Search Results

Search found 11594 results on 464 pages for 'pointer events'.

Page 130/464 | < Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >

  • how to scroll IFrame without placing the mouse pointer on IE scrollbar?

    - by David
    I have this asp.net page as below. <body> <form id="form1" runat="server"> <div class="page" > <iframe id="iFrame1" style="width:100%" runat="server" height="1100" scrolling="yes" src="login.aspx" frameborder="0" align="left"> </iframe> </div> </form> </body> To scroll the iframe,I have to put the mouse pointer over the IE scroll bar. I just want to place the mouse pointer over the iframe and scroll the page.Please advice. thanks in advance.

    Read the article

  • Why would my mouse pointer be jerky when it can't get a signal from my router?

    - by izb
    I've got a fairly new PC but when moving the mouse across the screen, the pointer jerks as if the PC is freezing momentarily every second or so. Strangely, this only seems to happen if the signal from the wifi router is bad. If I move the PC closer to the router to get a full signal, it's fine. It also seems to affect the keyboard; Opening notepad and holding down a key shows the same momentary freezes. -- Update: It's a logitech wireless mouse, and a wired USB logitech keyboard.

    Read the article

  • How do I trap the mouse pointer within a VirtualBox Guest OS?

    - by Samuel
    I'm on a Mac Mini 2011 with VirtualBox installed. I have Windows 7 running as a Guest OS. My question: How do I "trap" my mouse pointer within Windows? In other words, I don't want my mouse to move outside to the Host OS. Ideally, I would be able to press the Host key to "untrap" my mouse. The purpose: I'm playing Warcraft 3 in the Guest OS and I can't scroll the screen since the mouse keeps jumping to the Host OS instead of scrolling the screen. This happens even in full-screen mode.

    Read the article

  • How to customize RESTful Routes in Rails (basics)

    - by viatropos
    I have read through the Rails docs for Routing, Restful Resources, and the UrlHelper, and still don't understand best practices for creating complex/nested routes. The example I'm working on now is for events, which has_many rsvps. So a user's looking through a list of events, and clicks register, and goes through a registration process, etc. I want the urls to look like this: /events /events/123 # possible without title, like SO /events/123/my-event-title # canonical version /events/my-category/123/my-event-title # also possible like this /events/123/my-event-title/registration/new ... and all the restful nested resouces. Question is, how do I accomplish this with the minimal amount of code? Here's what I currently have: map.resources :events do |event| event.resources :rsvps, :as => "registration" end That gets me this: /events/123/registration What's the best way to accomplish the other 2 routes? /events/123/my-event-title # canonical version /events/my-category/123/my-event-title # also possible like this Where my-category is just an array of 10 possible types the event can be. I've modified Event#to_param to return "#{self.id.to_s}-#{self.title.parameterize}", but I'd prefer to have /id/title with the whole canonical-ness

    Read the article

  • How can I show print statements in debug mode of OPNET Modeler?

    - by Here now
    I'm writing C++ code in OPNET Modeler. I try to simulate my scenario in debugger mode & I need to trace the function that I wrote it. I need to show print statements which I put it in my code. I used in debugger mode: ***ltr function_name()*** then ***c*** But the result looks like: Type 'help' for Command Summary ODB> ltr enqueue_packet() Added trace #0: trace on label (enqueue_packet()) ODB> c |-----------------------------------------------------------------------------| | Progress: Time (1 min. 52 sec.); Events (500,002) | | Speed: Average (82,575 events/sec.); Current (82,575 events/sec.) | | Time : Elapsed (6.1 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Progress: Time (1 min. 55 sec.); Events (1,000,002) | | Speed: Average (69,027 events/sec.); Current (59,298 events/sec.) | | Time : Elapsed (14 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Progress: Time (1 min. 59 sec.); Events (1,500,002) | | Speed: Average (51,464 events/sec.); Current (34,108 events/sec.) | | Time : Elapsed (29 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Simulation Completed - Collating Results. | | Events: Total (1,591,301); Average Speed (48,803 events/sec.) | | Time : Elapsed (33 sec.); Simulated (2 min. 0 sec.) | | DES Log: 29 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Reading network model. | |-----------------------------------------------------------------------------| I need to show the print statements in my code. Where it has to be appeared? Is there any step before run the simulation to insure that OPNET debugger using Visual Studio & go through my code??

    Read the article

  • What is causing Null Pointer Exception in the following code in java? [migrated]

    - by Joe
    When I run the following code I get Null Pointer Exception. I cannot figure out why that is happening. Need Help. public class LinkedList<T> { private Link head = null; private int length = 0; public T get(int index) { return find(index).item; } public void set(int index, T item) { find(index).item = item; } public int length() { return length; } public void add(T item) { Link<T> ptr = head; if (ptr == null) { // empty list so append to head head = new Link<T>(item); } else { // non-empty list, so locate last link while (ptr.next != null) { ptr = ptr.next; } ptr.next = new Link<T>(item); } length++; // update length cache } // traverse list looking for link at index private Link<T> find(int index) { Link<T> ptr = head; int i = 0; while (i++ != index) { if(ptr!=null) { ptr = ptr.next; } } return ptr; } private static class Link<S> { public S item; public Link<S> next; public Link(S item) { this.item = item; } } public static void main(String[] args) { new LinkedList<String>().get(1); } }

    Read the article

  • Why does Windows Event Log stop logging events before maximum log size is reached?

    - by Tuure Laurinolli
    I have a service that produces a lot of event log output. Currently the event log is configured to overwrite any old events to keep the log from ever getting full. We have also increased the event log size considerably (to about 600 MB). Recently the service started reporting errors to its clients, and the error message it was sending to its clients is "The event log file is full". How can this be, when event log is configured to overwrite as necessary? In our hurry to get the service back up we cleared the event log without saving its contents, but most likely it had not reached 600 MB yet, judging from sizes of some earlier log dumps. There is also MS KB entry 312571, which reports that a hot fix to a similar issue is available, but the the configuration that the fix applies to is not exactly the same we have. Specifically, the fix only applies if event logs are configured to never overwrite old events. I wonder if this has something to do with the fact that the log files apparently are memory-mapped. What happens if the system runs out of address space to map files to?

    Read the article

  • Is there anything called solicit and unsolicit messages/events in window programming?

    - by AKN
    Can someone pls tell me do we have solic & unsolic message/events in MFC or window programming? In devices solic response and unsolic response is said as immediate response (like acknowledgement to commands) and late response (generated without any further commands being sent) respectively. Likewise can we say events as solic / unsolic based on immediate occurrence and late occurrence?

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

  • Taming Hopping Windows

    - by Roman Schindlauer
    At first glance, hopping windows seem fairly innocuous and obvious. They organize events into windows with a simple periodic definition: the windows have some duration d (e.g. a window covers 5 second time intervals), an interval or period p (e.g. a new window starts every 2 seconds) and an alignment a (e.g. one of those windows starts at 12:00 PM on March 15, 2012 UTC). var wins = xs     .HoppingWindow(TimeSpan.FromSeconds(5),                    TimeSpan.FromSeconds(2),                    new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc)); Logically, there is a window with start time a + np and end time a + np + d for every integer n. That’s a lot of windows. So why doesn’t the following query (always) blow up? var query = wins.Select(win => win.Count()); A few users have asked why StreamInsight doesn’t produce output for empty windows. Primarily it’s because there is an infinite number of empty windows! (Actually, StreamInsight uses DateTimeOffset.MaxValue to approximate “the end of time” and DateTimeOffset.MinValue to approximate “the beginning of time”, so the number of windows is lower in practice.) That was the good news. Now the bad news. Events also have duration. Consider the following simple input: var xs = this.Application                 .DefineEnumerable(() => new[]                     { EdgeEvent.CreateStart(DateTimeOffset.UtcNow, 0) })                 .ToStreamable(AdvanceTimeSettings.IncreasingStartTime); Because the event has no explicit end edge, it lasts until the end of time. So there are lots of non-empty windows if we apply a hopping window to that single event! For this reason, we need to be careful with hopping window queries in StreamInsight. Or we can switch to a custom implementation of hopping windows that doesn’t suffer from this shortcoming. The alternate window implementation produces output only when the input changes. We start by breaking up the timeline into non-overlapping intervals assigned to each window. In figure 1, six hopping windows (“Windows”) are assigned to six intervals (“Assignments”) in the timeline. Next we take input events (“Events”) and alter their lifetimes (“Altered Events”) so that they cover the intervals of the windows they intersect. In figure 1, you can see that the first event e1 intersects windows w1 and w2 so it is adjusted to cover assignments a1 and a2. Finally, we can use snapshot windows (“Snapshots”) to produce output for the hopping windows. Notice however that instead of having six windows generating output, we have only four. The first and second snapshots correspond to the first and second hopping windows. The remaining snapshots however cover two hopping windows each! While in this example we saved only two events, the savings can be more significant when the ratio of event duration to window duration is higher. Figure 1: Timeline The implementation of this strategy is straightforward. We need to set the start times of events to the start time of the interval assigned to the earliest window including the start time. Similarly, we need to modify the end times of events to the end time of the interval assigned to the latest window including the end time. The following snap-to-boundary function that rounds a timestamp value t down to the nearest value t' <= t such that t' is a + np for some integer n will be useful. For convenience, we will represent both DateTime and TimeSpan values using long ticks: static long SnapToBoundary(long t, long a, long p) {     return t - ((t - a) % p) - (t > a ? 0L : p); } How do we find the earliest window including the start time for an event? It’s the window following the last window that does not include the start time assuming that there are no gaps in the windows (i.e. duration < interval), and limitation of this solution. To find the end time of that antecedent window, we need to know the alignment of window ends: long e = a + (d % p); Using the window end alignment, we are finally ready to describe the start time selector: static long AdjustStartTime(long t, long e, long p) {     return SnapToBoundary(t, e, p) + p; } To find the latest window including the end time for an event, we look for the last window start time (non-inclusive): public static long AdjustEndTime(long t, long a, long d, long p) {     return SnapToBoundary(t - 1, a, p) + p + d; } Bringing it together, we can define the translation from events to ‘altered events’ as in Figure 1: public static IQStreamable<T> SnapToWindowIntervals<T>(IQStreamable<T> source, TimeSpan duration, TimeSpan interval, DateTime alignment) {     if (source == null) throw new ArgumentNullException("source");     // reason about DateTime and TimeSpan in ticks     long d = Math.Min(DateTime.MaxValue.Ticks, duration.Ticks);     long p = Math.Min(DateTime.MaxValue.Ticks, Math.Abs(interval.Ticks));     // set alignment to earliest possible window     var a = alignment.ToUniversalTime().Ticks % p;     // verify constraints of this solution     if (d <= 0L) { throw new ArgumentOutOfRangeException("duration"); }     if (p == 0L || p > d) { throw new ArgumentOutOfRangeException("interval"); }     // find the alignment of window ends     long e = a + (d % p);     return source.AlterEventLifetime(         evt => ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p)),         evt => ToDateTime(AdjustEndTime(evt.EndTime.ToUniversalTime().Ticks, a, d, p)) -             ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p))); } public static DateTime ToDateTime(long ticks) {     // just snap to min or max value rather than under/overflowing     return ticks < DateTime.MinValue.Ticks         ? new DateTime(DateTime.MinValue.Ticks, DateTimeKind.Utc)         : ticks > DateTime.MaxValue.Ticks         ? new DateTime(DateTime.MaxValue.Ticks, DateTimeKind.Utc)         : new DateTime(ticks, DateTimeKind.Utc); } Finally, we can describe our custom hopping window operator: public static IQWindowedStreamable<T> HoppingWindow2<T>(     IQStreamable<T> source,     TimeSpan duration,     TimeSpan interval,     DateTime alignment) {     if (source == null) { throw new ArgumentNullException("source"); }     return SnapToWindowIntervals(source, duration, interval, alignment).SnapshotWindow(); } By switching from HoppingWindow to HoppingWindow2 in the following example, the query returns quickly rather than gobbling resources and ultimately failing! public void Main() {     var start = new DateTimeOffset(new DateTime(2012, 6, 28), TimeSpan.Zero);     var duration = TimeSpan.FromSeconds(5);     var interval = TimeSpan.FromSeconds(2);     var alignment = new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc);     var events = this.Application.DefineEnumerable(() => new[]     {         EdgeEvent.CreateStart(start.AddSeconds(0), "e0"),         EdgeEvent.CreateStart(start.AddSeconds(1), "e1"),         EdgeEvent.CreateEnd(start.AddSeconds(1), start.AddSeconds(2), "e1"),         EdgeEvent.CreateStart(start.AddSeconds(3), "e2"),         EdgeEvent.CreateStart(start.AddSeconds(9), "e3"),         EdgeEvent.CreateEnd(start.AddSeconds(3), start.AddSeconds(10), "e2"),         EdgeEvent.CreateEnd(start.AddSeconds(9), start.AddSeconds(10), "e3"),     }).ToStreamable(AdvanceTimeSettings.IncreasingStartTime);     var adjustedEvents = SnapToWindowIntervals(events, duration, interval, alignment);     var query = from win in HoppingWindow2(events, duration, interval, alignment)                 select win.Count();     DisplayResults(adjustedEvents, "Adjusted Events");     DisplayResults(query, "Query"); } As you can see, instead of producing a massive number of windows for the open start edge e0, a single window is emitted from 12:00:15 AM until the end of time: Adjusted Events StartTime EndTime Payload 6/28/2012 12:00:01 AM 12/31/9999 11:59:59 PM e0 6/28/2012 12:00:03 AM 6/28/2012 12:00:07 AM e1 6/28/2012 12:00:05 AM 6/28/2012 12:00:15 AM e2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM e3 Query StartTime EndTime Payload 6/28/2012 12:00:01 AM 6/28/2012 12:00:03 AM 1 6/28/2012 12:00:03 AM 6/28/2012 12:00:05 AM 2 6/28/2012 12:00:05 AM 6/28/2012 12:00:07 AM 3 6/28/2012 12:00:07 AM 6/28/2012 12:00:11 AM 2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM 3 6/28/2012 12:00:15 AM 12/31/9999 11:59:59 PM 1 Regards, The StreamInsight Team

    Read the article

  • Two free SQL Server events I'll be presenting at in UK. Come and say hi!

    - by Mladen Prajdic
    SQLBits: April 7th - April 9th 2011 in Brighton, UK Free community event on Saturday (April 9th) with a paid conference day on Friday (April 8th) and a Pre Conference day full of day long seminars (April 7th). It'll be a huge event with over 800 attendees and over 20 MVPs. I'll be presenting on Saturday April 9th.     SQL in the City: July 15th 2011 in London, UK One day of free SQL Server training sponsored by Redgate. Other MVP's that'll be presenting there are Steve Jones (website|twitter), Brad McGehee (blog|twitter) and Grant Fritchey (blog|twitter)   At both conferences I'll be presenting about database testing. In the sessions I'll cover a few things from my book The Red Gate Guide to SQL Server Team based Development like what do we need for testing, how to go about it, what are some of the obstacles we have to overcome, etc… If you're around there come and say Hi!

    Read the article

  • Tab Sweep - NetBeans book, JSF components, GlassFish load-balancing, community events, ...

    - by alexismp
    Recent Tips and News on Java EE 6 & GlassFish: • Java EE 6 Development with NetBeans 7 (new book) • Java EE Module Configuration Editors Draft Proposal (Eclipse) • ICEFaces downloads (includes NetBeans 7 plugin) • JRebel 4.0 - 33 million development redeploys prevented • Greenville JUG and SELF 2011 Trip Report • Load balancing with Glassfish 3.1 and Apache • GlassFish v3 Community Poster • Manik Web Statistic Tool, a Java EE 6 app to analyze http-access-log-file • Tomcat, WebSockets, HTML5, jWebSockets, JSR-340, JSON and more

    Read the article

  • AppFabric &ndash; where are all the monitoring events?

    - by Shawn Cicoria
    When you’ve just gone through a setup of AppFabric and you’ve got some WF/WCF things happening, if you start looking at the Dashboard and you see nothing, it might be as simple as restarting SQL Agent. I generally don’t reboot my system for several days and after installing AppFabric the SQL Agent jobs didn’t start firing right away.  Yes, even running a boot to VHD, you can still put the machine to sleep (just logoff and click on Sleep)… So, after spending time looking through the SQL monitoring DB that AppFabric was configured to use, I saw a bunch of records in the [AppFabric_Monitoring].[dbo].[ASStagingTable] table.  This table is the stopping point before the SQL Agent job (or Service Broker in SQL Express) pushes the items to their final resting place. This post goes through a few things to check on AppFabric monitoring http://social.technet.microsoft.com/wiki/contents/articles/appfabric-items-to-check-when-configuring-appfabric-monitoring.aspx Of course, during development you might want to clean up regularly For that there’s the PowerShell command Clear-AsMonitoringSqlDatabase -Database AppFabric_Monitoring

    Read the article

  • How do I disable the calendar events section in GNOME Shell's clock applet?

    - by Victor
    I'm running gnome-shell 3.2.0 and when I click the clock applet in the middle of the top panel, the following shows up: I have no need for the entire right part, right of the dotted line, which is dedicated to the "Online Accounts" integration with evolution's calendar. Is there a way to remove/disable it, so I can just have the date part of the calendar applet (left of the dotted vertical line)? I just like to browse the dates to see how many days are left in the month and stuff like that. I use Google's web interface for my "Calendaring".

    Read the article

  • Taming Hopping Windows

    - by Roman Schindlauer
    At first glance, hopping windows seem fairly innocuous and obvious. They organize events into windows with a simple periodic definition: the windows have some duration d (e.g. a window covers 5 second time intervals), an interval or period p (e.g. a new window starts every 2 seconds) and an alignment a (e.g. one of those windows starts at 12:00 PM on March 15, 2012 UTC). var wins = xs     .HoppingWindow(TimeSpan.FromSeconds(5),                    TimeSpan.FromSeconds(2),                    new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc)); Logically, there is a window with start time a + np and end time a + np + d for every integer n. That’s a lot of windows. So why doesn’t the following query (always) blow up? var query = wins.Select(win => win.Count()); A few users have asked why StreamInsight doesn’t produce output for empty windows. Primarily it’s because there is an infinite number of empty windows! (Actually, StreamInsight uses DateTimeOffset.MaxValue to approximate “the end of time” and DateTimeOffset.MinValue to approximate “the beginning of time”, so the number of windows is lower in practice.) That was the good news. Now the bad news. Events also have duration. Consider the following simple input: var xs = this.Application                 .DefineEnumerable(() => new[]                     { EdgeEvent.CreateStart(DateTimeOffset.UtcNow, 0) })                 .ToStreamable(AdvanceTimeSettings.IncreasingStartTime); Because the event has no explicit end edge, it lasts until the end of time. So there are lots of non-empty windows if we apply a hopping window to that single event! For this reason, we need to be careful with hopping window queries in StreamInsight. Or we can switch to a custom implementation of hopping windows that doesn’t suffer from this shortcoming. The alternate window implementation produces output only when the input changes. We start by breaking up the timeline into non-overlapping intervals assigned to each window. In figure 1, six hopping windows (“Windows”) are assigned to six intervals (“Assignments”) in the timeline. Next we take input events (“Events”) and alter their lifetimes (“Altered Events”) so that they cover the intervals of the windows they intersect. In figure 1, you can see that the first event e1 intersects windows w1 and w2 so it is adjusted to cover assignments a1 and a2. Finally, we can use snapshot windows (“Snapshots”) to produce output for the hopping windows. Notice however that instead of having six windows generating output, we have only four. The first and second snapshots correspond to the first and second hopping windows. The remaining snapshots however cover two hopping windows each! While in this example we saved only two events, the savings can be more significant when the ratio of event duration to window duration is higher. Figure 1: Timeline The implementation of this strategy is straightforward. We need to set the start times of events to the start time of the interval assigned to the earliest window including the start time. Similarly, we need to modify the end times of events to the end time of the interval assigned to the latest window including the end time. The following snap-to-boundary function that rounds a timestamp value t down to the nearest value t' <= t such that t' is a + np for some integer n will be useful. For convenience, we will represent both DateTime and TimeSpan values using long ticks: static long SnapToBoundary(long t, long a, long p) {     return t - ((t - a) % p) - (t > a ? 0L : p); } How do we find the earliest window including the start time for an event? It’s the window following the last window that does not include the start time assuming that there are no gaps in the windows (i.e. duration < interval), and limitation of this solution. To find the end time of that antecedent window, we need to know the alignment of window ends: long e = a + (d % p); Using the window end alignment, we are finally ready to describe the start time selector: static long AdjustStartTime(long t, long e, long p) {     return SnapToBoundary(t, e, p) + p; } To find the latest window including the end time for an event, we look for the last window start time (non-inclusive): public static long AdjustEndTime(long t, long a, long d, long p) {     return SnapToBoundary(t - 1, a, p) + p + d; } Bringing it together, we can define the translation from events to ‘altered events’ as in Figure 1: public static IQStreamable<T> SnapToWindowIntervals<T>(IQStreamable<T> source, TimeSpan duration, TimeSpan interval, DateTime alignment) {     if (source == null) throw new ArgumentNullException("source");     // reason about DateTime and TimeSpan in ticks     long d = Math.Min(DateTime.MaxValue.Ticks, duration.Ticks);     long p = Math.Min(DateTime.MaxValue.Ticks, Math.Abs(interval.Ticks));     // set alignment to earliest possible window     var a = alignment.ToUniversalTime().Ticks % p;     // verify constraints of this solution     if (d <= 0L) { throw new ArgumentOutOfRangeException("duration"); }     if (p == 0L || p > d) { throw new ArgumentOutOfRangeException("interval"); }     // find the alignment of window ends     long e = a + (d % p);     return source.AlterEventLifetime(         evt => ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p)),         evt => ToDateTime(AdjustEndTime(evt.EndTime.ToUniversalTime().Ticks, a, d, p)) -             ToDateTime(AdjustStartTime(evt.StartTime.ToUniversalTime().Ticks, e, p))); } public static DateTime ToDateTime(long ticks) {     // just snap to min or max value rather than under/overflowing     return ticks < DateTime.MinValue.Ticks         ? new DateTime(DateTime.MinValue.Ticks, DateTimeKind.Utc)         : ticks > DateTime.MaxValue.Ticks         ? new DateTime(DateTime.MaxValue.Ticks, DateTimeKind.Utc)         : new DateTime(ticks, DateTimeKind.Utc); } Finally, we can describe our custom hopping window operator: public static IQWindowedStreamable<T> HoppingWindow2<T>(     IQStreamable<T> source,     TimeSpan duration,     TimeSpan interval,     DateTime alignment) {     if (source == null) { throw new ArgumentNullException("source"); }     return SnapToWindowIntervals(source, duration, interval, alignment).SnapshotWindow(); } By switching from HoppingWindow to HoppingWindow2 in the following example, the query returns quickly rather than gobbling resources and ultimately failing! public void Main() {     var start = new DateTimeOffset(new DateTime(2012, 6, 28), TimeSpan.Zero);     var duration = TimeSpan.FromSeconds(5);     var interval = TimeSpan.FromSeconds(2);     var alignment = new DateTime(2012, 3, 15, 12, 0, 0, DateTimeKind.Utc);     var events = this.Application.DefineEnumerable(() => new[]     {         EdgeEvent.CreateStart(start.AddSeconds(0), "e0"),         EdgeEvent.CreateStart(start.AddSeconds(1), "e1"),         EdgeEvent.CreateEnd(start.AddSeconds(1), start.AddSeconds(2), "e1"),         EdgeEvent.CreateStart(start.AddSeconds(3), "e2"),         EdgeEvent.CreateStart(start.AddSeconds(9), "e3"),         EdgeEvent.CreateEnd(start.AddSeconds(3), start.AddSeconds(10), "e2"),         EdgeEvent.CreateEnd(start.AddSeconds(9), start.AddSeconds(10), "e3"),     }).ToStreamable(AdvanceTimeSettings.IncreasingStartTime);     var adjustedEvents = SnapToWindowIntervals(events, duration, interval, alignment);     var query = from win in HoppingWindow2(events, duration, interval, alignment)                 select win.Count();     DisplayResults(adjustedEvents, "Adjusted Events");     DisplayResults(query, "Query"); } As you can see, instead of producing a massive number of windows for the open start edge e0, a single window is emitted from 12:00:15 AM until the end of time: Adjusted Events StartTime EndTime Payload 6/28/2012 12:00:01 AM 12/31/9999 11:59:59 PM e0 6/28/2012 12:00:03 AM 6/28/2012 12:00:07 AM e1 6/28/2012 12:00:05 AM 6/28/2012 12:00:15 AM e2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM e3 Query StartTime EndTime Payload 6/28/2012 12:00:01 AM 6/28/2012 12:00:03 AM 1 6/28/2012 12:00:03 AM 6/28/2012 12:00:05 AM 2 6/28/2012 12:00:05 AM 6/28/2012 12:00:07 AM 3 6/28/2012 12:00:07 AM 6/28/2012 12:00:11 AM 2 6/28/2012 12:00:11 AM 6/28/2012 12:00:15 AM 3 6/28/2012 12:00:15 AM 12/31/9999 11:59:59 PM 1 Regards, The StreamInsight Team

    Read the article

  • Introducing the EMEA Oracle Partner Days: Maximize your Potential

    - by Julien Haye
    The EMEA Oracle PartnerNetwork Days - which used to incorporate Partner Executive Forum (local/regional live events delivering sales strategy to a partner executive audience) and Satellite Events (local/regional live events targeting sales and consultants delivering Oracle strategy, engagement around specializations, executive keynotes and deep dive content-related breakout sessions) is now made of two distinct Partner events in EMEA: Oracle Partner Days. They are similar to the Satellite events from last year: local/Regional live events targeting the key contacts in sales and consultancy delivering Oracle strategy, engaging around the several perspectives of the Oracle portfolio, executive keynotes and deep dive Business content-related breakout sessions. Learn more about the EMEA Oracle Partner Days on www.oracle.com/partners/goto/partnerdays-emea Oracle Partner Executive Forums that are on invitation only. Please contact your local Alliances manager for any questions.

    Read the article

  • Should I leave href empty when implementing click events via jQuery?

    - by dreza
    Is it preferable to have # in a link's href attribute when I am implementing the click event via jQuery, or is it ok to leave href empty? i.e. <a id="myLink" href="#" /> vs <a id="myLink" href="" /> When I'm doing $("#myLink").on('click', function() { // do ajaxy stuff }); Although I understand the click event could be on a span or other such element I'm interested in this case for particular best practices when using an a tag.

    Read the article

  • Why can't my main class see the array in my calender class

    - by Rocky Celltick Eadie
    This is a homework problem. I'm already 5 days late and can't figure out what I'm doing wrong.. this is my 1st semester in Java and my first post on this site Here is the assignment.. Create a class called Calendar. The class should contain a variable called events that is a String array. The array should be created to hold 5 elements. Use a constant value to specify the array size. Do not hard code the array size. Initialize the array in the class constructor so that each element contains the string “ – No event planned – “. The class should contain a method called CreateEvent. This method should accept a String argument that contains a one-word user event and an integer argument that represents the day of the week. Monday should be represented by the number 1 and Friday should be represented by the number 5. Populate the events array with the event info passed into the method. Although the user will input one-word events, each event string should prepend the following string to each event: event_dayAppoinment: (where event_day is the day of the week) For example, if the user enters 1 and “doctor” , the first array element should read: Monday Appointment: doctor If the user enters 2 and “PTA” , the second array element should read: Tuesday Appointment: PTA Write a driver program (in a separate class) that creates and calls your Calendar class. Then use a loop to gather user input. Ask for the day (as an integer) and then ask for the event (as a one word string). Pass the integer and string to the Calendar object’s CreateEvent method. The user should be able enter 0 – 5 events. If the user enters -1, the loop should exit and your application should print out all the events in a tabular format. Your program should not allow the user to enter invalid values for the day of the week. Any input other than 1 – 5 or -1 for the day of the week would be considered invalid. Notes: When obtaining an integer from the user, you will need to use the nextInt() method on your Scanner object. When obtaining a string from a user, you will need to use the next() method on your Scanner object. Here is my code so far.. //DRIVER CLASS /** * * @author Rocky */ //imports scanner import java.util.Scanner; //begin class driver public class driver { /** * @paramargs the command line arguments */ //begin main method public static void main(String[] args) { //initiates scanner Scanner userInput = new Scanner (System.in); //declare variables int dayOfWeek; String userEvent; //creates object for calender class calendercalenderObject = new calender(); //user prompt System.out.println("Enter day of week for your event in the following format:"); System.out.println("Enter 1 for Monday"); System.out.println("Enter 2 for Tuesday"); System.out.println("Enter 3 for Wednsday"); System.out.println("Enter 4 for Thursday"); System.out.println("Enter 5 for Friday"); System.out.println("Enter -1 to quit"); //collect user input dayOfWeek = userInput.nextInt(); //user prompt System.out.println("Please type in the name of your event"); //collect user input userEvent = userInput.next(); //begin while loop while (dayOfWeek != -1) { //test for valid day of week if ((dayOfWeek>=1) && (dayOfWeek<=5)){ //calls createEvent method in calender class and passes 2 variables calenderObject.createEvent(userEvent,dayOfWeek); } else { //error message System.out.println("You have entered an invalid number"); //user prompts System.out.println("Press -1 to quit or enter another day"); System.out.println("Enter 1 for Monday"); System.out.println("Enter 2 for Tuesday"); System.out.println("Enter 3 for Wednsday"); System.out.println("Enter 4 for Thursday"); System.out.println("Enter 5 for Friday"); System.out.println("Enter -1 to quit"); //collect user input dayOfWeek = userInput.nextInt(); //end data validity test } //end while loop } //prints array to screen int i=0; for (i=0;i<events.length;i++){ System.out.println(events[i]); } //end main method } } /** * * @author Rocky */ //imports scanner import java.util.Scanner; //begin calender class public class calender { //creates events array String[] events = new String[5]; //begin calender class constructor public calender() { //Initializes array String[] events = {"-No event planned-","-No event planned-","-No event planned-","-No event planned-","-No event planned-"}; //end calender class constructor } //begin createEvent method public String[] createEvent (String userEvent, int dayOfWeek){ //Start switch test switch (dayOfWeek){ case 1: events[0] = ("Monday Appoinment:") + userEvent; break; case 2: events[1] = ("Tuesday Appoinment:") + userEvent; break; case 3: events[2] = ("WednsdayAppoinment:") + userEvent; break; case 4: events[3] = ("Thursday Appoinment:") + userEvent; break; case 5: events[4] = ("Friday Appoinment:") + userEvent; break; default: break; //End switch test } //returns events array return events; //end create event method } //end calender class }

    Read the article

  • How does one create and use a pointer to an array of an unknown number of structures inside a class?

    - by user1658731
    Sorry for the confusing title... I've been playing around with C++, working on a project to parse a game's (Kerbal Space Program) save file so I can modify it and eventually send it over a network. I'm stuck with storing an unknown number of vessels and crew members, so I need to have an array of unknown size. Is this possible? I figured having a pointer to an array would be the way to go. I have: class SaveFileSystem { string version; string UT; int activeVessel; int numCrew; ??? Crews; // !! int numVessels; ??? Vessels; // !! } Where Crews and Vessels should be arrays of structures: struct Crew { string name; //Other stuff }; struct Vessel { string name; //Stuff }; I'm guessing I should have something like: this->Crews = new ???; this->Vessels = new ???; in my constructor to initialize the arrays, and attempt to access it with: this->Crews[0].name = "Ship Number One"; Does this make any sense??? I'd expect the "???"'s to involve a mess of asterisk's, like "*struct (*)Crews" but I have no real idea. I've got normal pointers down and such, but this is a tad over my head... I'd like to access the structures like in the last snippet, but if C++ doesn't like that I could do pointer arithmetic. I've looked into vectors, but I have an unhealthy obsession with efficiency, and it really pains me how you don't know what's going on behind it.

    Read the article

  • Why can I call a non-const member function pointer from a const method?

    - by sdg
    A co-worker asked about some code like this that originally had templates in it. I have removed the templates, but the core question remains: why does this compile OK? #include <iostream> class X { public: void foo() { std::cout << "Here\n"; } }; typedef void (X::*XFUNC)() ; class CX { public: explicit CX(X& t, XFUNC xF) : object(t), F(xF) {} void execute() const { (object.*F)(); } private: X& object; XFUNC F; }; int main(int argc, char* argv[]) { X x; const CX cx(x,&X::foo); cx.execute(); return 0; } Given that CX is a const object, and its member function execute is const, therefore inside CX::execute the this pointer is const. But I am able to call a non-const member function through a member function pointer. Are member function pointers a documented hole in the const-ness of the world? What (presumably obvious to others) issue have we missed?

    Read the article

  • How do I cast a void pointer to a struct in C?

    - by Rowhawn
    In a project I'm writing code for, I have a void pointer, "implementation", which is a member of a "Hash_map" struct, and points to an "Array_hash_map" struct. The concepts behind this project are not very realistic, but bear with me. The specifications of the project ask that I cast the void pointer "implementation" to an "Array_hash_map" before I can use it in any functions. My question, specifically is, what do I do in the functions to cast the void pointers to the desired struct? Is there one statement at the top of each function that casts them or do I make the cast every time I use "implementation"? Here are the typedefs the structs of a Hash_map and Array_hash_map as well as a couple functions making use of them. typedef struct { Key_compare_fn key_compare_fn; Key_delete_fn key_delete_fn; Data_compare_fn data_compare_fn; Data_delete_fn data_delete_fn; void *implementation; } Hash_map; typedef struct Array_hash_map{ struct Unit *array; int size; int capacity; } Array_hash_map; typedef struct Unit{ Key key; Data data; } Unit; functions: /* Sets the value parameter to the value associated with the key parameter in the Hash_map. */ int get(Hash_map *map, Key key, Data *value){ int i; if (map == NULL || value == NULL) return 0; for (i = 0; i < map->implementation->size; i++){ if (map->key_compare_fn(map->implementation->array[i].key, key) == 0){ *value = map->implementation->array[i].data; return 1; } } return 0; } /* Returns the number of values that can be stored in the Hash_map, since it is represented by an array. */ int current_capacity(Hash_map map){ return map.implementation->capacity; }

    Read the article

< Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >