y) coordinates. Here's the code: // rectangle x, y position var x = 400; // starting x position var y = 250; // starting y position var FPS = 60; // frames per second of the screen // physics variables: var velX = 0; // initial velocity at 0 (not moving) var velY = 0; // not moving var drag = 0.92; // drag force reduces velocity by 8% per frame var force = 0.35; // overall force applied to move the rectangle var angle = 0; // angle in which to move // called every frame (at 60 frames per second): function update(){ // calculate distance between mouse and rectangle var dx = mouseX - x; var dy = mouseY - y; // calculate angle between mouse and rectangle var angle = Math.atan(dy/dx); if(dx < 0) angle += Math.PI; else if(dy < 0) angle += 2*Math.PI; // calculate the force (on or off, depending on user input) var curForce; if(keys[32]) // SPACE bar curForce = force; // if pressed, use 0.35 as force else curForce = 0; // otherwise, force is 0 // increment velocty by the force, and scaled by drag for x and y velX += curForce * Math.cos(angle); velX *= drag; velY += curForce * Math.sin(angle); velY *= drag; // update x and y by their velocities x += velX; y += velY; And that works fine at 60 frames per second. Now, the tricky part: my question is, if I change this to a different framerate (say, 30 FPS), how can I modify the force and drag values to keep the movement constant? That is, right now my rectangle (whose position is dictated by the x and y variables) moves at a maximum speed of about 4 pixels per second, and accelerates to its max speed in about 1 second. BUT, if I change the framerate, it moves slower (e.g. 30 FPS accelerates to only 2 pixels per frame). So, how can I create an equation that takes FPS (frames per second) as input, and spits out correct "drag" and "force" values that will behave the same way in real time? I know it's a heavy question, but perhaps somebody with game design experience, or knowledge of programming physics can help. Thank you for your efforts. jsFiddle: http://jsfiddle.net/BadDB

    Read the article

  • Vehicle: Boat accelerating and turning in Unity

    - by Emilios S.
    I'm trying to make a player-controllable boat in Unity and I'm running into problems with my code. 1) I want to make the boat to accelerate and decelerate steadily instead of simply moving the speed I'm telling it to right away. 2) I want to make the player unable to steer the boat unless it is moving. 3) If possible, I want to simulate the vertical floating of a boat during its movement (it going up and down) My current code (C#) is this: using UnityEngine; using System.Collections; public class VehicleScript : MonoBehaviour { public float speed=10; public float rotationspeed=50; // Use this for initialization // Update is called once per frame void Update () { // Forward movement if(Input.GetKey(KeyCode.I)) speed = transform.Translate (Vector3.left*speed*Time.deltaTime); // Backward movement if(Input.GetKey(KeyCode.K)) transform.Translate (Vector3.right*speed*Time.deltaTime); // Left movement if(Input.GetKey(KeyCode.J)) transform.Rotate (Vector3.down*rotationspeed*Time.deltaTime); // Right movement if(Input.GetKey(KeyCode.L)) transform.Rotate (Vector3.up*rotationspeed*Time.deltaTime); } } In the current state of my code, when I press the specified keys, the boat simply moves 10 units/sec instantly, and also stops instantly. I'm not really sure how to make the things stated above, so any help would be appreciated. Just to clarify, I don't necessarily need the full code to implement those features, I just want to know what functions to use in order to achieve the desired effects. Thank you very much.

    Read the article

  • Collision Detection on floor tiles Isometric game

    - by Anivrom
    I am having a very hard to time figuring out a bug in my code. It should have taken me 20 minutes but instead I've been working on it for over 12 hours. I am writing a isometric tile based game where the characters can walk freely amongst the tiles, but not be able to cross over to certain tiles that have a collides flag. Sounds easy enough, just check ahead of where the player is going to move using a Screen Coordinates to Tile method and check the tiles array using our returned xy indexes to see if its collidable or not. if its not, then don't move the character. The problem I'm having is my Screen to Tile method isn't spitting out the proper X,Y tile indexes. This method works flawlessly for selecting tiles with the mouse. NOTE: My X tiles go from left to right, and my Y tiles go from up to down. Reversed from some examples on the net. Here's the relevant code: public Vector2 ScreentoTile(Vector2 screenPoint) { //Vector2 is just a object with x and y float properties //camOffsetX,Y are my camera values that I use to shift everything but the //current camera target when the target moves //tilescale = 128, screenheight = 480, the -46 offset is to center // vertically + 16 px for some extra gfx in my tile png Vector2 tileIndex = new Vector2(-1,-1); screenPoint.x -= camOffsetX; screenPoint.y = screenHeight - screenPoint.y - camOffsetY - 46; tileIndex.x = (screenPoint.x / tileScale) + (screenPoint.y / (tileScale / 2)); tileIndex.y = (screenPoint.x / tileScale) - (screenPoint.y / (tileScale / 2)); return tileIndex; } The method that calls this code is: private void checkTileTouched () { if (Gdx.input.justTouched()) { if (last.x >= 0 && last.x < levelWidth && last.y >= 0 && last.y < levelHeight) { if (lastSelectedTile != null) lastSelectedTile.setColor(1, 1, 1, 1); Sprite sprite = levelTiles[(int) last.x][(int) last.y].sprite; sprite.setColor(0, 0.3f, 0, 1); lastSelectedTile = sprite; } } if (touchDown) { float moveX=0,moveY=0; Vector2 pos = new Vector2(); if (player.direction == direction_left) { moveX = -(player.moveSpeed); moveY = -(player.moveSpeed / 2); Gdx.app.log("Movement", String.valueOf("left")); } else if (player.direction == direction_upleft) { moveX = -(player.moveSpeed); moveY = 0; Gdx.app.log("Movement", String.valueOf("upleft")); } else if (player.direction == direction_up) { moveX = -(player.moveSpeed); moveY = player.moveSpeed / 2; Gdx.app.log("Movement", String.valueOf("up")); } else if (player.direction == direction_upright) { moveX = 0; moveY = player.moveSpeed; Gdx.app.log("Movement", String.valueOf("upright")); } else if (player.direction == direction_right) { moveX = player.moveSpeed; moveY = player.moveSpeed / 2; Gdx.app.log("Movement", String.valueOf("right")); } else if (player.direction == direction_downright) { moveX = player.moveSpeed; moveY = 0; Gdx.app.log("Movement", String.valueOf("downright")); } else if (player.direction == direction_down) { moveX = player.moveSpeed; moveY = -(player.moveSpeed / 2); Gdx.app.log("Movement", String.valueOf("down")); } else if (player.direction == direction_downleft) { moveX = 0; moveY = -(player.moveSpeed); Gdx.app.log("Movement", String.valueOf("downleft")); } //Player.moveSpeed is 1 //tileObjects.x is drawn in the center of the screen (400px,240px) // the sprite width is 64, height is 128 testX = moveX * 10; testY = moveY * 10; testX += tileObjects.get(player.zIndex).x + tileObjects.get(player.zIndex).sprite.getWidth() / 2; testY += tileObjects.get(player.zIndex).y + tileObjects.get(player.zIndex).sprite.getHeight() / 2; moveX += tileObjects.get(player.zIndex).x + tileObjects.get(player.zIndex).sprite.getWidth() / 2; moveY += tileObjects.get(player.zIndex).y + tileObjects.get(player.zIndex).sprite.getHeight() / 2; pos = ScreentoTile(new Vector2(moveX,moveY)); Vector2 pos2 = ScreentoTile(new Vector2(testX,testY)); if (!levelTiles[(int) pos2.x][(int) pos2.y].collides) { Vector2 newPlayerPos = ScreentoTile(new Vector2(moveX,moveY)); CenterOnCoord(moveX,moveY); player.tileX = (int)newPlayerPos.x; player.tileY = (int)newPlayerPos.y; } } } When the player is moving to the left (downleft-ish from the viewers point of view), my Pos2 X values decrease as expected but pos2 isnt checking ahead on the x tiles, it is checking ahead on the Y tiles(as if we were moving DOWN, not left), and vice versa, if the player moves down, it will check ahead on the X values (as if we are moving LEFT, instead of DOWN). instead of the Y values. I understand this is probably the most confusing and horribly written post ever, but I'm confused myself so I'm having a hard time explaining it to others lol. if you need more information please ask!! I'm so frustrated after over 12 hours of working on it I'm about to give up.

    Read the article

  • What are MPEG I, P and B frames?

    - by Fasih Khatib
    I was recently going over MPEG articles and videos to understand how it works. I understand what I, P and B frames do but I do not understand how the prediction is calculated. Assume that I want to record a video of a ball falling from the sky to the ground and then bouncing a couple of times before finally coming to a halt. Also, I am not clear with the concept of the 16x16 macroblock. Please tell me: how prediction is calulated what is macroblock and how it helps in MPEG encoding My references: MPEG Prediction Video on MPEG conversion

    Read the article

  • 2d, Top-down map with different levels

    - by Ktash
    So, I'm creating a 2d, top down, sprite based (tiled) game, and right now I'm working on maps (well, a map editor at the moment, but it will be creating my maps, so basically the same thing). The scenario So, I'm thinking about efficiency and creating a map in pieces. In each piece, I plan on having 'layers'. Basically, I plan on rendering it down to a 'below hero' level, and an 'above hero' level, with the hero rendered in between obviously. There will likely also be a 'on level with hero' layer, but I'm not quite there yet. Not even worrying about events or interaction yet. Just looking to get a hero on the screen. Now for movement, I obviously need to know what tiles can be moved and in what direction. My plan at the moment is each tile getting 8 bits (4 'can enter in direction' bits, 4 'can leave in direction'). This will allow me to limit movement and even allow one way directional movement. The dilemma This works great for a lot of scenarios. It will allow me to store a map in essentially 3 layers, a string, and gives me flexibility going forward. However, I can't create maps that themselves have layers. A good example is a bridge where the user can go under or over the bridge without invalid moves being allowed. I can't create a platform and allow movement underneath. These are things I would like to be able to include in my game. My idea In theory, I could allow multiple hero layers and then allow multiple sets of 'below' and 'above' layers (or sandwich layers). But this complicates my system, and makes movement between maps potentially tricky (If the hero is on the third layer at the edge of a map, but that corresponds to the second layer on the other map, how can I allow or disallow movement). My question Is there a better way to manage multiple maps with multiple levels like this where a users level may be 'connected' on different levels on different maps? Or even... Am I doing this the hard way? Is there a more standard way to handle top-down 2d tiled maps that I am just not aware of? Things to note or that might be helpful This will be done in Javascript (transferred around in JSON) State will need to be transferred quickly, so a map-id and x/y/direction should be enough to get me a boolean 'can move' value Maps will not be standard sized (though they will be in a certain number of tiles) Making an editor tool so that I can have others help, so something that I can create in a tool would be helpful 'Teleportation' locations will likely need to exist to get into building maps and to and from different map sets (which will not necessarily be connected), but have not been created yet (lumping in with events at the moment).

    Read the article

  • Knight movement.... " how to output all possible moves. "

    - by josh kant
    hi tried the following code and is still not working. it is having problem on backtracking. it just fills the squares of a board with numbers but not in expected order. The code is as follows : include include using namespace std; int i=0; int permuteno = 0; bool move(int *p[], int *used[] ,int x, int y,int n, int count); bool knights (int *p[], int *used[],int x,int y,int n, int count); void output(int *p[],int n); int main(char argc, char *argv[]) { int count = 1; int n; //for size of board int x,y; // starting pos int **p; // to hold no. of combinations int **used; // to keep track of used squares on the board if ( argc != 5) { cout << "Very few arguments. Please try again."; cout << endl; return 0; } n = atoi(argv[2]); if( argv[1] <= 0 ) { cout << " Invalid board size. "; return 0; } x = atoi(argv[4]); y = atoi(argv[4]); cout << "board size: " << n << ", "<< n << endl; cout << "starting pos: " << x << ", " << y << endl; //dynamic allocation of arrays to hold permutation p = new int *[n]; for (int i = 0; i < n; i++) p[i] = new int [n]; //dynamic allocation of used arrays used = new int*[n]; for (int i = 0; i < n; i++) used[i] = new int [n]; //initializing board int i, j; for (i=0; i output(p,n); if (knights(p,used,x, y, n, count)) { cout << "solution found: " << endl < int i, j; for (i=0; i else { cout << "Solution not found" << endl; output (p, n); } knights (p,used, x, y, n, 1); //knights (p,used,x, y, n, count); cout << "no. perm " << permuteno << endl; return 0; } void output(int *p[],int n) { int i = 0,j; while ( i !=n) { for ( j=0; j bool move(int *p[], int *used[] ,int x, int y,int n,int count) { if (x < 0 || x = n) { return false; } if ( y < 0 || y = n) { return false; } if( used[x][y] != 0) { return false; } if( p[x][y] != 0) { return false; } count++; return true; } bool knights (int *p[], int *used[], int x,int y,int n ,int count) { //used[x][y] = 1; if (!move(p,used,x,y,n, count)) { return false; } if (move(p,used,x,y,n, count)) { i++; } p[x][y] = count; used[x][y] = 1; cout << "knight moved " << x << ", " << y << " " << count << endl; if(n*n == count) { return true; } //move 1 if (!knights (p,used, x-1, y-2, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 2 if (!knights (p,used, x+1, y-2, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 3 if (!knights (p,used, x+2, y-1, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 4 if (!knights (p,used, x+2, y+1, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 5 if (!knights (p,used, x+1, y+2, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 6 if (!knights (p,used, x-1, y+2, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 7 if (!knights (p,used, x-2, y+1, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } //move 8 if (!knights (p,used, x-2, y-1, n, count+1)) { used[x][y] = 0; //p[x][y] = 0; } permuteno++; //return true; //}while ( x*y != n*n ); return false; } I has to output all the possible combinations of the knight in a nXn board.. any help would be appreciated...

    Read the article

  • Knight movement.... " how to output all possible moves. "

    - by josh kant
    The following is the code i wrote.. I have to write it for nXn but for easyness i tried to test it for 5X5. It does not display my output... could anybody tell me whats wrong with the following code: { #include <iostream> #include <iomanip> using namespace std; void knight ( int startx, int starty, int n, int p[][5], int used [][5], int &count); int main ( ) { const int n = 5; // no. of cloumns and rows int startx = 0; int starty = 0; int p[5][5]; int used[5][5]; int count = 1; int i= 0; int j = 0; //initializing the array for ( i = 0; i < 5; i++) { for ( j = 0; j < 5; j++) { p[i][j] = 0; used [i][j] = 0; } } //outputting the initialized array.. i=0; while ( i< 5) { for ( j = 0; j < 5; j++) { cout << setw(3) << p[i][j]; } i++; cout << endl; } knight (startx,starty,n,p,used,count); return 0; } void knight ( int x, int y, int n, int p[][5], int used [][5], int &count) { int i = 0; //knight (x,y,n,p,used,count) for ( i = 0; i < n*n; i++) { if ( used [x][y] == 0 ) { used[x][y] = 1; // mark it used; p[x][y] += count; //inserting step no. into the solution //go for the next possible steps; //move 1 //2 squares up and 1 to the left if (x-1 < 0 && y+2 < n && p[x-1][y+2] == 0) { used[x-1][y+2] = 1; p[x-1][y+2] += count; knight (x-1,y+2,n,p,used,count); used[x-1][y+2] = 0; } //move 2 //2 squares up and 1 to the right if ( x+1 < n && y+2 < n && p[x+1][y+2] == 0 ) { used[x+1][y+2] = 1; p[x+1][y+2] += count; knight (x+1,y+2,n,p,used,count); used[x+1][y+2] = 0; } //move 3 //1 square up and 2 to the right if ( x+2 < n && y+1 < n && p[x+2][y+1] == 0 ) { used[x+2][y+1] = 1; p[x+2][y+1] += count; knight (x+2,y+1,n,p,used,count); used[x+2][y+1] = 0; } //move 4 //1 square down and 2 to the right if ( x+2 < n && y-1 < n && p[x+2][y-1] == 0 ) { used[x+2][y-1] = 1; p[x+2][y-1] += count; knight (x+2,y-1,n,p,used,count); used[x+2][y-1] = 0; } //move 5 //2 squares down and 1 to the right if ( x+1 < n && y-2 < n && p[x+1][y-2] == 0 ) { used[x+1][y-2] = 1; p[x+1][y-2] += count; knight (x+1,y-2,n,p,used,count); used[x+1][y-2] = 0; } //move 6 //2 squares down and 1 to the left if ( x-1 < n && y-2 < n && p[x-1][y-2] == 0 ) { used[x-1][y-2] = 1; p[x-1][y-2] += count; knight (x-1,y-2,n,p,used,count); used[x-1][y-2] = 0; } //move 7 //1 square down and 2 to the left if ( x-2 < n && y-1 < n && p[x-2][y-1] == 0 ) { used[x-2][y-1] = 1; p[x-2][y-1] += count; knight (x-2,y-1,n,p,used,count); used[x-2][y-1] = 0; } //move 8 //one square up and 2 to the left if ( x-2 < n && y+1< n && p[x-2][y+1] == 0 ) { used[x-2][y+1] = 1; p[x-2][y+1] += count; knight (x-2,y+1,n,p,used,count); used[x-2][y+1] = 0; } } } if ( x == n-1 && y == n-1) { while ( i != n) { for ( int j = 0; j < n; j++) cout << setw(3) << p[i][j]; i++; } } } Thank you!!

    Read the article

  • Adding GestureOverlayView to my SurfaceView class, how to add to view hierarchy?

    - by Codejoy
    I was informed in a later answer that I have to add the GestureOverlayView I create in code to my view hierarchy, and I am not 100% how to do that. Below is the original question for completeness. I want my game to be able to recognize gestures. I have this nice SurfaceView class that I do an onDraw to draw my sprites, and I have a thread thats running it to call the onDraw etc . This all works great. I am trying to add the GestureOverlayView to this and it just isn't working. Finally hacked to where it doesn't crash but this is what i have public class Panel extends SurfaceView implements SurfaceHolder.Callback, OnGesturePerformedListener { public Panel(Context context) { theContext=context; mLibrary = GestureLibraries.fromRawResource(context, R.raw.myspells); GestureOverlayView gestures = new GestureOverlayView(theContext); gestures.setOrientation(gestures.ORIENTATION_VERTICAL); gestures.setEventsInterceptionEnabled(true); gestures.setGestureStrokeType(gestures.GESTURE_STROKE_TYPE_MULTIPLE); gestures.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT)); //GestureOverlayView gestures = (GestureOverlayView) findViewById(R.id.gestures); gestures.addOnGesturePerformedListener(this); } ... ... onDraw... surfaceCreated(..); ... ... public void onGesturePerformed(GestureOverlayView overlay, Gesture gesture) { ArrayList<Prediction> predictions = mLibrary.recognize(gesture); // We want at least one prediction if (predictions.size() > 0) { Prediction prediction = predictions.get(0); // We want at least some confidence in the result if (prediction.score > 1.0) { // Show the spell Toast.makeText(theContext, prediction.name, Toast.LENGTH_SHORT).show(); } } } } The onGesturePerformed is never called. Their example has the GestureOverlay in the xml, I am not using that, my activity is simple: @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); requestWindowFeature(Window.FEATURE_NO_TITLE); Panel p = new Panel(this); setContentView(p); } So I am at a bit of a loss of the missing piece of information here, it doesn't call the onGesturePerformed and the nice pretty yellow "you are drawing a gesture" never shows up.

    Read the article

  • Moving a unit precisely along a path in x,y coordinates

    - by Adam Eberbach
    I am playing around with a strategy game where squads move around a map. Each turn a certain amount of movement is allocated to a squad and if the squad has a destination the points are applied each turn until the destination is reached. Actual distance is used so if a squad moves one position in the x or y direction it uses one point, but moving diagonally takes ~1.4 points. The squad maintains actual position as float which is then rounded to allow drawing the position on the map. The path is described by touching the squad and dragging to the end position then lifting the pen or finger. (I'm doing this on an iPhone now but Android/Qt/Windows Mobile would work the same) As the pointer moves x, y points are recorded so that the squad gains a list of intermediate destinations on the way to the final destination. I'm finding that the destinations are not evenly spaced but can be further apart depending on the speed of the pointer movement. Following the path is important because obstacles or terrain matter in this game. I'm not trying to remake Flight Control but that's a similar mechanic. Here's what I've been doing, but it just seems too complicated (pseudocode): getDestination() { - self.nextDestination = remove_from_array(destinations) - self.gradient = delta y to destination / delta x to destination - self.angle = atan(self.gradient) - self.cosAngle = cos(self.angle) - self.sinAngle = sin(self.angle) } move() { - get movement allocation for this turn - if self.nextDestination not valid - - getNextDestination() - while(nextDestination valid) && (movement allocation remains) { - - find xStep and yStep using movement allocation and sinAngle/cosAngle calculated for current self.nextDestination - - if current position + xStep crosses the destination - - - find x movement remaining after self.nextDestination reached - - - calculate remaining direct path movement allocation (xStep remaining / cosAngle) - - - make self.position equal to self.nextDestination - - else - - - apply xStep and yStep to current position - } - round squad's float coordinates to integer screen coordinates - draw squad image on map } That's simplified of course, stuff like sign needs to be tweaked to ensure movement is in the right direction. If trig is the best way to do it then lookup tables can be used or maybe it doesn't matter on modern devices like it used to. Suggestions for a better way to do it? an update - iPhone has zero issues with trig and tracking tens of positions and tracks implemented as described above and it draws in floats anyway. The Bresenham method is more efficient, trig is more precise. If I was to use integer Bresenham I would want to multiply by ten or so to maintain a little more positional accuracy to benefit collisions/terrain detection.

    Read the article

  • Tag-like autocompletion and caret/cursor movement in contenteditable elements.

    - by jimeh
    I'm working on a jQuery plugin that will allow you to do @username style tags, like Facebook does in their status update input box. My problem is, that even after hours of researching and experimenting, it seems REALLY hard to simply move the caret. I've managed to inject the <a> tag with someone's name, but placing the caret after it seems like rocket science, specially if it's supposed work in all browsers. And I haven't even looked into replacing the typed @username text with the tag yet, rather than just injecting it as I'm doing right now... lol There's a ton of questions about working with contenteditable here on Stack Overflow, and I think I've read all of them, but they don't really cover properly what I need. So any more information anyone can provide would be great :)

    Read the article

  • The program is executing properly on dev C++ but is giving problem in Linux.The movement is becoming

    - by srinija
    #include<stdio.h> #include<GL/glut.h> GLfloat v[3][24]={{100.0,300.0,350.0,50.0,100.0,120.0,120.0,100.0,260.0,280.0, 280.0,260.0,140.0,160.0,160.0,140.0,180.0,200.0,200.0,180.0, 220.0,240.0,240.0,220.0},{100.0,100.0,200.0,200.0,160.0, 160.0,180.0,180.0,160.0,160.0,180.0,180.0,160.0,160.0,180.0, 180.0,160.0,160.0,180.0,180.0,160.0,160.0,180.0,180.0}, {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}}; GLfloat v1[3][16]={{50.0,350.0,350.0,50.0,100.0,300.0,300.0,100.0,125.0,175.0, 175.0,125.0,225.0,275.0,275.0,225.0},{200.0,200.0,210.0, 210.0,210.0,210.0,240.0,240.0,240.0,240.0,310.0,310.0,240.0, 240.0,310.0,310.0},{1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0,1.0,1.0,1.0}}; GLfloat colors[4][3]={{0.0,0.0,1.0},{0.9961,0.9961,0.65625},{1.0,0.0,1.0}, {1.0,.0,1.0}}; static float q,w,e; static float fq,fw,fe; static GLfloat wa=0,wb=0,wc=0,ba,bb,bc; int flag; void myinit(void) { glClearColor(0.506,.7,1,0.0); glPointSize(2.0); glLoadIdentity(); glOrtho(0.0,499.0,0.0,499.0,-300.0,300.0); } void draw_top_boxes(GLint i,GLint j) { glColor3f(1.0,0.0,0.0); glBegin(GL_POLYGON); glColor3fv(colors[j]); // to draw the boat glVertex2f(v1[0][i+0],v1[1][i+0]); glColor3fv(colors[j+1]); glVertex2f(v1[0][i+1],v1[1][i+1]); glColor3fv(colors[j+2]); glVertex2f(v1[0][i+2],v1[1][i+2]); glColor3fv(colors[j+3]); glVertex2f(v1[0][i+3],v1[1][i+3]); glEnd(); } void draw_polygon(GLint i) { glBegin(GL_POLYGON); // to draw the boat glColor3f(0.0,0.0,0.0); glColor3fv(colors[0]); glVertex2f(v[0][i+0],v[1][i+0]); glColor3fv(colors[1]); glVertex2f(v[0][i+1],v[1][i+1]); glColor3fv(colors[2]); glVertex2f(v[0][i+2],v[1][i+2]); glColor3fv(colors[3]); glVertex2f(v[0][i+3],v[1][i+3]); glEnd(); } void draw_boat() { draw_polygon(0); draw_polygon(4); draw_polygon(8); draw_polygon(12); draw_polygon(16); draw_polygon(20); draw_top_boxes(0,0); draw_top_boxes(4,0); draw_top_boxes(8,0); draw_top_boxes(12,0); glFlush(); glPopMatrix(); glPopMatrix(); } void draw_water() { GLfloat i; GLfloat x=0,y=103,j=0; GLfloat k; glPushMatrix(); glTranslatef(wa,wb,wc); glPushMatrix(); glColor3f(0,0,1); for(k=y;k>0;k-=6) { for(i=1;i<30;i++) { glBegin(GL_LINES); glVertex2f(j,k); glVertex2f(j+10,k); glEnd(); j=j+20; } j=0; } glPopMatrix(); glPopMatrix(); } void draw_fishes() { glPushMatrix(); glTranslatef(fq,12.0,fe); glPushMatrix(); glColor3f(.99609375,0.2578125,0.2578125); glBegin(GL_TRIANGLES); glVertex2f(100,80); glVertex2f(100,60); glVertex2f(85,70); glEnd(); glColor3f(.99609375,0.2578125,0.2578125); glBegin(GL_TRIANGLES); glVertex2f(100,70); glVertex2f(110,75); glVertex2f(110,65); glEnd(); glColor3f(0,0,0); glBegin(GL_POINTS); glVertex2f(90,71); glEnd(); glColor3f(.99609375,0.2578125,0.2578125); glBegin(GL_TRIANGLES); glVertex2f(200,80); glVertex2f(200,60); glVertex2f(185,70); glEnd(); glColor3f(.99609375,0.2578125,0.2578125); glBegin(GL_TRIANGLES); glVertex2f(200,70); glVertex2f(210,75); glVertex2f(210,65); glEnd(); glColor3f(0,0,0); glBegin(GL_POINTS); glVertex2f(190,71); glEnd(); glPopMatrix(); glPopMatrix(); glFlush(); } void draw_cloud() { GLfloat m=100,n=400,o=10; for(int i=0;i<7;i++) { glPushMatrix(); glColor3f(1.0,1.0,1.0); if(i==1) glTranslated(125,415,10); else if(i==3||i==5) glTranslated(m,n+5,o); else glTranslated(m,n,o); glutSolidSphere(20.0,5000,150); glPopMatrix(); m+=10; } } void draw_square() { glColor3f(0,0.5,0.996); glBegin(GL_POLYGON); glVertex2f(0,0); glVertex2f(1000,0); glVertex2f(0,300); glVertex2f(1000,300); glEnd(); glFlush(); } void draw_brotate() { glPushMatrix(); glColor3f(0.96,0.5,0.25); //to draw body of the bird glTranslated(300,400,10); glScalef(3,1,1); glutSolidSphere(6,50000,15); glPopMatrix(); glPushMatrix(); glTranslated(323,400,10); glutSolidSphere(5,50000,15); glPopMatrix(); glColor3f(0,0,0); glBegin(GL_POINTS); glVertex2f(325,401); glEnd(); glColor3f(0.96,0.5,0.25); //to draw wings glBegin(GL_LINES); glVertex2f(294,394); glVertex2f(286,389); glEnd(); glBegin(GL_LINES); glVertex2f(286,389); glVertex2f(295,391); glEnd(); glBegin(GL_LINES); glVertex2f(295,391); glVertex2f(285,385); glEnd(); glBegin(GL_LINES); glVertex2f(285,385); glVertex2f(309,395); glEnd(); glBegin(GL_LINES); glVertex2f(294,406); glVertex2f(286,411); glEnd(); glBegin(GL_LINES); glVertex2f(286,411); glVertex2f(295,409); glEnd(); glBegin(GL_LINES); glVertex2f(295,409); glVertex2f(285,415); glEnd(); glBegin(GL_LINES); glVertex2f(285,415); glVertex2f(309,406); glEnd(); glColor3f(0.96,0.5,0.25); } void draw_bird() { GLfloat x=200,y=400,z=10; draw_brotate(); glBegin(GL_LINES); //draw legs of the bird glVertex2f(285,402); glVertex2f(275,402); glEnd(); glBegin(GL_LINES); glVertex2f(285,398); glVertex2f(275,398); glEnd(); glBegin(GL_LINES); glVertex2f(275,402); glVertex2f(270,405); glEnd(); glBegin(GL_LINES); glVertex2f(275,402); glVertex2f(270,398); glEnd(); glBegin(GL_LINES); glVertex2f(275,398); glVertex2f(273,400); glEnd(); glBegin(GL_LINES); glVertex2f(275,398); glVertex2f(270,395); glEnd(); glBegin(GL_LINES); glVertex2f(323,405); glVertex2f(323,407); glEnd(); glPushMatrix(); glTranslatef(323,409,10); glutSolidSphere(2,200,20); glPopMatrix(); glBegin(GL_TRIANGLES); glVertex2f(328,400); glVertex2f(331,397); glVertex2f(327,398.5); glEnd(); glFlush(); } void drawstars() { glColor3f(1.0,1.0,1.0); glBegin(GL_POINTS); glVertex3f(300.0,400.0,10.0); glVertex3f(200,400.0,10.0); glVertex3f(150,450.0,10.0); glVertex3f(100,470.0,10.0); glVertex3f(50,450.0,10.0); glVertex3f(50,350.0,10.0); glVertex3f(90,365.0,10.0); glVertex3f(350,450.0,10.0); glVertex3f(275,470.0,10.0); glVertex3f(280,430.0,10.0); glVertex3f(250,400.0,10.0); glVertex3f(450,450.0,10.0); glVertex3f(430,430.0,10.0); glVertex3f(430,470.0,10.0); glVertex3f(300,450.0,10.0); glVertex3f(265,380.0,10.0); glVertex3f(235,450.0,10.0); glEnd(); } void draw_all() { glClear(GL_COLOR_BUFFER_BIT); if(flag==0) { glDisable(GL_LIGHTING); //immp one draw_square(); draw_cloud(); glClearColor(0.506,.7,1,0.0); glTranslatef(q,w,e); glPushMatrix(); glColor3f(1.0,0.0,0.0); draw_boat(); draw_fishes(); glPushMatrix(); glColor3f(1.0,1.0,0.0); glTranslated(400,400,10); glutSolidSphere(20.0,5000,150); glPopMatrix(); } if(flag==1) { glDisable(GL_LIGHTING); //imp one draw_square(); draw_cloud(); glClearColor(0.9960,0.7070,0.3164,0.0); glTranslatef(q,w,e); glPushMatrix(); glColor3f(1.0,0.0,0.0); draw_boat(); draw_fishes(); glPushMatrix(); glColor3f(1.0,1.0,0.0); glTranslated(400,400,10); glutSolidSphere(20.0,500,100); glPopMatrix(); } if(flag==2) { // just try and change values in these arrays, specially the position array drawstars(); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); // GLfloat emission[]={0.1,0.1,0.1,0.0}; GLfloat diffuse[] = { 0.40, 0.40,0.40, 1.0 }; GLfloat ambiance[] = { 0.5, 0.5,0.5, 1.0 }; GLfloat specular[] = { 1.3, 1.3,.3, 1.0 }; GLfloat intensity[]={500.0}; GLfloat position[] = { 10,30,-30,1.0 }; glLightfv (GL_LIGHT0, GL_POSITION, position); glLightfv (GL_LIGHT0, GL_DIFFUSE,diffuse); glLightfv (GL_LIGHT0, GL_AMBIENT,ambiance); glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER,GL_TRUE); glLightfv (GL_LIGHT0, GL_SPECULAR,specular); glLightfv (GL_LIGHT0, GL_INTENSITY,intensity); glColor3f(0,0.5,0.996); glBegin(GL_POLYGON); glVertex2f(0,0); glVertex2f(1000,0); glVertex2f(0,150); glVertex2f(1000,150); glEnd(); glTranslatef(q,w,e); glPushMatrix(); glColor3f(1.0,0.0,0.0); draw_boat(); draw_fishes(); glDisable(GL_LIGHTING); glDisable(GL_LIGHT0); draw_cloud(); glClearColor(0.0,0.0,0.0,0.0); glPushMatrix(); glColor3f(1.0,1.0,1.0); glTranslated(400,400,10); glutSolidSphere(20.0,500,100); glPopMatrix(); glColor3f(1.0,1.0,1.0); glBegin(GL_POINTS); glVertex3f(300.0,400.0,10.0); glEnd(); } glPushMatrix(); glTranslatef(ba,bb,bc); glPushMatrix(); draw_bird(); glPopMatrix(); glPopMatrix(); GLfloat i; glPushMatrix(); GLfloat x=0,y=100,j=0; int k; //draw_water(); Sleep(60); q+=5; fq-=3.5; if(q>=440.0) //470 q=-390.0; //400 if(fq<=-300) //500 fq=400.0; //400 wa-=1; if(wa<=(-20)) wa=-0.5; ba+=6; if(ba>=500) ba=-400; glFlush(); glutSwapBuffers(); } void display(void) { draw_all(); } void color_menu(int id) { switch(id) { case 1: flag=0;break; case 2: flag=1;break; case 3: flag=2;break; case 4: exit(0); break; } glutPostRedisplay(); } void main_menu(int id) { switch(id) { case 1: break; case 2:exit(0);break; glutPostRedisplay(); } } int main(int argc,char **argv) { int sub_menu; glutInit(&argc,argv); glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE); glutInitWindowSize(1000,1000); glutInitWindowPosition(0,0); glutCreateWindow("Ship"); sub_menu=glutCreateMenu(color_menu); glutAddMenuEntry("Morning",1); glutAddMenuEntry("Evening",2); glutAddMenuEntry("Night",3); glutAddMenuEntry("Quit",4); glutCreateMenu(main_menu); glutAddSubMenu("View",sub_menu); glutAddMenuEntry("Quit",2); glutAttachMenu(GLUT_RIGHT_BUTTON); glutDisplayFunc(display); glutIdleFunc(display); myinit(); glutMainLoop(); glFlush(); }

    Read the article

  • What good practices, if any, has the agile movement lost?

    - by clarke ching
    I am a long time agile advocated but one of the things that bothers me about Agile is that a lot of agile practitioners, especially the younger ones, have thrown out or are missing a whole lot of good (non Scrum, non XP) practices. Alistair Cockburn's style of writing Use Cases springs to mind; orthogonal arrays (pairwise testing) is another. I hope this is an okay forum to ask this, but since I read mostly Agile related books and articles and work with mostly Agile folk ... is there anything I'm missing? Thanks for all your help. StackOverlow is a fantastic resource.

    Read the article

  • How to get gesture IDs

    - by Colin Gough
    Is there anyway to get a list of gesture ids, from the gesture library that has been created using gesturebuilder. I want to link each gesture to an images, so some sort of an id or name is needed. I have looked at the samples and other online material avaialbe for gestures, and there is no information on this matter. Any help in this matter would be appreciated. Example: if (predictions.size() > 0) { Prediction prediction = predictions.get(0); if (prediction.score > 1.0) { if(prediction.best_score == Current_Image) { Correct(); Next_image(); } } }

    Read the article

  • How to detect iPhone movement in space using accelerometer ?

    - by super_tomtom
    Hi ! I am trying to make an application that would detect what kind of shape you made with your iPhone using accelerometer. As an example, if you draw a circle with your hand holding the iPhone, the app would be able to redraw it on the screen. This could also work with squares, or even more complicated shapes. The only example of application I've seen doing such a thing is AirPaint (http://vimeo.com/2276713), but it doesn't seems to be able to do it in real time. My first try is to apply a low-pass filter on the X and Y parameters from the accelerometer, and to make a pointer move toward these values, proportionally to the size of the screen. But this is clearly not enought, I have a very low accuracy, and if I shake the device it also makes the pointer move... Any ideas about that ? Do you think accelerometer data is enought to do it ? Or should I consider using other data, such as the compass ? Thanks in advance !

    Read the article

  • Best of both worlds: arrow keys for cursor movement or flipping through buffers.

    - by dreeves
    I really like this vim trick to use the left and right arrows to flip between buffers: "left/right arrows to switch buffers in normal mode map <right> :bn<cr> map <left> :bp<cr> (Put that in ~/.vimrc) But sometimes I'm munching on a sandwich or something when scrolling around a file and I really want the arrow keys to work normally. I think what would make most sense is for the arrow keys to have the above buffer-flipping functionality only if there are actually multiple buffers open. Is there a way to extend the above to accomplish that?

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Move a sphere along the swipe?

    - by gameOne
    I am trying to get a sphere curl based on the swipe. I know this has been asked many times, but still it's yearning to be answered. I have managed to add force on the direction of the swipe and it works near perfect. I also have all the swipe positions stored in a list. Now I would like to know how can the curl be achieved. I believe the the curve in the swipe can be calculated by the Vector dot product If theta is 0, then there is no need to add the swipe. If it is not, then add the curl. Maybe this condition is redundant if I managed to find how to curl the sphere along the swipe position The code that adds the force to sphere based on the swipe direction is as below: using UnityEngine; using System.Collections; using System.Collections.Generic; public class SwipeControl : MonoBehaviour { //First establish some variables private Vector3 fp; //First finger position private Vector3 lp; //Last finger position private Vector3 ip; //some intermediate finger position private float dragDistance; //Distance needed for a swipe to register public float power; private Vector3 footballPos; private bool canShoot = true; private float factor = 40f; private List<Vector3> touchPositions = new List<Vector3>(); void Start(){ dragDistance = Screen.height*20/100; Physics.gravity = new Vector3(0, -20, 0); footballPos = transform.position; } // Update is called once per frame void Update() { //Examine the touch inputs foreach (Touch touch in Input.touches) { /*if (touch.phase == TouchPhase.Began) { fp = touch.position; lp = touch.position; }*/ if (touch.phase == TouchPhase.Moved) { touchPositions.Add(touch.position); } if (touch.phase == TouchPhase.Ended) { fp = touchPositions[0]; lp = touchPositions[touchPositions.Count-1]; ip = touchPositions[touchPositions.Count/2]; //First check if it's actually a drag if (Mathf.Abs(lp.x - fp.x) > dragDistance || Mathf.Abs(lp.y - fp.y) > dragDistance) { //It's a drag //Now check what direction the drag was //First check which axis if (Mathf.Abs(lp.x - fp.x) > Mathf.Abs(lp.y - fp.y)) { //If the horizontal movement is greater than the vertical movement... if ((lp.x>fp.x) && canShoot) //If the movement was to the right) { //Right move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("right "+(lp.x-fp.x));//MOVE RIGHT CODE HERE canShoot = false; //rigidbody.AddForce((new Vector3((lp.x-fp.x)/30,10,16))*power); StartCoroutine(ReturnBall()); } else { //Left move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("left "+(lp.x-fp.x));//MOVE LEFT CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } } else { //the vertical movement is greater than the horizontal movement if (lp.y>fp.y) //If the movement was up { //Up move float y = (lp.y-fp.y)/Screen.height*factor; float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,y,16))*power); Debug.Log("up "+(lp.x-fp.x));//MOVE UP CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } else { //Down move Debug.Log("down "+lp+" "+fp);//MOVE DOWN CODE HERE } } } else { //It's a tap Debug.Log("none");//TAP CODE HERE } } } } IEnumerator ReturnBall() { yield return new WaitForSeconds(5.0f); rigidbody.velocity = Vector3.zero; rigidbody.angularVelocity = Vector3.zero; transform.position = footballPos; canShoot =true; isKicked = false; } }

    Read the article

  • (Libgdx) Move Vector2 along angle?

    - by gemurdock
    I have seen several answers on here about moving along angle, but I can't seem to get this to work properly for me and I am new to LibGDX... just trying to learn. These are my Vector2's that I am using for this function. public Vector2 position = new Vector2(); public Vector2 velocity = new Vector2(); public Vector2 movement = new Vector2(); public Vector2 direction = new Vector2(); Here is the function that I use to move the position vector along an angle. setLocation() just sets the new location of the image. public void move(float delta, float degrees) { position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set((float) Math.cos(degrees), (float) Math.sin(degrees)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); // Sets location of image } I get a lot of different angles with this, just not the correct angles. How should I change this function to move a Vector2 along an angle using the Vector2 class from com.badlogic.gdx.math.Vector2 within the LibGDX library? I found this answer, but not sure how to implement it. Update: I figured out part of the issue. Should convert degrees to radians. However, the angle of 0 degrees is towards the right. Is there any way to fix this? As I shouldn't have to add 90 to degrees in order to have correct heading. New code is below public void move(float delta, float degrees) { degrees += 90; // Set degrees to correct heading, shouldn't have to do this position.set(image.getX() + image.getWidth() / 2, image.getY() + image.getHeight() / 2); direction.set(MathUtils.cos(degrees * MathUtils.degreesToRadians), MathUtils.sin(degrees * MathUtils.degreesToRadians)).nor(); velocity.set(direction).scl(speed); movement.set(velocity).scl(delta); position.add(movement); setLocation(position.x, position.y); }

    Read the article

  • Is it possible to have multiple sets of key columns in a table?

    - by Peter Larsson
    Filtered indexes is one of my new favorite things with SQL Server 2008. I am currently working on designing a new datawarehouse. There are two restrictions doing this It has to be fed from the old legacy system with both historical data and new data It has to be fed from the new business system with new data When we incorporate the new business system, we are going to do that for one market only. It means the old legacy business system still will produce new data for other markets (together with historical data for all markets) and the new business system produce new data to that one market only. Sounds interesting this far? To accomplish this I did a thorough research about the business requirements about the business intelligence needs. Then I went on to design the sucker. How does this relate to filtered indexes you ask? I'll give one example, the Stock transaction table. Well, the key columns for the old legacy system are different from the key columns from the new business system. The old legacy system has a key of 5 columns Movement date Movement time Product code Order number Sequence number within shipment And to all thing, I found out that the Movement Time column is not really a time. It starts out like a time HH:MM:SS but seconds are added for each delivery within the shipment, so a Movement Time can look like "12:11:68". The sequence number is ordered over the distributors for shipment. As I said, it is a legacy system. The new business system has one key column, the Movement DateTime (accuracy down to 100th of nanosecond). So how to deal with this? On thing would be to have two stock transaction tables, one for legacy system and one for the new business system. But that would lead to a maintenance overhead and using partitioned views for getting data out of the warehouse. Filtered index will be of a great use here. MovementDate DATETIME2(7) MovementTime CHAR(8) NULL ProductCode VARCHAR(15) NOT NULL OrderNumber VARCHAR(30) NULL SequenceNumber INT NULL The sequence number is not even used in the new system, so I created a clustered index for a new IDENTITY column to make a new identity column which can be shared by both systems. Then I created one unique filtered index for old system like this CREATE UNIQUE NONCLUSTERED INDEX IX_Legacy (MovementDate, MovementTime, ProductCode, SequenceNumber) INCLUDE (OrderNumber, Col5, Col6, ... ) WHERE SequenceNumber IS NOT NULL And then I created a new unique filtered index for the new business system like this CREATE UNIQUE NONCLUSTERED INDEX IX_Business (MovementDate) INCLUDE (ProductCode, OrderNumber, Col12, ... ) WHERE SequenceNumber IS NULL This way I can have multiple sets of key columns on same base table which is shared by both systems.

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • Help implementing virtual d-pad

    - by Moshe
    Short Version: I am trying to move a player around on a tilemap, keeping it centered on its tile, while smoothly controlling it with SneakyInput virtual Joystick. My movement is jumpy and hard to control. What's a good way to implement this? Long Version: I'm trying to get a tilemap based RPG "layer" working on top of cocos2d-iphone. I'm using SneakyInput as the input right now, but I've run into a bit of a snag. Initially, I followed Steffen Itterheim's book and Ray Wenderlich's tutorial, and I got jumpy movement working. My player now moves from tile to tile, without any animation whatsoever. So, I took it a step further. I changed my player.position to a CCMoveTo action. Combined with CCfollow, my player moves pretty smoothly. Here's the problem, though: Between each CCMoveTo, the movement stops, so there's a bit of a jumpiness introduced between movements. To deal with that, I changed my CCmoveTo into a CCMoveBy, and instead of running it once, I decided to have it CCRepeatForever. My plan was to stop the repeating action whenever the player changed directions or released the d-pad. However, when the movement stops, the player is not necessarily centered along the tiles, as it should be. To correctly position the player, I use a CCMoveTo and get the closest position that would put the player back into the proper position. This reintroduces an earlier problem of jumpiness between actions. What is the correct way to implement a smooth joystick while smoothly animating the player and keeping it on the "grid" of tiles? Edit: It turns out that this was caused by a "Bug Fix" in the cocos2d engine.

    Read the article

  • Fight for your rights as a video gamer.

    - by Chris Williams
    Soon, the U.S. Supreme Court may decide whether to hear a case that could have a lasting impact on computer and video games. The case before the Court involves a law passed by the state of California attempting to criminalize the sale of certain computer and video games. Two previous courts rejected the California law as unconstitutional, but soon the Supreme Court could have the final say. Whatever the Court's ruling, we must be prepared to continue defending our rights now and in the future. To do so, we need a large, powerful movement of gamers to speak with one voice and show that we won't sit back while lawmakers try to score political points by scapegoating video games and treating them differently than books, movies, and music. If the Court decides to hear the case, we're going to need thousands of activists like you who can help defend computer and video games by writing letters to editors, calling into talk radio stations, and educating Americans about our passion for and appreciation of computer and video games. You can help build this movement right now by inviting all your friends and fellow gamers to join the Video Game Voters Network. Use our simple tool to send an email to everyone you know asking them to stand up for gaming rights: http://videogamevoters.org/movement You can also help spread the word through Facebook and Twitter, or you can simply forward this email to everyone you know and ask them to sign up at videogamevoters.org. Time after time, courts continue to reject politicians' efforts to restrict the sale of computer and video games. But that doesn't mean the politicians will stop trying anytime soon -- in fact, it means they're likely to ramp up their efforts even more. To stop them, we must make it clear that gamers will continue to stand up for free speech -- and that the numbers are on our side. Help make sure we're ready and able to keep fighting for our gaming rights. Spread the word about the Video Game Voters Network right now: http://videogamevoters.org/movement Thank you. -- Video Game Voters Network

    Read the article

  • Combined Likelihood Models

    - by Lukas Vermeer
    In a series of posts on this blog we have already described a flexible approach to recording events, a technique to create analytical models for reporting, a method that uses the same principles to generate extremely powerful facet based predictions and a waterfall strategy that can be used to blend multiple (possibly facet based) models for increased accuracy. This latest, and also last, addition to this sequence of increasing modeling complexity will illustrate an advanced approach to amalgamate models, taking us to a whole new level of predictive modeling and analytical insights; combination models predicting likelihoods using multiple child models. The method described here is far from trivial. We therefore would not recommend you apply these techniques in an initial implementation of Oracle Real-Time Decisions. In most cases, basic RTD models or the approaches described before will provide more than enough predictive accuracy and analytical insight. The following is intended as an example of how more advanced models could be constructed if implementation results warrant the increased implementation and design effort. Keep implemented statistics simple! Combining likelihoods Because facet based predictions are based on metadata attributes of the choices selected, it is possible to generate such predictions for more than one attribute of a choice. We can predict the likelihood of acceptance for a particular product based on the product category (e.g. ‘toys’), as well as based on the color of the product (e.g. ‘pink’). Of course, these two predictions may be completely different (the customer may well prefer toys, but dislike pink products) and we will have to somehow combine these two separate predictions to determine an overall likelihood of acceptance for the choice. Perhaps the simplest way to combine multiple predicted likelihoods into one is to calculate the average (or perhaps maximum or minimum) likelihood. However, this would completely forgo the fact that some facets may have a far more pronounced effect on the overall likelihood than others (e.g. customers may consider the product category more important than its color). We could opt for calculating some sort of weighted average, but this would require us to specify up front the relative importance of the different facets involved. This approach would also be unresponsive to changing consumer behavior in these preferences (e.g. product price bracket may become more important to consumers as a result of economic shifts). Preferably, we would want Oracle Real-Time Decisions to learn, act upon and tell us about, the correlations between the different facet models and the overall likelihood of acceptance. This additional level of predictive modeling, where a single supermodel (no pun intended) combines the output of several (facet based) models into a single prediction, is what we call a combined likelihood model. Facet Based Scores As an example, we have implemented three different facet based models (as described earlier) in a simple RTD inline service. These models will allow us to generate predictions for likelihood of acceptance for each product based on three different metadata fields: Category, Price Bracket and Product Color. We will use an Analytical Scores entity to store these different scores so we can easily pass them between different functions. A simple function, creatively named Compute Analytical Scores, will compute for each choice the different facet scores and return an Analytical Scores entity that is stored on the choice itself. For each score, a choice attribute referring to this entity is also added to be returned to the client to facilitate testing. One Offer To Predict Them All In order to combine the different facet based predictions into one single likelihood for each product, we will need a supermodel which can predict the likelihood of acceptance, based on the outcomes of the facet models. This model will not need to consider any of the attributes of the session, because they are already represented in the outcomes of the underlying facet models. For the same reason, the supermodel will not need to learn separately for each product, because the specific combination of facets for this product are also already represented in the output of the underlying models. In other words, instead of learning how session attributes influence acceptance of a particular product, we will learn how the outcomes of facet based models for a particular product influence acceptance at a higher level. We will therefore be using a single All Offers choice to represent all offers in our combined likelihood predictions. This choice has no attribute values configured, no scores and not a single eligibility rule; nor is it ever intended to be returned to a client. The All Offers choice is to be used exclusively by the Combined Likelihood Acceptance model to predict the likelihood of acceptance for all choices; based solely on the output of the facet based models defined earlier. The Switcheroo In Oracle Real-Time Decisions, models can only learn based on attributes stored on the session. Therefore, just before generating a combined prediction for a given choice, we will temporarily copy the facet based scores—stored on the choice earlier as an Analytical Scores entity—to the session. The code for the Predict Combined Likelihood Event function is outlined below. // set session attribute to contain facet based scores. // (this is the only input for the combined model) session().setAnalyticalScores(choice.getAnalyticalScores); // predict likelihood of acceptance for All Offers choice. CombinedLikelihoodChoice c = CombinedLikelihood.getChoice("AllOffers"); Double la = CombinedLikelihoodAcceptance.getChoiceEventLikelihoods(c, "Accepted"); // clear session attribute of facet based scores. session().setAnalyticalScores(null); // return likelihood. return la; This sleight of hand will allow the Combined Likelihood Acceptance model to predict the likelihood of acceptance for the All Offers choice using these choice specific scores. After the prediction is made, we will clear the Analytical Scores session attribute to ensure it does not pollute any of the other (facet) models. To guarantee our combined likelihood model will learn based on the facet based scores—and is not distracted by the other session attributes—we will configure the model to exclude any other inputs, save for the instance of the Analytical Scores session attribute, on the model attributes tab. Recording Events In order for the combined likelihood model to learn correctly, we must ensure that the Analytical Scores session attribute is set correctly at the moment RTD records any events related to a particular choice. We apply essentially the same switching technique as before in a Record Combined Likelihood Event function. // set session attribute to contain facet based scores // (this is the only input for the combined model). session().setAnalyticalScores(choice.getAnalyticalScores); // record input event against All Offers choice. CombinedLikelihood.getChoice("AllOffers").recordEvent(event); // force learn at this moment using the Internal Dock entry point. Application.getPredictor().learn(InternalLearn.modelArray, session(), session(), Application.currentTimeMillis()); // clear session attribute of facet based scores. session().setAnalyticalScores(null); In this example, Internal Learn is a special informant configured as the learn location for the combined likelihood model. The informant itself has no particular configuration and does nothing in itself; it is used only to force the model to learn at the exact instant we have set the Analytical Scores session attribute to the correct values. Reporting Results After running a few thousand (artificially skewed) simulated sessions on our ILS, the Decision Center reporting shows some interesting results. In this case, these results reflect perfectly the bias we ourselves had introduced in our tests. In practice, we would obviously use a wider range of customer attributes and expect to see some more unexpected outcomes. The facetted model for categories has clearly picked up on the that fact our simulated youngsters have little interest in purchasing the one red-hot vehicle our ILS had on offer. Also, it would seem that customer age is an excellent predictor for the acceptance of pink products. Looking at the key drivers for the All Offers choice we can see the relative importance of the different facets to the prediction of overall likelihood. The comparative importance of the category facet for overall prediction might, in part, be explained by the clear preference of younger customers for toys over other product types; as evident from the report on the predictiveness of customer age for offer category acceptance. Conclusion Oracle Real-Time Decisions' flexible decisioning framework allows for the construction of exceptionally elaborate prediction models that facilitate powerful targeting, but nonetheless provide insightful reporting. Although few customers will have a direct need for such a sophisticated solution architecture, it is encouraging to see that this lies within the realm of the possible with RTD; and this with limited configuration and customization required. There are obviously numerous other ways in which the predictive and reporting capabilities of Oracle Real-Time Decisions can be expanded upon to tailor to individual customers needs. We will not be able to elaborate on them all on this blog; and finding the right approach for any given problem is often more difficult than implementing the solution. Nevertheless, we hope that these last few posts have given you enough of an understanding of the power of the RTD framework and its models; so that you can take some of these ideas and improve upon your own strategy. As always, if you have any questions about the above—or any Oracle Real-Time Decisions design challenges you might face—please do not hesitate to contact us; via the comments below, social media or directly at Oracle. We are completely multi-channel and would be more than glad to help. :-)

    Read the article

  • Limiting the speed of the mouse cursor

    - by idlewire
    I am working on a simple game where you can drag objects around with the mouse cursor. As I drag the object around quickly, I notice there is some juddering, which seems to be due to the fact that I can move the mouse cursor faster than the game's update/draw. So, although I maintain the offset from where the player initially clicked on the object, the mouse's relative position to the object shifts around slightly before settling as I move the object very quickly. The only way I have found to get smooth, exact 1:1 movement is if I turn both IsFixedTimeStep and SynchronizeWithVerticalRetrace to false. However, I'd rather not have to do that. I have also tried making a custom mouse cursor, hiding the real mouse, taking the real mouse delta and clamping it to a maximum speed. Here is the problem: In windowed mode, the "real" mouse cursor moves off the window while the custom mouse cursor (since it's movement is being scaled) is still somewhere inside the game window. This becomes bizarre and is obviously not desired, as clicking at this point means clicking on things outside the game window. Is there any way to accomplish this in windowed mode? In fullscreen mode, the "real" mouse cursor is bounded to the edges of the screen. So I get to a point where there is no more mouse delta, yet my custom cursor is still somewhere in the middle of the screen and hence can't move further in that direction. If I wanted to clamp it to the edge of the screen when the real cursor is at the edge, then I would get an abrupt jump to the edge of the screen, which isn't desired either Any help would be appreciated. I'd like to be able to limit the speed of the mouse, but also would appreciate help with the first issue (the non-smooth relative offset between mouse cursor movement and object movement).

    Read the article

  • Isometric Camera trouble - can't rotate or move correctly

    - by Deukalion
    I'm trying to create a 3D editor, but I've been having some trouble with the Camera and understanding each component. I've created 2 camera that works OK, but now I'm trying to implement an Isometric Camera in XNA without success on the rotation and movement of the camera. All I get working is Zoom. (Cube with x=3f, y=3f, z=1f in center) And this is the constructor for my IsometricCamera (inherits from ICamera, with methods for Rotation, Movement and Zoom, and Properties for World/View/Projection matrices) public IsometricCamera3D(GraphicsDevice device, float startClip = -1000f, float endClip = 1000f) { matrix_projection = Matrix.CreateOrthographic(device.Viewport.Width, device.Viewport.Height, startClip, endClip); rotation = Vector3.Zero; matrix_view = Matrix.CreateScale(zoom) * Matrix.CreateRotationY(MathHelper.ToRadians(45 + 180)) * Matrix.CreateRotationX(MathHelper.ToRadians(30)) * Matrix.CreateRotationZ(MathHelper.ToRadians(120)) * Matrix.CreateTranslation(rotation.X, rotation.Y, rotation.Z); } Problem is when I rotate it, all that happens is that the Cube gets more or less shiny and nothing happens. What is wrong and how should I create my View matrix to move it / rotate it correctly? Rotate, Move and Zoom looks like: MethodName(Vector3 rotation/movement), Zoom(float value); and just increases the value, then calls an update to recreate the View Matrix according to the code in the constructor. Currently, in my editor I use MiddleButton + Mouse Movement to rotate the camera, but it's not working as the other camera. But in my default camera I use World Matrix to move, but I guess that's not the best way to go which is why I'm trying this.

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >