Search Results

Search found 16971 results on 679 pages for 'blogs'.

Page 136/679 | < Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >

  • Flash Technology Can Revolutionize your IT Infrastructure

    - by kimberly.billings
    A recent article in the Data Center Journal written by Mark Teter outlines how flash is becoming a disruptive technology in the data center and how it will soon replace HDDs in the storage hierarchy. As Teter explains, the drivers behind this trend are lower cost/performance and power savings; flash is over 100x faster for reads than the fastest HDD, and while it is expensive, it can produce dramatic reductions in the cost of performance as measured in Input/Outputs per second (IOPS). What's more, flash consumes 1/5th the power of HDD, so it's faster AND greener. Teter writes, "when appropriately used, flash turns the current economics of IT performance on its head. That's disruptive." Exadata Smart Flash Cache in the Sun Oracle Database Machine makes intelligent use of flash storage to deliver extreme performance for OLTP and mixed workloads. It intelligently caches data from the Oracle Database replacing slow mechanical I/O operations to disk with very rapid flash memory operations. Exadata Smart Flash Cache is the fundamental technology of the Sun Oracle Database Machine that enables the processing of up to 1 million random I/O operations per second (IOPS), and the scanning of data within Exadata storage at up to 50 GB/second. Are you incorporating flash into your storage strategy? Let us know! Read more: "Flash technology can revolutionize your IT infrastructure", The Data Center Journal, March 30, 2010. Exadata Smart Flash Cache and the Sun Oracle Database Machine white paper var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-13185312-1"); pageTracker._trackPageview(); } catch(err) {}

    Read the article

  • Silverlight Cream for June 17, 2010 -- #885

    - by Dave Campbell
    In this Issue: Zoltan Arvai, Antoni Dol, Jeff Prosise, David Anson, and John Papa. Shoutouts: Rob Davis has a World Cup Football Stadium tour in Silverlight, Azure, and Bing Maps up: The World Cup Map... cruise around this... tons of features. The Silverlight Team Blog reports that NBC sports is streaming the US Open in Silverlight Adam Kinney announced Expression Studio 4 Launch keynote videos are available From SilverlightCream.com: Data Driven Applications with MVVM Part III: Validation, Bringing the UI Closer Zoltan Arvai's 3rd (and final) part of the Data-Driven MVVM apps is up at SilverlightShow. In this final section he is focusing on validation, and discussion of closer integration to the view. Focus on FocusVisualElement in Silverlight buttons Antoni Dol has a cool post up about the FocusVisualElement, and uses a button to demonstrate how it can be used. Dynamic XAP Discovery with Silverlight MEF Jeff Prosise is discussing Silverlight and MEF ... but better than the normal loading XAP files ... he's doing dynamic discovery of XAP files ... and makes it look easy! Updated analysis of two ways to create a full-size Popup in Silverlight David Anson revisits a prior post with an eye toward Silverlight 4. The feature he's discussing is that you can now hook the Resized event without having browser zoom disabled... and he demonstrates it's use in the code from the old post. Silverlight as a Transmedia Platform (Silverlight TV #33) Jesse Liberty joins John Papa this week with Silverlight TV #33, discussing Transmedia and Silverlight as a Transmedia Platform. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Caching NHibernate Named Queries

    - by TStewartDev
    I recently started a new job and one of my first tasks was to implement a "popular products" design. The parameters were that it be done with NHibernate and be cached for 24 hours at a time because the query will be pretty taxing and the results do not need to be constantly up to date. This ended up being tougher than it sounds. The database schema meant a minimum of four joins with filtering and ordering criteria. I decided to use a stored procedure rather than letting NHibernate create the SQL for me. Here is a summary of what I learned (even if I didn't ultimately use all of it): You can't, at the time of this writing, use Fluent NHibernate to configure SQL named queries or imports You can return persistent entities from a stored procedure and there are a couple ways to do that You can populate POCOs using the results of a stored procedure, but it isn't quite as obvious You can reuse your named query result mapping other places (avoid duplication) Caching your query results is not at all obvious Testing to see if your cache is working is a pain NHibernate does a lot of things right. Having unified, up-to-date, comprehensive, and easy-to-find documentation is not one of them. By the way, if you're new to this, I'll use the terms "named query" and "stored procedure" (from NHibernate's perspective) fairly interchangeably. Technically, a named query can execute any SQL, not just a stored procedure, and a stored procedure doesn't have to be executed from a named query, but for reusability, it seems to me like the best practice. If you're here, chances are good you're looking for answers to a similar problem. You don't want to read about the path, you just want the result. So, here's how to get this thing going. The Stored Procedure NHibernate has some guidelines when using stored procedures. For Microsoft SQL Server, you have to return a result set. The scalar value that the stored procedure returns is ignored as are any result sets after the first. Other than that, it's nothing special. CREATE PROCEDURE GetPopularProducts @StartDate DATETIME, @MaxResults INT AS BEGIN SELECT [ProductId], [ProductName], [ImageUrl] FROM SomeTableWithJoinsEtc END The Result Class - PopularProduct You have two options to transport your query results to your view (or wherever is the final destination): you can populate an existing mapped entity class in your model, or you can create a new entity class. If you go with the existing model, the advantage is that the query will act as a loader and you'll get full proxied access to the domain model. However, this can be a disadvantage if you require access to the related entities that aren't loaded by your results. For example, my PopularProduct has image references. Unless I tie them into the query (thus making it even more complicated and expensive to run), they'll have to be loaded on access, requiring more trips to the database. Since we're trying to avoid trips to the database by using a second-level cache, we should use the second option, which is to create a separate entity for results. This approach is (I believe) in the spirit of the Command-Query Separation principle, and it allows us to flatten our data and optimize our report-generation process from data source to view. public class PopularProduct { public virtual int ProductId { get; set; } public virtual string ProductName { get; set; } public virtual string ImageUrl { get; set; } } The NHibernate Mappings (hbm) Next up, we need to let NHibernate know about the query and where the results will go. Below is the markup for the PopularProduct class. Notice that I'm using the <resultset> element and that it has a name attribute. The name allows us to drop this into our query map and any others, giving us reusability. Also notice the <import> element which lets NHibernate know about our entity class. <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"> <import class="PopularProduct, Infrastructure.NHibernate, Version=1.0.0.0"/> <resultset name="PopularProductResultSet"> <return-scalar column="ProductId" type="System.Int32"/> <return-scalar column="ProductName" type="System.String"/> <return-scalar column="ImageUrl" type="System.String"/> </resultset> </hibernate-mapping>  And now the PopularProductsMap: <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"> <sql-query name="GetPopularProducts" resultset-ref="PopularProductResultSet" cacheable="true" cache-mode="normal"> <query-param name="StartDate" type="System.DateTime" /> <query-param name="MaxResults" type="System.Int32" /> exec GetPopularProducts @StartDate = :StartDate, @MaxResults = :MaxResults </sql-query> </hibernate-mapping>  The two most important things to notice here are the resultset-ref attribute, which links in our resultset mapping, and the cacheable attribute. The Query Class – PopularProductsQuery So far, this has been fairly obvious if you're familiar with NHibernate. This next part, maybe not so much. You can implement your query however you want to; for me, I wanted a self-encapsulated Query class, so here's what it looks like: public class PopularProductsQuery : IPopularProductsQuery { private static readonly IResultTransformer ResultTransformer; private readonly ISessionBuilder _sessionBuilder;   static PopularProductsQuery() { ResultTransformer = Transformers.AliasToBean<PopularProduct>(); }   public PopularProductsQuery(ISessionBuilder sessionBuilder) { _sessionBuilder = sessionBuilder; }   public IList<PopularProduct> GetPopularProducts(DateTime startDate, int maxResults) { var session = _sessionBuilder.GetSession(); var popularProducts = session .GetNamedQuery("GetPopularProducts") .SetCacheable(true) .SetCacheRegion("PopularProductsCacheRegion") .SetCacheMode(CacheMode.Normal) .SetReadOnly(true) .SetResultTransformer(ResultTransformer) .SetParameter("StartDate", startDate.Date) .SetParameter("MaxResults", maxResults) .List<PopularProduct>();   return popularProducts; } }  Okay, so let's look at each line of the query execution. The first, GetNamedQuery, matches up with our NHibernate mapping for the sql-query. Next, we set it as cacheable (this is probably redundant since our mapping also specified it, but it can't hurt, right?). Then we set the cache region which we'll get to in the next section. Set the cache mode (optional, I believe), and my cache is read-only, so I set that as well. The result transformer is very important. This tells NHibernate how to transform your query results into a non-persistent entity. You can see I've defined ResultTransformer in the static constructor using the AliasToBean transformer. The name is obviously leftover from Java/Hibernate. Finally, set your parameters and then call a result method which will execute the query. Because this is set to cached, you execute this statement every time you run the query and NHibernate will know based on your parameters whether to use its cached version or a fresh version. The Configuration – hibernate.cfg.xml and Web.config You need to explicitly enable second-level caching in your hibernate configuration: <hibernate-configuration xmlns="urn:nhibernate-configuration-2.2"> <session-factory> [...] <property name="dialect">NHibernate.Dialect.MsSql2005Dialect</property> <property name="cache.provider_class">NHibernate.Caches.SysCache.SysCacheProvider,NHibernate.Caches.SysCache</property> <property name="cache.use_query_cache">true</property> <property name="cache.use_second_level_cache">true</property> [...] </session-factory> </hibernate-configuration> Both properties "use_query_cache" and "use_second_level_cache" are necessary. As this is for a web deployement, we're using SysCache which relies on ASP.NET's caching. Be aware of this if you're not deploying to the web! You'll have to use a different cache provider. We also need to tell our cache provider (in this cache, SysCache) about our caching region: <syscache> <cache region="PopularProductsCacheRegion" expiration="86400" priority="5" /> </syscache> Here I've set the cache to be valid for 24 hours. This XML snippet goes in your Web.config (or in a separate file referenced by Web.config, which helps keep things tidy). The Payoff That should be it! At this point, your queries should run once against the database for a given set of parameters and then use the cache thereafter until it expires. You can, of course, adjust settings to work in your particular environment. Testing Testing your application to ensure it is using the cache is a pain, but if you're like me, you want to know that it's actually working. It's a bit involved, though, so I'll create a separate post for it if comments indicate there is interest.

    Read the article

  • The Whole Enchilada — Fusion Supply Chain in the Cloud

    - by Kathryn Perry
    A guest post by Tyra Crockett, Senior Manager at Oracle No other vendor can offer everything in the cloud the way Oracle can. You can get HR from Workday and CRM from Salesforce, but you can get the whole enchilada—HCM, CRM and ERP—all from Oracle on one platform. If you’re thinking about using Oracle's Cloud Services to implement the newest Oracle Fusion Supply Chain applications, this post is for you. Point #1: The Oracle Cloud Applications Services portfolio includes ERP cloud services which are flexible and can adapt to fill your supply chain needs. For example, you might be opening a small distribution facility in California, but don’t have the time or IT resources to warrant a full scale supply chain implementation. You can use Oracle’s Cloud to implement the Oracle Fusion Supply Chain applications you need without an increase in IT staff or hardware. Then as your business grows, you can add more features and applications to your cloud.   Point #2: Whether you’re implementing a slice of the Fusion Procurement pie, or the entire ERP portfolio, you want to be up and running fast with low upfront costs and investment risks. That’s where you can trust a world-class technology organization like Oracle. Your SaaS subscription-based deployment model will take away the headaches associated with determining your software costs. You also will be able to eliminate expensive customizations and configure your deployment as you like, saving you time and money during the initial stages and upon upgrade. Point #3: Another great benefit of operating your Oracle Fusion Supply Chain in the cloud is the opportunity to standardize your processes across your entire supply chain. You can institute processes in San Francisco and be confident they will be followed in Mexico City and Hong Kong. Point #4: If data security is a concern – and it is for most of us – Oracle-managed cloud services give you the comfort of knowing that your data will always be there when you need it. You will not have to manage the IT services associated with patching and upgrade. They will be taken care of automatically. This enables you to focus on what you do best: managing your business. Point #5: Cloud services aren’t an either/or proposition. You might have very good business reasons for choosing a hybrid model -- running some applications in the cloud and others on premise. That allows you to leverage your own IT department, when and where you need to, and shift focus when necessary. I urge you to take a hard look at the Oracle Fusion Supply Chain applications running in the cloud. These solutions running alongside your existing legacy systems can solve your toughest business challenges as you move forward in the 21st century.

    Read the article

  • Podcast Show Notes: The Red Room Interview &ndash; Part 2

    - by Bob Rhubart
    Room bloggers Sean Boiling, Richard Ward, and Mervin Chaing bring their in-the-trenches perspective to the conversation once again in this week’s edition of the OTN ArchBeat Podcast. Listen. (Missed last week? No problemo: Listen to Part 1) In this segment the conversation turns to SOA governance and balancing the need for reuse against the need for speed.  It’s no mystery that many people react to the term “SOA Governance” in much the same way as they would to the sound of Darth Vader’s respirator. But Mervin explains how a simple change in terminology can go a long way toward lowering blood pressure. Those interested in connecting with Sean, Richard, or Mervin can do so via the links listed below: Sean Boiling - Sales Consulting Manager for Oracle Fusion Middleware LinkedIn | Twitter | Blog Richard Ward - SOA Channel Development Manager at Oracle LinkedIn | Blog Mervin Chiang - Consulting Principal at Leonardo Consulting LinkedIn | Twitter | Blog And you’ll find the complete list of the Red Room SOA Best Practice Posts in last week’s show notes. The third and final segment of the Red Room series runs next week.  I have enough material from the original interview for a fourth program,  but it’ll have to wait. Also, as mentioned last week, the podcast name change is now complete, from Arch2Arch, to ArchBeat. As WPBH-TV9 weatherman Phil Connors says, “Anything different is good.”   Technorati Tags: archbeat,podcast. arch2arch,soa,soa governance,oracle,otn Flickr Tags: archbeat,podcast. arch2arch,soa,soa governance,oracle,otn

    Read the article

  • ADF Faces now in Eclipse

    - by shay.shmeltzer
    The new version of Oracle Enterprise Pack for Eclipse was just release, and one of the key new feature it offers is integration of Oracle ADF Faces development in Eclipse. If you are serious about developing with JSF, you probably know by now that ADF Faces is the richest set of components out there both in terms of number of components and also the functionality they offer. The components offer a lot of Ajax functionality out of the box, and the framework also offers windowing, drag and drop, push, Javascript API, skinning and much more. OEPE makes it simple to build with ADF Faces and test run your application. Here is a basic tutorial that will get you all set up to use this combination. Once you do that, you can then do this:

    Read the article

  • Oracle at The Forrester Customer Intelligence and Marketing Leadership Forums

    - by Christie Flanagan
    The Forrester Customer Intelligence Forum and the Forrester Marketing Leadership Forums will soon be here.  This year’s events will be co-located on April 18-19 at the J.W. Marriott at the L.A. Live entertainment complex in downtown Los Angeles.  Last year’s Marketing Forum was quite memorable for me.  You see, while Forrester analysts and business marketers were busy mingling over at the Marriott, another marketing powerhouse was taking up residence a few feet away at The Staples Center.  That’s right folks. Lada Gaga was coming to town.  And, as I came to learn, it made perfect sense for Lady Gaga and her legions of fans to be sharing a small patch of downtown L.A. with marketing leaders from all over the world.  After all, whether you like Lady Gaga or not, what pop star in recent memory has done more to build herself into a brand and to create an engaging, social and interactive customer experience for her Little Monsters?  While Lady Gaga won’t be back in town for this year’s Forrester events, there are still plenty of compelling reasons to make the trip out to Los Angeles.   The theme for The Forrester Customer Intelligence and Marketing Leadership Forums this year is “From Cool To Critical: Creating Engagement In The Age Of The Customer” and will tackle the important questions about how marketers can survive and thrive in the age of the empowered customer: •    How can you assess consumer uptake of new innovations?•    How do you build deep customer knowledge to drive competitive advantage?•    How do you drive deep, personalized customer engagement?•    What is more valuable — eyeballs or engagement?•    How do business customers engage in new media types?•    How can you tie social data to corporate data?•    Who should lead the movement to customer obsession?•    How should you shift your planning and measurement approaches to accommodate more data and a higher signal-to-noise ratio?•    What role does technology play in customizing and synchronizing marketing efforts across channels?As a platinum sponsor of the event, there will be a numbers of ways to interact with Oracle while you’re attending the Forums.  Here are some of the highlights:Oracle Speaking SessionThursday, April 19, 9:15am – 9:55amMaximize Customer Engagement and Retention with Integrated Marketing & LoyaltyMelissa Boxer, Vice President, Oracle CRM Marketing & LoyaltyCustomers expect to interact with your company, brand and products in more ways than ever before.   New devices and channels, such as mobile, social and web, are creating radical shifts in the customer buying process and the ways your company can reach and communicate with existing and potential customers. While Marketing's objectives (attract, convert, retain) remain fundamentally the same, your approach and tools must adapt quickly to succeed in this more complex, cross-channel world. Hear how leading brands are using Oracle's integrated marketing and loyalty solutions to maximize customer engagement and retention through better planning, execution, and measurement of synchronized cross-channel marketing initiatives.Solution ShowcaseWednesday, April 1810:20am – 11:50am 12:30pm – 1:30pm2:55pm – 3:40pmThursday, April 199:55am – 10:40am12:00pm – 1:00pmSolution Showcase & Networking ReceptionWednesday, April 185:10pm – 6:20pmBe sure to follow the #webcenter hashtag for updates on these events.  And for a more considered perspective on what Lady Gaga can teach businesses about branding and customer experience, check out Denise Lee Yohn’s post, Lessons from Lady Gaga from the Brand as Business Bites blog.

    Read the article

  • LI .Net User Group June 3rd, 2010 Meeting with Sam Abraham

    - by Sam Abraham
    It was a pleasure seeing old friends and meeting new ones at the LI .Net User Group Meeting on Thursday June 3rd 2010. I was very impressed as more than 35 developers were present which highlights the buzz MVC is creating with its latest release. We covered an introduction to MVC then went on to discuss new features in MVC2. I enjoyed the good dialogue among the group as we discussed how MVC can fit side-by-side with an existing WebForms paradigm and how MVC Support for TDD can dramatically shift Architecture practices as we know them. Looking forward to meeting you all next time I am on the Island. Below are some photos of the event. --Sam Abraham Site Director - West Palm Beach .Net User Group

    Read the article

  • Mise à jour Systèmes n°10 de l'exercice 2012 – 25 octobre 2011

    - by swalker
    Logiciels Systèmes, Stockage et Serveurs Sun Modifications des tarifs : Oracle Révision de la tarification internationale pour les matériels et logiciels Systèmes Révision de la tarification internationale pour les matériels et logiciels hérités Oracle Que devez-vous faire ? Chaque mise à jour Systèmes inclut des modifications de la tarification Systèmes et deux fichiers : le document d'annonce (PDF) et les détails de l'annonce (XLS). Les numéros d'identification indiqués dans les documents d'annonce vous permettent de retrouver toutes les références produit concernées par l'annonce en question dans la feuille de calcul. Informations complémentaires Rendez-vous régulièrement sur la page des Tarifs Systèmes du portail OPN pour en savoir plus sur ces mises à jour et connaître les derniers tarifs et les dernières ressources applicables. * Avertissement : Les informations sur la tarification des systèmes Oracle sont des informations confidentielles Oracle, qui vous sont transmises en vertu des modalités de votre contrat Oracle PartnerNetwork.

    Read the article

  • Oracle Fusion Applications User Experience Design Patterns: Feeling the Love after Launch

    - by mvaughan
    By Misha Vaughan, Oracle Applications User ExperienceIn the first video by the Oracle Applications User Experience team on the Oracle Partner Network, Vice President Jeremy Ashley said that Oracle is looking to expand the ecosystem of support for Oracle’s applications customers as they begin to assess their investment and adoption of Oracle Fusion Applications. Oracle has made a massive investment to maintain the benefits of the Fusion Applications User Experience. This summer, the Applications User Experience team released the Oracle Fusion Applications user experience design patterns.Design patterns help create consistent experiences across devices.The launch has been very well received:Angelo Santagata, Senior Principal Technologist and Fusion Middleware evangelist for Oracle,  wrote this to the system integrator community: “The web site is the result of many years of Oracle R&D into user interface design for Fusion Applications and features a really cool web app which allows you to visualise the UI components in action.”  Grant Ronald, Director of Product Management, Application Development Framework (ADF) said: “It’s a science I don't understand, but now I don't have to ... Now you can learn from the UX experience of Fusion Applications.”Frank Nimphius, Senior Principal Product Manager, Oracle (ADF) wrote about the launch of the design patterns for the ADF Code Corner, and Jürgen Kress, Senior Manager EMEA Alliances & Channels for Fusion MiddleWare and Service Oriented Architecture, (SOA), shared the news with his Partner Community. Oracle Twitter followers also helped spread the message about the design patterns launch: ?@bex – Brian Huff, founder and Chief Software Architect for Bezzotech, and Oracle ACE Director:“Nifty! The Oracle Fusion UX team just released new ADF design patterns.”@maiko_rocha, Maiko Rocha, Oracle Consulting Solutions Architect and Oracle FMW engineer: “Haven't seen any other vendor offer such comprehensive UX Design Patterns catalog for free!”@zirous_chad, Chad Thompson, Senior Solutions Architect for Zirous, Inc. and ADF Developer:Wow - @ultan and company did a great job with the Fusion UX PatternsWhat is a user experience design pattern?A user experience design pattern is a re-usable, usability tested functional blueprint for a particular user experience.  Some examples are guided processes, shopping carts, and search and search results.  Ultan O’Broin discusses the top design patterns every developer should know.The patterns that were just released are based on thousands of hours of end-user field studies, state-of-the-art user interface assessments, and usability testing.  To be clear, these are functional design patterns, not technical design patterns that developers may be used to working with.  Because we know there is a gap, we are putting together some training that will help close that gap.Who should care?This is an offering targeted primarily at Application Development Framework (ADF) developers. If you are faced with the following questions regarding Fusion Applications, you will want to know and learn more:•    How do I build something that looks like Fusion Applications?•    How do I build a next-generation application?•    How do I extend a Fusion Application and maintain the user experience?•    I don’t want to re-invent the wheel on the user interface, so where do I start?•    I need to build something that will eventually co-exist with Fusion Applications. How do I do that?These questions are relevant to partners with an ADF competency, individual practitioners, or small consultancies with an ADF specialization, and customers who are trying to shift their IT staff over to supporting Fusion Applications.Where you can find out more?OnlineOur Fusion User Experience design patterns maven is Ultan O’Broin. The Oracle Partner Network is helping our team bring this first e-seminar to you in order to go into a more detail on what this means and how to take advantage of it:? Webinar: Build a Better User Experience with Oracle: Oracle Fusion Applications Functional Design PatternsSept 20, 2012 , 10:30am-11:30am PacificDial-In:  1. 877-664-9137 / Passcode 102546?International:  706-634-9619  http://www.intercall.com/national/oracleuniversity/gdnam.htmlAccess the Live Event Or Via Webconference Access http://ouweb.webex.com  ?and enter this session number: 598036234At a Usergroup eventThe Fusion User Experience Advocates (FXA) are also going to be getting some deep-dive training on this content and can share it with local user groups.At OpenWorld Ultan O’Broin               Chris MuirIf you will be at OpenWorld this year, our own Ultan O’Broin will be visiting the ADF demopod to say hello, thanks to Shay Shmeltzer, Senior Group Manager for ADF outbound communication and at the OTN lounge: Monday 10-10:45, Tuesday 2:15-2:45, Wednesday 2:15-3:30 ?  Oracle JDeveloper and Oracle ADF,  Moscone South, Right - S-207? “ADF Meet and Greett”, OTN Lounge, Wednesday 4:30 And I cannot talk about OpenWorld and ADF without mentioning Chris Muir’s ADF EMG event: the Year After the Year Of the ADF Developer – Sunday, Sept 30 of OpenWorld. Chris has played host to Ultan and the Applications user experience message for his online community and is now a seasoned UX expert.Expect to see additional announcements about expanded and training on similar topics in the future.

    Read the article

  • Podcast interview with Michael Kane

    - by mhornick
    In this podcast interview with Michael Kane, Data Scientist and Associate Researcher at Yale University, Michael discusses the R statistical programming language, computational challenges associated with big data, and two projects involving data analysis he conducted on the stock market "flash crash" of May 6, 2010, and the tracking of transportation routes bird flu H5N1. Michael also worked with Oracle on Oracle R Enterprise, a component of the Advanced Analytics option to Oracle Database Enterprise Edition. In the closing segment of the interview, Michael comments on the relationship between the data analyst and the database administrator and how Oracle R Enterprise provides secure data management, transparent access to data, and improved performance to facilitate this relationship. Listen now...

    Read the article

  • Plan your SharePoint 2010 Content Type Hub carefully

    - by Wayne
    Currently setting up a new environment on SharePoint 2010 (which was made available for download yesterday if anyone missed that :-). One of the new features of SharePoint 2010 is to set up a Content Type Hub (which is a part of the Metadata Service Application), which is a hub for all Content Types that other Site Collections can subscribe to. That is you only need to manage your content types in one location. Setting up the Content Type Hub is not that difficult but you must make it very careful to avoid a lot of work and troubleshooting. Here is a short tutorial with a few tips and tricks to make it easy for you to get started. Determine location of Content Type Hub First of all you need to decide in which Site Collection to place your Content Type Hub; in the root site collection or a specific one. I think using a specific Site Collection that only acts as a Content Type Hub is the best way, there are no best practice as of now. So I create a new Site Collection, at for instance http://server/sites/CTH/. The top-level site of this site collection should be for instance a Team Site. You cannot use Blank Site by default, which would have been the best option IMHO, since that site does not have the Taxonomy feature stapled upon it (check the TaxonomyFeatureStapler feature for which site templates that can be used). Configure Managed Metadata Service Application Next you need to create your Managed Metadata Service Application or configure the existing one, Central Administration > Application Management > Manage Service Applications. Select the Managed Metadata service application and click Properties if you already have created it. In the bottom of the dialog window when you are creating the service application or when you are editing the properties is a section to fill in the Content Type Hub. In this text box fill in the URL of the Content Type Hub. It is essential that you have decided where your Content Type Hub will reside, since once this is set you cannot change it. The only way to change it is to rebuild the whole managed metadata service application! Also make sure that you enter the URL correctly. I did copy and paste the URL once and got the /default.aspx in the URL which funked the whole service up. Make sure that you only use the URL to the Site Collection of the hub. Now you have to set up so that other Site Collections can consume the content types from the hub. This is done by selecting the connection for the managed metadata service application and clicking properties. A new dialog window opens and there you need to click the Consumes content types from the Content Type Gallery at nnnn. Now you are free to syndicate your Content Types from the Hub. Publish Content Types To publish a Content Type from the hub you need to go to Site Settings > Content Types and select the content type that you would like to publish. Then select Manage publishing for this content type. This takes you to a page from where you can Publish, Unpublish or Republish the content type. Once the content type is published it can take up to an hour for the subscribing Site Collections to get it. This is controlled by the Content Type Subscriber job that is scheduled to run once an hour. To speed up your publishing just go to Central Administration > Monitoring > Review Job Definitions > Content Type Subscriber and click Run now and you content type is very soon available for use. Published Content Type status You can check the status of the content type publishing in your destination site collections by selecting Site Settings > Content Type Publishing. From here you can force a refresh of all subscribed content types, see which ones that are subscribed and finally check the publishing error log. This error log is very useful for detecting errors during the publishing. For instance if you use any features such as ratings, metadata, document ids in your content type hub and your destination site collection does not have those features available this will be reported here.

    Read the article

  • MVC OnActionExecuting to Redirect

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/08/12/mvc-onactionexecuting-to-redirect.aspxI recently had the following requirements in an MVC application: Given a new user that still has the default password When they first login Then the user must change their password and optionally provide contact information I found that I can override the OnActionExecuting method in a BaseController class.public class BaseController : Controller { [Inject] public ISessionManager SessionManager { get; set; } protected override void OnActionExecuting(ActionExecutingContext filterContext) { // call the base method first base.OnActionExecuting(filterContext); // if the user hasn't changed their password yet, force them to the welcome page if (!filterContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { filterContext.Result = new RedirectResult("/welcome"); } } } } Better yet, you can use an ActionFilterAttribute (and here) and apply the attribute to the Base or individual controllers./// <summary> /// Redirect the user to the WelcomePage if the FusionUser.IsPasswordChangeRequired is true; /// </summary> public class WelcomePageRedirectActionFilterAttribute : ActionFilterAttribute { [Inject] public ISessionManager SessionManager { get; set; } public override void OnActionExecuting(ActionExecutingContext actionContext) { base.OnActionExecuting(actionContext); // if the user hasn't changed their password yet, force them to the welcome page if (actionContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { return; } var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { actionContext.Result = new RedirectResult("/welcome"); } } }  [WelcomePageRedirectActionFilterAttribute] public class BaseController : Controller { ... } The requirement is now met.

    Read the article

  • Code style Tip: Case insensitive string comparison

    - by Michael Freidgeim
    Goodif (String.Compare(myString, ALL_TEXT, StringComparison.OrdinalIgnoreCase) == 0)                                {                                         return true;                                }OK(not obvious what true means) if (String.Compare(myString, ALL_TEXT, true) == 0)                                {                                         return true;                                }BAD: (non null safe) if (myString.ToLower()==ALL_TEXT.ToLower()                                {                                         return true;                                }

    Read the article

  • Oracle Data Integration 12c: Simplified, Future-Ready, High-Performance Solutions

    - by Thanos Terentes Printzios
    In today’s data-driven business environment, organizations need to cost-effectively manage the ever-growing streams of information originating both inside and outside the firewall and address emerging deployment styles like cloud, big data analytics, and real-time replication. Oracle Data Integration delivers pervasive and continuous access to timely and trusted data across heterogeneous systems. Oracle is enhancing its data integration offering announcing the general availability of 12c release for the key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c, delivering Simplified and High-Performance Solutions for Cloud, Big Data Analytics, and Real-Time Replication. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions : Supporting Current and Emerging Initiatives Extreme Performance : Even higher performance than ever before Fast Time-to-Value : Higher IT Productivity and Simplified Solutions  With the new capabilities in Oracle Data Integrator 12c, customers can benefit from: Superior developer productivity, ease of use, and rapid time-to-market with the new flow-based mapping model, reusable mappings, and step-by-step debugger. Increased performance when executing data integration processes due to improved parallelism. Improved productivity and monitoring via tighter integration with Oracle GoldenGate 12c and Oracle Enterprise Manager 12c. Improved interoperability with Oracle Warehouse Builder which enables faster and easier migration to Oracle Data Integrator’s strategic data integration offering. Faster implementation of business analytics through Oracle Data Integrator pre-integrated with Oracle BI Applications’ latest release. Oracle Data Integrator also integrates simply and easily with Oracle Business Analytics tools, including OBI-EE and Oracle Hyperion. Support for loading and transforming big and fast data, enabled by integration with big data technologies: Hadoop, Hive, HDFS, and Oracle Big Data Appliance. Only Oracle GoldenGate provides the best-of-breed real-time replication of data in heterogeneous data environments. With the new capabilities in Oracle GoldenGate 12c, customers can benefit from: Simplified setup and management of Oracle GoldenGate 12c when using multiple database delivery processes via a new Coordinated Delivery feature for non-Oracle databases. Expanded heterogeneity through added support for the latest versions of major databases such as Sybase ASE v 15.7, MySQL NDB Clusters 7.2, and MySQL 5.6., as well as integration with Oracle Coherence. Enhanced high availability and data protection via integration with Oracle Data Guard and Fast-Start Failover integration. Enhanced security for credentials and encryption keys using Oracle Wallet. Real-time replication for databases hosted on public cloud environments supported by third-party clouds. Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c and other Oracle technologies, such as Oracle Database 12c and Oracle Applications, provides a number of benefits for organizations: Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training. Integration with Oracle Database 12c provides a strong foundation for seamless private cloud deployments. Delivers real-time data for reporting, zero downtime migration, and improved performance and availability for Oracle Applications, such as Oracle E-Business Suite and ATG Web Commerce . Oracle’s data integration offering is optimized for Oracle Engineered Systems and is an integral part of Oracle’s fast data, real-time analytics strategy on Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine. Oracle Data Integrator 12c and Oracle GoldenGate 12c differentiate the new offering on data integration with these many new features. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. Find out much more about the new release in the video webcast "Introducing 12c for Oracle Data Integration", where customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Resource Kits Meet Oracle Data Integration 12c  Discover what's new with Oracle Goldengate 12c  Oracle EMEA DIS (Data Integration Solutions) Partner Community is available for all your questions, while additional partner focused webcasts will be made available through our blog here, so stay connected. For any questions please contact us at partner.imc-AT-beehiveonline.oracle-DOT-com Stay Connected Oracle Newsletters

    Read the article

  • Geek Bike Ride at JavaOne 2012 - Pictures

    - by arungupta
    Following the tradition of JavaOne Latin America 2011, a gorgeous day in San Francisco marked the beginning of JavaOne 2012 with another Geek Bike Ride. About 50 Java developers got together this morning at Fisherman's Wharf and rode a bike along Marina, Crissy Field, Fort Mason, Golden Gate Bridge, and ultimately finishing in Sausalito downtown. This is a beautiful biking trail, mostly flat with a couple of good hills. Some folks even continued to Tiburon for an extra challenge. Check out map by Blazing Saddles for the exact course. They provide excellent bike rentals and a good service too! Here are some pictures from the day: Credits: Yoshio Terada And check out a video of bikers rolling down the hill: Credits: Yoshio Terada Thank you OTN for sponsoring the t-shirts! And Kevin Nilson, fearless leader of Silicon Valley JUG, for hosting the event! And now to main the conference starting tomorrow! Here is the evolving album for JavaOne 2012 so far ... And don't forget, I'm still recruiting runners for the Community Run on Oct 1 at 6:17am PT :-)

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • CRM@Oracle Series: Complete Customer Intelligence

    - by tony.berk
    How do you to get sales folks to use a CRM system? Ah, the age-old question (well, at least the one that has been around for the past 10-15 years). Of course, some combination of "Carrot and Stick" always come up as possible answers. You hear talk about, "WIFM" or "What's in it For Me?" Oracle's internal implementation of Customer 360 consolidates all customer information in one place in Siebel CRM and enables the sales rep to present one-face to the customer. Additionally, Customer 360 provides customer intelligence and prospecting tools making it a darn nice "Carrot" for our sales teams to chew on. Check out today's slidecast for an overview. CRM@Oracle - Customer 360 Click here to learn more about Siebel CRM and other Oracle CRM products and here to learn about customers using Oracle CRM. Are you enjoying the CRM@Oracle Series? If you have a particular CRM area or function which you'd like to hear how Oracle implemented it internally, let us know and we'll get it on our list.

    Read the article

  • Oracle’s Java Community Outreach Plan

    - by Yolande Poirier
    As the steward of Java, Oracle recognizes the importance and value of the Java community, and the relevant role it plays in keeping Java the largest, most vibrant developer community in the world.   In order to increase Oracle’s touch with Java developers worldwide, we are shifting our focus from a flagship JavaOne event followed by several regional JavaOne conferences, to a new outreach model which continues with the JavaOne flagship event, as well as a mix of online content, regional Java Tours, and regional 3rd party event participation.  1. JavaOne JavaOne continues to remain the premier hub for Java developers where you are given the opportunity to improve your Java technical skills, and interact with other members of the Java community. JavaOne is centered on open collaboration and sharing, and Oracle will continue to invest in JavaOne as a unique stand-alone event for the Java community. Oracle recognizes that many developers cannot attend JavaOne in person, therefore Oracle will share the wealth of the unique event material to those developers through a new and easy-to-access online Java program. While online JavaOne content cannot address the importance of actual face-to-face community/developer engagements and networking, online content does aide in extending the Java technical learning opportunity to a broader collection of developers. 2. Java Developer Day Tours Oracle will execute regional Java Developer Days with recognized Java User Groups (JUGs) with participation from Java Evangelist and Java Champions. This allows local, regional specific Java topics to be addressed both by Oracle and the Java community. In addition, Oracle will deliver more virtual technical content programs to reach developers where an existing JUG may not have a presence. 3. Sponsorship of Community-Driven Regional Events/Conferences Oracle also recognizes that improved community dialog and relations are achievable by continued Oracle sponsorship and onsite participation at both established/well-recognized 3rd party events and new emerging/growing 3rd party events. Oracle’s ultimate goal is to be an even better steward for Java by reaching more of the Java ecosystem with face-to-face and online community engagements. We look forward to planning tours and events with you, members of the Java community.

    Read the article

  • Oracle Customer Hub - Directions, Roadmap and Customer Success

    - by Mala Narasimharajan
     By Gurinder Bahl With less than a week from OOW 2012, I would like to introduce you all to the core Oracle Customer MDM Strategy sessions. Fragmentation of customer data across disparate systems prohibits companies from achieving a complete and accurate view of their customers. Oracle Customer Hub provide a comprehensive set of services, utilities and applications to create and maintain a trusted master customer system of record across the enterprise. Customer Hub centralizes customer data from disparate systems across your enterprise into a master repository. Existing systems are integrated in real-time or via batch with the Hub, allowing you to leverage legacy platform investments while capitalizing on the benefits of a single customer identity. Don’t miss out on two sessions geared towards Oracle Customer Hub:   1) Attend session CON9747 - Turn Customer Data into an Enterprise Asset with Oracle Fusion Customer Hub Applications at Oracle Open World 2012 on Monday, Oct 1st, 10:45 AM - 11:45 AM @ Moscone West – 2008. Manouj Tahiliani, Sr. Director MDM Product Management will provide insight into the vision of Oracle Fusion Customer Hub solutions, and review the roadmap. You will discover how Fusion Customer MDM can help your enterprise improve data quality, create accurate and complete customer information,  manage governance and help create great customer experiences. You will also understand how to leverage data quality capabilities and create a sophisticated customer foundation within Oracle Fusion Applications. You will also hear Danette Patterson, Group Lead, Church Pension Group talk about how Oracle Fusion Customer Hub applications provide a modern, next-generation, multi-domain foundation for managing customer information in a private cloud. 2)  Don't miss session  CON9692 - Customer MDM is key to Strategic Business Success and Customer Experience Management at Oracle Open World 2012 on Wednesday, October 3rd 2012 from 3:30-4:30pm @ Westin San Francisco Metropolitan 1. JP Hurtado, Director, Customer Systems, will provide insight on how RCCL overcame challenges of data quality, guest recognition & centralized customer view to provide consolidated customer view to multiple reservation, CRM, marketing, service, sales, data warehouse and loyalty systems. You will learn how Royal Caribbean Cruise Lines (RCCL), which has over 30 million customer and maintain multiple brands, leveraged Oracle Customer Hub (Siebel UCM) as backbone to customer data management strategy for past 5 years. Gurinder Bahl from MDM Product Management will provide an update on Oracle Customer Hub strategy, what we have achieved since last Open World and our future plans for the Oracle Customer Hub. You will learn about Customer Hub Data Quality capabilities around data analysis, cleansing, matching, address validation as well as reporting and monitoring capabilities. The MDM track at Oracle Open World covers variety of topics related to MDM. In addition to the product management team presenting product updates and roadmap, we have several Customer Panels, and Conference sessions. You can see an overview of MDM sessions here.  Looking forward to see you at Open World, the perfect opportunity to learn about cutting edge Oracle technologies. 

    Read the article

  • OBIEE 11.1.1 - Built-in BI Metrics for Performance Monitoring

    - by Ahmed Awan
    You can use Fusion Middleware Control metrics to monitor System Components (BI processes) and WebLogic Server processes.   Tip: ·         Use Oracle Enterprise Manager (EM) URL to monitor end to end OBIEE real time performance: :7001/em"http://<server>:7001/em ·         In Oracle Business Intelligence 11g, the perfmon URL is still valid to use i.e. :9704/analytics/saw.dll?Perfmon"http://<server>:9704/analytics/saw.dll?Perfmon

    Read the article

  • Blogging is Hard

    - by Aaron Lazenby
    Not really. But wi-fi access is limited to common areas in the COLLABORATE 10 conference center here in Las Vegas. So my grand roving iPad blog update plan has been delayed a day while I measured signal strength and searched for a place to sit. Tuesday morning, I accomplished both. Yesterday I shot a nice, quick video of Bahseer Khan about embedded decision support--a part of his Oracle Fusion Applications presentation that I think could do with some additional discussion as we ramp up for Oracle's next-generation applications. I'll post that video here by the end of the day. Later today I'll also be interviewing OAUG president David Ferguson about the prevailing trends at COLLABORATE 10, the addition of Sun (and Sun's user groups) to the Oracle portfolio, and what the next 12 month holds in store for the Oracle user community. Look for that video later today too. If you can't wait for me to dash down to the lobby to make a blog update, don't forget that you can follow Profit at COLLABORATE 10 on Twitter (@OracleProfit). That way, you'll get updates about Billy Cripe's kilt in real time. More to come as this day develops. Next up: virtualization. Also, notes and coverage from yesterday's keynote presentation.

    Read the article

  • Vermeidung von SOA Anti-Patterns mittels AIA

    - by Hans Viehmann
    Gerade ist mir ein White Paper des Enterprise Architecture Teams in die Hände gefallen, das sich mit SOA Anti-Patterns befasst. Es ist zwar kein AIA Paper im eigentlichen Sinne, aber mit AIA hat man natürlich eine gute Unterstützung darin, die dort beschriebenen Fehler zu vermeiden. Das White Paper behandelt Themen wie: Vermeidung von SOA Silos SOA Reifegrad und Projekt-Management Ausuferndes Service Portfolio Umgang mit Referenz-Architekturen EAI 2.0 - Punkt-zu-Punkt Integration auf offenen Standards Ein Link auf das Dokument ist unten angefügt - viel Vergnügen bei der Lektüre ... Oracle White Paper: SOA Anti-Patterns.

    Read the article

  • Oracle Virtualization Newsletter, March Edition: Hot off the Press

    - by Monica Kumar
    The March edition of the Oracle Virtualization newsletter is now available. Articles include: Take the Oracle VM Survey Geek Week review of Oracle's VDI on brianmadden.com Webcast: Simplify Oracle RAC Deployment with Oracle VM, March 20 Oracle VM VirtualBox Commercial Licensing Links to the latest technical whitepapers Training Upcoming Events Read it here. Subscribe to the newsletter. 

    Read the article

  • Solaris 11 Resources

    - by user12618891
    .. Oracle Solaris 11 (November, 2011) Oracle Solaris 11 Landing Page Download Oracle Solaris 11 Oracle Solaris 11 Documentation Solaris 11 End-of-Life Notices What's New in Oracle Solaris 11 (blog) Oracle Solaris 11 Feature Demo Videos (blog) Solaris 11 Developer Resources (November, 2011) Oracle Solaris 11 ISV Adoption Guide Oracle Solaris 11 Preflight Checker The IPS System Repository (blog) Packaging and Delivering Software with the Image Packaging System - A Developer's Guide How to Create and Publish packages to an IPS Repository on Solaris 11 Solaris 10 Branded zone VM Templates for Solaris 11 (blog) Oracle Solaris 11 Security: What's New For Developers Optimizing Application with Oracle Solaris Studio Tools and CompilersOther Solaris 11 Technology Spotlights (Landing Page)

    Read the article

< Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >