Search Results

Search found 18851 results on 755 pages for 'black screen'.

Page 134/755 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • java.awt -- when java outputs an image to my monitor (screen), where is the file that is output to the monitor card?

    - by user1405870
    Suppose that I am drawing a set of images using java graphics objects. Suppose that I java is outputting these images to my monitor. Where is the file or files that are sent to the monitor card (the graphical representation files). How can I take this file and save it to disk, or how can I take this file and write it to an array, or how can I take these files and combine the results of their output (to the monitor) into a single file for saving? I don't want to use a screen shot feature, I want to be able to redirect (xor capture also) the output to the monitor to some sort of byte-stream. I note that monitors are much better than semaphores, when you are talking about display capabilities; I don't need a counter example. I might not be asking the correct question. It might be that I want to capture the file while it is still in User Space, before it is put into 'Device Space'. I would like to try and capture the byte stream so that I can convert it to MPEG-4 format. I either need a streaming output from the MPEG-4 converter, coming from the streaming input, or else, I need to take static images at discrete times and convert the images. What format will the output from User Space be in? What format will the Device Space output be in? Try to keep speculation to a minimum. http://docs.oracle.com/javame/config/cdc/opt-pkgs/api/jsr927/index.html I guess that Java has made a means of displaying AWT objects on a television screen. Thank you. Ryan Zoerner

    Read the article

  • Multitask Like a Pro with AquaSnap

    - by Matthew Guay
    Are you tired of shuffling back and forth between windows?  Here’s a handy app that can help you keep all of your windows organized and accessible. AquaSnap is a great free utility that helps you use multiple windows at the same time easily and efficiently.  One of Windows 7’s greatest new features is Aero Snap, which lets you easily view windows side by side by simply dragging windows to side of your screen.  After using Windows 7 for the past year, Aero Snap is one of the features we really miss when using older versions of Windows. With AquaSnap, you now have all of the features of Aero Snap and more in Windows 2000, XP, Vista, and of course Windows 7.  Not only does it give you Aero Snap features, but AquaSnap also gives you more control over your windows to make you more productive. Getting Started AquaSnap is a a free download for Windows 2000, XP, Vista, and 7.  Download the small installer (link below) and install it with the default settings. AquaSnap automatically runs as soon as it is installed, and you will notice a new icon in your system tray. Now you can go ahead and put it to use.  Drag a window to any edge or corner of your desktop, and you will see an icon showing what part of the screen the window will cover. Dragging it to the side of the screen expanded the window to fill the right half of the screen, just like the default Aero Snap in Windows 7.  You can drag the window away to restore it to its former size. AquaSnap works on any corner of the screen too, so you can have 4 windows side-by-side.  We already have 3 windows snapped to the corners, and notice that we’re dragging a fourth window to the bottom right corner. You can also snap windows to the bottom and top of the screen.  Here we have Word snapped to the bottom half of the screen, and we’re dragging Chrome to the top. You can even snap internal windows in Multiple Document Interface (MDI) programs such as Excel.  Here we are snapping a workbook in Excel to the left to view 2 workbooks side-by-side.   Additionally, AquaSnap lets you keep any window always on top.  Simply shake any window, and it will turn semi-transparent and stay on top of all other windows.  Notice the transparent calculator here on top of Excel. All of AquaSnap’s features work great in Windows 2000, XP, and Vista too.  Here we are snapping IE6 to the left of the screen in XP. Here are 3 windows snapped to the sides in XP.  You can mix the snap modes, and have, for instance, two windows on the right side and one window on the left.  This is a great way to maximize productivity if you need more space in one of the windows. Even AquaShake works to keep a window transparent and on top in XP. Settings AquaSnap has a detailed settings dialog where you can tweak it to work exactly like you want.  Simply right-click on its icon in the taskbar, and select Settings. From the first screen, you can choose if you want AquaSnap to start with Windows, and if you want it to show an icon in the system tray.  If you turn off the system tray icon, you can access the AquaSnap settings from Start > All Programs > AquaSnap > Configuration (or simply search for Configuration in Vista or Windows 7). The second tab in settings lets you choose what you want each snapping region to do.  You can also choose two other presets, including AeroSnap (which works just like the default Aero Snap in Windows 7) and AquaSnap simple (which only snaps at the edges of the screen, not the corners). The third tab lets you increase or decrease the opacity of pinned windows when using AquaShake, and also lets you increase or decrease the shaking sensitivity.  Additionally, if you prefer the standard AeroShake functionality, which minimizes all other open windows when you shake a window, you can choose that too. The fourth tab lets you activate an optional feature, AquaGlass.  If you activate this, it will make windows turn transparent when you drag them across the screen.   Finally, the last tab lets you change the color and opacity of the preview rectangle, or simply turn it off. Or, if you want to temporarily turn AquaSnap off, simply right-click on its icon and select Off.  In Windows 7, turning off AquaSnap will restore your standard Windows Aero Snap functionality, and in other version of Windows it will stop letting you snap windows at all.  You can then repeat the steps and select On when you want to use AquaSnap again. Conclusion AquaSnap is a handy tool to make you more productive at your computer.  With a wide variety of useful features, there’s something here for everyone.  Download AquaSnap Similar Articles Productive Geek Tips How to Get Virtual Desktops on Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Out of band Security Update for Internet Explorer 7 Cool Looking Screensavers for Windows SyncToy syncs Files and Folders across Computers on a Network (or partitions on the same drive) If it were only this easy Classic Cinema Online offers 100’s of OnDemand Movies OutSync will Sync Photos of your Friends on Facebook and Outlook

    Read the article

  • Java Animation Memory Overload [on hold]

    - by user2425429
    I need a way to reduce the memory usage of these programs while keeping the functionality. Every time I add 50 milliseconds or so to the set&display loop in AnimationTest1, it throws an out of memory error. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; //set&display loop while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • How can I get an Android TableLayout to fill the screen?

    - by Timmmm
    Hi, I'm battling with Android's retarded layout system. I'm trying to get a table to fill the screen (simple right?) but it's ridiculously hard. I got it to work somehow in XML like this: <?xml version="1.0" encoding="utf-8"?> <TableLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_height="fill_parent" android:layout_width="fill_parent"> <TableRow android:layout_height="fill_parent" android:layout_width="fill_parent" android:layout_weight="1"> <Button android:text="A" android:layout_width="wrap_content" android:layout_height="fill_parent" android:layout_weight="1"/> <Button android:text="B" android:layout_width="wrap_content" android:layout_height="fill_parent" android:layout_weight="1"/> </TableRow> <TableRow android:layout_height="fill_parent" android:layout_width="fill_parent" android:layout_weight="1"> <Button android:text="C" android:layout_width="wrap_content" android:layout_height="fill_parent" android:layout_weight="1"/> <Button android:text="D" android:layout_width="wrap_content" android:layout_height="fill_parent" android:layout_weight="1"/> </TableRow> However I can not get it to work in Java. I've tried a million combinations of the LayoutParams, but nothing ever works. This is the best result I have which only fills the width of the screen, not the height: table = new TableLayout(this); // Java. You suck. TableLayout.LayoutParams lp = new TableLayout.LayoutParams( ViewGroup.LayoutParams.FILL_PARENT, ViewGroup.LayoutParams.FILL_PARENT); table.setLayoutParams(lp); // This line has no effect! WHYYYY?! table.setStretchAllColumns(true); for (int r = 0; r < 2; ++r) { TableRow row = new TableRow(this); for (int c = 0; c < 2; ++c) { Button btn = new Button(this); btn.setText("A"); row.addView(btn); } table.addView(row); } Obviously the Android documentation is no help. Anyone have any ideas?

    Read the article

  • How to generate a random number, then display it on screen?

    - by Dan
    Ok, im fairly new to android but i have managed to teach myself the basics, i am making an app where you press a button , and a new screen opens and it shows a randomly generated number, the only problem is i dont know how to generate and display the random number, i have been searching the web for ages and have only found little snippets of information , that dosent really make sense to me. :/ If someone could help me , or even give me just a little bit of info that should guide me in the right direction it would be great

    Read the article

  • Using Office 2007 extension (i.e. docx) for skin based On-Screen keyboard.

    - by Peymankh
    Hi guys, I'm creating a On-Screen keyboard for my application, and it supports skins as well. Here's what I'm doing with the skins, I have a folder which contains some images and a xml file which maps the images to the keyboard, I want to be able to have the folder as a zip file like in Office 2007 (.docx) and iPhone firmwares (.ipsw), I know I can simply zip the folder and change the extension, what I need to know is how to read the files in the code. Thanks in advance.

    Read the article

  • Insight into how things get printed onto the screen (cout,printf) and origin of really complex stuff

    - by sil3nt
    I've always wondered this, and still haven't found the answer. Whenever we use "cout" or "printf" how exactly is that printed on the screen?. How does the text come out as it does...(probably quite a vague question here, ill work with whatever you give me.). So basically how are those functions made?..is it assembly?, if so where does that begin?. This brings on more questions like how on earth have they made openGl/directx functions.. break it down people break it down.:)

    Read the article

  • How to tile a 30000 x 6000 image for a 480 x 320 screen?

    - by Horace Ho
    (this is related to another question about implementation on iPhone) I have a large image, size around 30000 (w) x 6000 (h) pixels. You may consider it's like a big map. I assume I need to crop it up into smaller tiles. Questions: what is the tile strategy? Requirements: whole image (though cropped) can be scrolled up/down/left/right by swipes zoom in (up to pixel-to-pixel) out (down to screen-fit-by-height) by the 2-finger operation memory efficiency by lazy loading tiles Thanks!

    Read the article

  • Is there a WPF equaivalent to System.Windows.Froms.Screen?

    - by dkackman
    I'm trying to create a WPF window that will encompass the entire Desktop working area. In WinForms I'd do this by getting the Union of all the bounds in System.Windows.Forms.Screen.AllScreens. Is there an equivalent type or other mechanism to get the bounds of the entire desktop in WPF or do I need to use the WinForms type?

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >