Search Results

Search found 11861 results on 475 pages for 'methods rec'.

Page 137/475 | < Previous Page | 133 134 135 136 137 138 139 140 141 142 143 144  | Next Page >

  • Private vs. Public members in practice (how important is encapsulation?)

    - by Asmor
    One of the biggest advantages of object-oriented programming is encapsulation, and one of the "truths" we've (or, at least, I've) been taught is that members should always be made private and made available via accessor and mutator methods, thus ensuring the ability to verify and validate the changes. I'm curious, though, how important this really is in practice. In particular, if you've got a more complicated member (such as a collection), it can be very tempting to just make it public rather than make a bunch of methods to get the collection's keys, add/remove items from the collection, etc. Do you follow the rule in general? Does your answer change depending on whether it's code written for yourself vs. to be used by others? Are there more subtle reasons I'm missing for this obfuscation?

    Read the article

  • iOS JavaScript bridge

    - by andr111
    I'm working on an app where I'm going to use both HTML5 in UIWebView and native iOS framework together. I know that I can implement communication between JavaScript and Objective-C. Are there any libraries that simplify implementing this communication? I know that there are several libraries to create native iOS apps in HTML5 and javascript (for example AppMobi, PhoneGap), but I'm not sure if there is a library to help create native iOS apps with heavy JavaScript usage. I need to: Execute JS methods from Objective-C Execute Objective-C methods from JS Listen to native JS events from Objective-C (for example DOM ready event)

    Read the article

  • An NSMutableArray that doesn't retain?

    - by synic
    A few UIViewControllers in my app that need to register with a "provider" class in their viewDidLoad methods. I've just been adding them to an NSMutableArray contained in the provider class. However, I don't want this NSMutableArray to keep them from being dealloc'ed, and I also want to have them remove themselves from the NSMutableArray in their dealloc methods. I tried just issuing a [self release] after adding them to the array, and this works, but in order to avoid a crash when they get dealloc'ed, I have to issue a [self retain] right before I remove them. It seems like I'm doing something horribly wrong by retaining an object in it's own dealloc method. Is there a better way to store these values?

    Read the article

  • Persistent static routes fail on MacOS 10.6.5 startup!

    - by verbalicious
    I'm unable to get static routes to persist a reboot on Mac OS 10.6.5. I've tried all of the methods prescribed in Google search results, and previous posts on this site. I've tried manually creating a launchd daemon, and used RouteSplit's launchd daemon to no avail. It's clear that the interface is not ready when these methods attempt to apply the route. This workstation in question is getting its IP from DHCP and probably hasn't gotten its DHCP lease when the command runs. We're able to apply the route by hand when logged in, but not through startup methods. Is there another way to apply this route by sneaking the command into something later, but before the login window appears to the user? Here is some relevant log info from system.log. You can see the "route: writing to routing socket: Network is unreachable" errors where my launchd script fires off. I've tried adding extra "sleep" and "ipconfig waitall" statements later in the script but this doesn't fly. Dec 15 19:30:41 localhost com.apple.launchd[1]: *** launchd[1] has started up. *** Dec 15 19:30:45 localhost mDNSResponder[18]: mDNSResponder mDNSResponder-258.13 (Oct 8 2010 17:10:30) starting Dec 15 19:30:47 localhost configd[15]: bootp_session_transmit: bpf_write(en1) failed: Network is down (50) Dec 15 19:30:47 localhost configd[15]: DHCP en1: INIT transmit failed Dec 15 19:30:47 localhost configd[15]: network configuration changed. Dec 15 19:30:47 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:30:47 Administrators-MacBook-Pro blued[16]: Apple Bluetooth daemon started Dec 15 19:30:52 Administrators-MacBook-Pro syslog[67]: routes.sh: Starting RouteSplit Dec 15 19:30:53 Administrators-MacBook-Pro com.apple.usbmuxd[41]: usbmuxd-207 built for iTunesTenOne on Oct 19 2010 at 13:50:35, running 64 bit Dec 15 19:30:54 Administrators-MacBook-Pro /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow[50]: Login Window Application Started Dec 15 19:30:55 Administrators-MacBook-Pro bootlog[61]: BOOT_TIME: 1292459441 0 Dec 15 19:30:55 Administrators-MacBook-Pro syslog[86]: routes.sh: static route 192.168.0.0/23 192.168.2.2 Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: route: writing to routing socket: Network is unreachable Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: add net 192.168.0.0: gateway 192.168.2.2: Network is unreachable Dec 15 19:30:57 Administrators-MacBook-Pro org.apache.httpd[38]: httpd: Could not reliably determine the server's fully qualified domain name, using Administrators-MacBook-Pro.local for ServerName Dec 15 19:30:58 Administrators-MacBook-Pro loginwindow[50]: Login Window Started Security Agent Dec 15 19:30:58 Administrators-MacBook-Pro WindowServer[89]: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:30:58 Administrators-MacBook-Pro com.apple.WindowServer[89]: Wed Dec 15 19:30:58 Administrators-MacBook-Pro.local WindowServer[89] <Error>: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:31:18 Administrators-MacBook-Pro configd[15]: network configuration changed. Dec 15 19:31:19 administrators-macbook-pro configd[15]: setting hostname to "administrators-macbook-pro.local" Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[121]: /usr/libexec/ntpd-wrapper: scutil key State:/Network/Global/DNS not present after 30 seconds Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp options: a=2 v=1 e=0.100 E=5.000 P=2147483647.000 Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: d=15 c=5 x=0 op=1 l=/var/run/sntp.pid f= time.apple.com Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp: getaddrinfo(hostname, ntp) failed with nodename nor servname provided, or not known Dec 15 19:31:27 administrators-macbook-pro configd[15]: network configuration changed. Dec 15 19:31:27 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:31:27 Administrators-MacBook-Pro ntpd[37]: Cannot find existing interface for address 17.151.16.20 Dec 15 19:31:27 Administrators-MacBook-Pro ntpd_initres[125]: ntpd indicates no data available! Dec 15 19:31:31 Administrators-MacBook-Pro sshd[128]: USER_PROCESS: 133 ttys000 Dec 15 19:31:37 Administrators-MacBook-Pro sudo[138]: administrator : TTY=ttys000 ; PWD=/Users/administrator ; USER=root ; COMMAND=/usr/bin/less /var/log/system.log ``You can see the following line in /var/log/kernel.log that shows the en0 interface coming up: Dec 15 19:30:51 Administrators-MacBook-Pro kernel[0]: Ethernet [AppleBCM5701Ethernet]: Link up on en0, 1-Gigabit, Full-duplex, No flow-control, Debug [796d,0f01,0de1,0300,c1e1,3800]

    Read the article

  • Persistent static routes fail on MacOS 10.6.5 startup!

    - by verbalicious
    I'm unable to get static routes to persist a reboot on Mac OS 10.6.5. I've tried all of the methods prescribed in Google search results, and previous posts on this site. I've tried manually creating a launchd daemon, and used RouteSplit's launchd daemon to no avail. It's clear that the interface is not ready when these methods attempt to apply the route. This workstation in question is getting its IP from DHCP and probably hasn't gotten its DHCP lease when the command runs. We're able to apply the route by hand when logged in, but not through startup methods. Is there another way to apply this route by sneaking the command into something later, but before the login window appears to the user? Here is some relevant log info from system.log. You can see the "route: writing to routing socket: Network is unreachable" errors where my launchd script fires off. I've tried adding extra "sleep" and "ipconfig waitall" statements later in the script but this doesn't fly. Dec 15 19:30:41 localhost com.apple.launchd[1]: *** launchd[1] has started up. *** Dec 15 19:30:45 localhost mDNSResponder[18]: mDNSResponder mDNSResponder-258.13 (Oct 8 2010 17:10:30) starting Dec 15 19:30:47 localhost configd[15]: bootp_session_transmit: bpf_write(en1) failed: Network is down (50) Dec 15 19:30:47 localhost configd[15]: DHCP en1: INIT transmit failed Dec 15 19:30:47 localhost configd[15]: network configuration changed. Dec 15 19:30:47 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:30:47 Administrators-MacBook-Pro blued[16]: Apple Bluetooth daemon started Dec 15 19:30:52 Administrators-MacBook-Pro syslog[67]: routes.sh: Starting RouteSplit Dec 15 19:30:53 Administrators-MacBook-Pro com.apple.usbmuxd[41]: usbmuxd-207 built for iTunesTenOne on Oct 19 2010 at 13:50:35, running 64 bit Dec 15 19:30:54 Administrators-MacBook-Pro /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow[50]: Login Window Application Started Dec 15 19:30:55 Administrators-MacBook-Pro bootlog[61]: BOOT_TIME: 1292459441 0 Dec 15 19:30:55 Administrators-MacBook-Pro syslog[86]: routes.sh: static route 192.168.0.0/23 192.168.2.2 Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: route: writing to routing socket: Network is unreachable Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: add net 192.168.0.0: gateway 192.168.2.2: Network is unreachable Dec 15 19:30:57 Administrators-MacBook-Pro org.apache.httpd[38]: httpd: Could not reliably determine the server's fully qualified domain name, using Administrators-MacBook-Pro.local for ServerName Dec 15 19:30:58 Administrators-MacBook-Pro loginwindow[50]: Login Window Started Security Agent Dec 15 19:30:58 Administrators-MacBook-Pro WindowServer[89]: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:30:58 Administrators-MacBook-Pro com.apple.WindowServer[89]: Wed Dec 15 19:30:58 Administrators-MacBook-Pro.local WindowServer[89] <Error>: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:31:18 Administrators-MacBook-Pro configd[15]: network configuration changed. Dec 15 19:31:19 administrators-macbook-pro configd[15]: setting hostname to "administrators-macbook-pro.local" Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[121]: /usr/libexec/ntpd-wrapper: scutil key State:/Network/Global/DNS not present after 30 seconds Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp options: a=2 v=1 e=0.100 E=5.000 P=2147483647.000 Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: d=15 c=5 x=0 op=1 l=/var/run/sntp.pid f= time.apple.com Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp: getaddrinfo(hostname, ntp) failed with nodename nor servname provided, or not known Dec 15 19:31:27 administrators-macbook-pro configd[15]: network configuration changed. Dec 15 19:31:27 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:31:27 Administrators-MacBook-Pro ntpd[37]: Cannot find existing interface for address 17.151.16.20 Dec 15 19:31:27 Administrators-MacBook-Pro ntpd_initres[125]: ntpd indicates no data available! Dec 15 19:31:31 Administrators-MacBook-Pro sshd[128]: USER_PROCESS: 133 ttys000 Dec 15 19:31:37 Administrators-MacBook-Pro sudo[138]: administrator : TTY=ttys000 ; PWD=/Users/administrator ; USER=root ; COMMAND=/usr/bin/less /var/log/system.log ``You can see the following line in /var/log/kernel.log that shows the en0 interface coming up: Dec 15 19:30:51 Administrators-MacBook-Pro kernel[0]: Ethernet [AppleBCM5701Ethernet]: Link up on en0, 1-Gigabit, Full-duplex, No flow-control, Debug [796d,0f01,0de1,0300,c1e1,3800]

    Read the article

  • Persistent static routes fail on MacOS 10.6.5 startup!

    - by verbalicious
    I'm unable to get static routes to persist a reboot on Mac OS 10.6.5. I've tried all of the methods prescribed in Google search results, and previous posts on this site. I've tried manually creating a launchd daemon, and used RouteSplit's launchd daemon to no avail. It's clear that the interface is not ready when these methods attempt to apply the route. This workstation in question is getting its IP from DHCP and probably hasn't gotten its DHCP lease when the command runs. We're able to apply the route by hand when logged in, but not through startup methods. Is there another way to apply this route by sneaking the command into something later, but before the login window appears to the user? Here is some relevant log info from system.log. You can see the "route: writing to routing socket: Network is unreachable" errors where my launchd script fires off. I've tried adding extra "sleep" and "ipconfig waitall" statements later in the script but this doesn't fly. Dec 15 19:30:41 localhost com.apple.launchd[1]: *** launchd[1] has started up. *** Dec 15 19:30:45 localhost mDNSResponder[18]: mDNSResponder mDNSResponder-258.13 (Oct 8 2010 17:10:30) starting Dec 15 19:30:47 localhost configd[15]: bootp_session_transmit: bpf_write(en1) failed: Network is down (50) Dec 15 19:30:47 localhost configd[15]: DHCP en1: INIT transmit failed Dec 15 19:30:47 localhost configd[15]: network configuration changed. Dec 15 19:30:47 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:30:47 Administrators-MacBook-Pro blued[16]: Apple Bluetooth daemon started Dec 15 19:30:52 Administrators-MacBook-Pro syslog[67]: routes.sh: Starting RouteSplit Dec 15 19:30:53 Administrators-MacBook-Pro com.apple.usbmuxd[41]: usbmuxd-207 built for iTunesTenOne on Oct 19 2010 at 13:50:35, running 64 bit Dec 15 19:30:54 Administrators-MacBook-Pro /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow[50]: Login Window Application Started Dec 15 19:30:55 Administrators-MacBook-Pro bootlog[61]: BOOT_TIME: 1292459441 0 Dec 15 19:30:55 Administrators-MacBook-Pro syslog[86]: routes.sh: static route 192.168.0.0/23 192.168.2.2 Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: route: writing to routing socket: Network is unreachable Dec 15 19:30:55 Administrators-MacBook-Pro net.routes.static[65]: add net 192.168.0.0: gateway 192.168.2.2: Network is unreachable Dec 15 19:30:57 Administrators-MacBook-Pro org.apache.httpd[38]: httpd: Could not reliably determine the server's fully qualified domain name, using Administrators-MacBook-Pro.local for ServerName Dec 15 19:30:58 Administrators-MacBook-Pro loginwindow[50]: Login Window Started Security Agent Dec 15 19:30:58 Administrators-MacBook-Pro WindowServer[89]: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:30:58 Administrators-MacBook-Pro com.apple.WindowServer[89]: Wed Dec 15 19:30:58 Administrators-MacBook-Pro.local WindowServer[89] <Error>: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Dec 15 19:31:18 Administrators-MacBook-Pro configd[15]: network configuration changed. Dec 15 19:31:19 administrators-macbook-pro configd[15]: setting hostname to "administrators-macbook-pro.local" Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[121]: /usr/libexec/ntpd-wrapper: scutil key State:/Network/Global/DNS not present after 30 seconds Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp options: a=2 v=1 e=0.100 E=5.000 P=2147483647.000 Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: d=15 c=5 x=0 op=1 l=/var/run/sntp.pid f= time.apple.com Dec 15 19:31:25 administrators-macbook-pro _mdnsresponder[124]: sntp: getaddrinfo(hostname, ntp) failed with nodename nor servname provided, or not known Dec 15 19:31:27 administrators-macbook-pro configd[15]: network configuration changed. Dec 15 19:31:27 Administrators-MacBook-Pro configd[15]: setting hostname to "Administrators-MacBook-Pro.local" Dec 15 19:31:27 Administrators-MacBook-Pro ntpd[37]: Cannot find existing interface for address 17.151.16.20 Dec 15 19:31:27 Administrators-MacBook-Pro ntpd_initres[125]: ntpd indicates no data available! Dec 15 19:31:31 Administrators-MacBook-Pro sshd[128]: USER_PROCESS: 133 ttys000 Dec 15 19:31:37 Administrators-MacBook-Pro sudo[138]: administrator : TTY=ttys000 ; PWD=/Users/administrator ; USER=root ; COMMAND=/usr/bin/less /var/log/system.log ``You can see the following line in /var/log/kernel.log that shows the en0 interface coming up: Dec 15 19:30:51 Administrators-MacBook-Pro kernel[0]: Ethernet [AppleBCM5701Ethernet]: Link up on en0, 1-Gigabit, Full-duplex, No flow-control, Debug [796d,0f01,0de1,0300,c1e1,3800]

    Read the article

  • NLog Exception Details Renderer

    - by jtimperley
    Originally posted on: http://geekswithblogs.net/jtimperley/archive/2013/07/28/nlog-exception-details-renderer.aspxI recently switch from Microsoft's Enterprise Library Logging block to NLog.  In my opinion, NLog offers a simpler and much cleaner configuration section with better use of placeholders, complemented by custom variables. Despite this, I found one deficiency in my migration; I had lost the ability to simply render all details of an exception into our logs and notification emails. This is easily remedied by implementing a custom layout renderer. Start by extending 'NLog.LayoutRenderers.LayoutRenderer' and overriding the 'Append' method. using System.Text; using NLog; using NLog.Config; using NLog.LayoutRenderers;   [ThreadAgnostic] [LayoutRenderer(Name)] public class ExceptionDetailsRenderer : LayoutRenderer { public const string Name = "exceptiondetails";   protected override void Append(StringBuilder builder, LogEventInfo logEvent) { // Todo: Append details to StringBuilder } }   Now that we have a base layout renderer, we simply need to add the formatting logic to add exception details as well as inner exception details. This is done using reflection with some simple filtering for the properties that are already being rendered. I have added an additional 'Register' method, allowing the definition to be registered in code, rather than in configuration files. This complements by 'LogWrapper' class which standardizes writing log entries throughout my applications. using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using System.Text; using NLog; using NLog.Config; using NLog.LayoutRenderers;   [ThreadAgnostic] [LayoutRenderer(Name)] public sealed class ExceptionDetailsRenderer : LayoutRenderer { public const string Name = "exceptiondetails"; private const string _Spacer = "======================================"; private List<string> _FilteredProperties;   private List<string> FilteredProperties { get { if (_FilteredProperties == null) { _FilteredProperties = new List<string> { "StackTrace", "HResult", "InnerException", "Data" }; }   return _FilteredProperties; } }   public bool LogNulls { get; set; }   protected override void Append(StringBuilder builder, LogEventInfo logEvent) { Append(builder, logEvent.Exception, false); }   private void Append(StringBuilder builder, Exception exception, bool isInnerException) { if (exception == null) { return; }   builder.AppendLine();   var type = exception.GetType(); if (isInnerException) { builder.Append("Inner "); }   builder.AppendLine("Exception Details:") .AppendLine(_Spacer) .Append("Exception Type: ") .AppendLine(type.ToString());   var bindingFlags = BindingFlags.Instance | BindingFlags.Public; var properties = type.GetProperties(bindingFlags); foreach (var property in properties) { var propertyName = property.Name; var isFiltered = FilteredProperties.Any(filter => String.Equals(propertyName, filter, StringComparison.InvariantCultureIgnoreCase)); if (isFiltered) { continue; }   var propertyValue = property.GetValue(exception, bindingFlags, null, null, null); if (propertyValue == null && !LogNulls) { continue; }   var valueText = propertyValue != null ? propertyValue.ToString() : "NULL"; builder.Append(propertyName) .Append(": ") .AppendLine(valueText); }   AppendStackTrace(builder, exception.StackTrace, isInnerException); Append(builder, exception.InnerException, true); }   private void AppendStackTrace(StringBuilder builder, string stackTrace, bool isInnerException) { if (String.IsNullOrEmpty(stackTrace)) { return; }   builder.AppendLine();   if (isInnerException) { builder.Append("Inner "); }   builder.AppendLine("Exception StackTrace:") .AppendLine(_Spacer) .AppendLine(stackTrace); }   public static void Register() { Type definitionType; var layoutRenderers = ConfigurationItemFactory.Default.LayoutRenderers; if (layoutRenderers.TryGetDefinition(Name, out definitionType)) { return; }   layoutRenderers.RegisterDefinition(Name, typeof(ExceptionDetailsRenderer)); LogManager.ReconfigExistingLoggers(); } } For brevity I have removed the Trace, Debug, Warn, and Fatal methods. They are modelled after the Info methods. As mentioned above, note how the log wrapper automatically registers our custom layout renderer reducing the amount of application configuration required. using System; using NLog;   public static class LogWrapper { static LogWrapper() { ExceptionDetailsRenderer.Register(); }   #region Log Methods   public static void Info(object toLog) { Log(toLog, LogLevel.Info); }   public static void Info(string messageFormat, params object[] parameters) { Log(messageFormat, parameters, LogLevel.Info); }   public static void Error(object toLog) { Log(toLog, LogLevel.Error); }   public static void Error(string message, Exception exception) { Log(message, exception, LogLevel.Error); }   private static void Log(string messageFormat, object[] parameters, LogLevel logLevel) { string message = parameters.Length == 0 ? messageFormat : string.Format(messageFormat, parameters); Log(message, (Exception)null, logLevel); }   private static void Log(object toLog, LogLevel logLevel, LogType logType = LogType.General) { if (toLog == null) { throw new ArgumentNullException("toLog"); }   if (toLog is Exception) { var exception = toLog as Exception; Log(exception.Message, exception, logLevel, logType); } else { var message = toLog.ToString(); Log(message, null, logLevel, logType); } }   private static void Log(string message, Exception exception, LogLevel logLevel, LogType logType = LogType.General) { if (exception == null && String.IsNullOrEmpty(message)) { return; }   var logger = GetLogger(logType); // Note: Using the default constructor doesn't set the current date/time var logInfo = new LogEventInfo(logLevel, logger.Name, message); logInfo.Exception = exception; logger.Log(logInfo); }   private static Logger GetLogger(LogType logType) { var loggerName = logType.ToString(); return LogManager.GetLogger(loggerName); }   #endregion   #region LogType private enum LogType { General } #endregion } The following configuration is similar to what is provided for each of my applications. The 'application' variable is all that differentiates the various applications in all of my environments, the rest has been standardized. Depending on your needs to tweak this configuration while developing and debugging, this section could easily be pushed back into code similar to the registering of our custom layout renderer.   <?xml version="1.0"?>   <configuration> <configSections> <section name="nlog" type="NLog.Config.ConfigSectionHandler, NLog"/> </configSections> <nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <variable name="application" value="Example"/> <targets> <target type="EventLog" name="EventLog" source="${application}" log="${application}" layout="${message}${onexception: ${newline}${exceptiondetails}}"/> <target type="Mail" name="Email" smtpServer="smtp.example.local" from="[email protected]" to="[email protected]" subject="(${machinename}) ${application}: ${level}" body="Machine: ${machinename}${newline}Timestamp: ${longdate}${newline}Level: ${level}${newline}Message: ${message}${onexception: ${newline}${exceptiondetails}}"/> </targets> <rules> <logger name="*" minlevel="Debug" writeTo="EventLog" /> <logger name="*" minlevel="Error" writeTo="Email" /> </rules> </nlog> </configuration>   Now go forward, create your custom exceptions without concern for including their custom properties in your exception logs and notifications.

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Parallelism in .NET – Part 18, Task Continuations with Multiple Tasks

    - by Reed
    In my introduction to Task continuations I demonstrated how the Task class provides a more expressive alternative to traditional callbacks.  Task continuations provide a much cleaner syntax to traditional callbacks, but there are other reasons to switch to using continuations… Task continuations provide a clean syntax, and a very simple, elegant means of synchronizing asynchronous method results with the user interface.  In addition, continuations provide a very simple, elegant means of working with collections of tasks. Prior to .NET 4, working with multiple related asynchronous method calls was very tricky.  If, for example, we wanted to run two asynchronous operations, followed by a single method call which we wanted to run when the first two methods completed, we’d have to program all of the handling ourselves.  We would likely need to take some approach such as using a shared callback which synchronized against a common variable, or using a WaitHandle shared within the callbacks to allow one to wait for the second.  Although this could be accomplished easily enough, it requires manually placing this handling into every algorithm which requires this form of blocking.  This is error prone, difficult, and can easily lead to subtle bugs. Similar to how the Task class static methods providing a way to block until multiple tasks have completed, TaskFactory contains static methods which allow a continuation to be scheduled upon the completion of multiple tasks: TaskFactory.ContinueWhenAll. This allows you to easily specify a single delegate to run when a collection of tasks has completed.  For example, suppose we have a class which fetches data from the network.  This can be a long running operation, and potentially fail in certain situations, such as a server being down.  As a result, we have three separate servers which we will “query” for our information.  Now, suppose we want to grab data from all three servers, and verify that the results are the same from all three. With traditional asynchronous programming in .NET, this would require using three separate callbacks, and managing the synchronization between the various operations ourselves.  The Task and TaskFactory classes simplify this for us, allowing us to write: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAll( new[] {server1, server2, server3 }, (tasks) => { // Propogate exceptions (see below) Task.WaitAll(tasks); return this.CompareTaskResults( tasks[0].Result, tasks[1].Result, tasks[2].Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This is clean, simple, and elegant.  The one complication is the Task.WaitAll(tasks); statement. Although the continuation will not complete until all three tasks (server1, server2, and server3) have completed, there is a potential snag.  If the networkClass.GetResults method fails, and raises an exception, we want to make sure to handle it cleanly.  By using Task.WaitAll, any exceptions raised within any of our original tasks will get wrapped into a single AggregateException by the WaitAll method, providing us a simplified means of handling the exceptions.  If we wait on the continuation, we can trap this AggregateException, and handle it cleanly.  Without this line, it’s possible that an exception could remain uncaught and unhandled by a task, which later might trigger a nasty UnobservedTaskException.  This would happen any time two of our original tasks failed. Just as we can schedule a continuation to occur when an entire collection of tasks has completed, we can just as easily setup a continuation to run when any single task within a collection completes.  If, for example, we didn’t need to compare the results of all three network locations, but only use one, we could still schedule three tasks.  We could then have our completion logic work on the first task which completed, and ignore the others.  This is done via TaskFactory.ContinueWhenAny: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAny( new[] {server1, server2, server3 }, (firstTask) => { return this.ProcessTaskResult(firstTask.Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, instead of working with all three tasks, we’re just using the first task which finishes.  This is very useful, as it allows us to easily work with results of multiple operations, and “throw away” the others.  However, you must take care when using ContinueWhenAny to properly handle exceptions.  At some point, you should always wait on each task (or use the Task.Result property) in order to propogate any exceptions raised from within the task.  Failing to do so can lead to an UnobservedTaskException.

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • SQL SERVER – Developer Training Resources and Summary Roundup

    - by pinaldave
    It is always pleasure for any author when other renowned authors in the industry write about you. Earlier I wrote a five part blog series on Developer Training and I have received a phenomenal response to the series. I have received plenty of comments, questions and feedback. I thought it would be nice to sum up the whole series as well answer a few of the questions received. Quick Recap Developer Training - Importance and Significance - Part 1 In this part we discussed the importance of training in the real world. The most important and valuable resource any company is its employee. Employees who have been well-trained will be better at their jobs and produce a better product.  An employee who is well trained obviously knows more about their job and all the technical aspects. I have a very high opinion about training employees and it is the most important task. Developer Training – Employee Morals and Ethics – Part 2 In this part we discussed the most crucial components of training. Often employees are expecting the company to pay for their training and the company expresses no interest in training the employee. Quite often training expenses are the real issue for both the employee and employer. There are companies that pay for 100% of the expenses and there are employees who opt for training on their own expense during their personal time. Training is often looked at as vacation by employee and employers and we need to change this mind-set. One of the ways is to report back the learning to your manager and implement newly learned knowledge in day-to-day work. Developer Training – Difficult Questions and Alternative Perspective - Part 3 This part was the most difficult to write as I tried to address a few difficult questions and answers. Training is such a sensitive issue that many developers when not receiving chance for training think about leaving the organization. The manager often feels pressure to accommodate every single employee for training even though his training budget is limited. It is indeed the responsibility of the developer to get maximum advantage from the training. Training immediately helps organizations but stays as a part of an employee’s knowledge forever. Developer Training – Various Options for Developer Training – Part 4 In this part I tried to explore a few methods and options for training. The generic feedback I received on this blog post was short and I should have explored each of the subject of the training in details. I believe there are two big buckets of training 1) Instructor Lead Training and 2) Self Lead Training. The common element between both the methods is “learning material”. Learning material can be of any format – videos, books, paper notes or just a plain black board. Instructor-led training is a very effective mode but not possible every single time. During the course of the developer’s career, one has to learn lots of new technology and it is almost impossible to have a quality trainer available on that subject at that time. Books are most effective and proven methods, however, it always helps if someone explains the concepts of the book with a demonstration. In recent times I have started to believe in online trainings which leads to a hybrid experience. Online trainings take the best part of the books and the best part of the instructor-led training and gives effective training in a matter of hours. Developer Training – A Conclusive Summary- Part 5 In this part, I shared what I was continuously thinking about developer training. There is no better teacher than oneself. There is no better motivation than a personal desire to learn new technology. Honestly there is nothing more personal learning. That “change is the only constant” and “adapt & overcome” are the essential lessons of life. One cannot stop the learning and resist the change. In the IT industry “ego of knowing all” and the “resistance to change” are the most challenging issues. Once someone overcomes them, life is much easier. I believe that proper and appropriate high quality training can help to address the burning issues. Opinion of Friends I invited a few of my friends to express their opinion about developer training and here are their opinions. I am listing them here in the order of the blog post publishing date. Nakul Vachhrajani - Developer Trainings-Importance, Benefits, Tips and follow-up Nakul’s sums of many of the concepts which are complementary to my blog posts. Nakul addresses the burning question of developer training with different angles. I am personally very impressed by his following statement - “Being skilled does not mean having just a stack of certifications, but it also means having an understanding about the internals of the products that you are working on – and using that knowledge to improve the efficiency & productivity at the workplace in turn resulting in better products, better consulting abilities and a happier self.” Nakul also suggests the online training options of Pluralsight. Vinod Kumar - Training–a necessity or bonus Vinod Kumar comes up with excellent follow up on developer training. Vinod is known for his inspirational writing about SQL Server. Vinod starts with a story of a student who is extremely eager to learn the wisdom of life from a monk but the monk does not accept him as a disciple for a long time. The conversation between student and monk is indeed an essence of all learning. We all want to learn quickly and be successful but the most important thing in life is to have the right attitude towards learning and more so towards life. The blog post end with a very important thought about how to avoid the famous excuse – “I don’t have enough time.” Ritesh Shah - Training – useful or useless? Ritesh brings up very important concept related to training. Ritesh in his meticulous style explains why training is an important and lifelong process. Training must not stop at any age but should continue forever. The moment training stops, progress stops along with. Paras Doshi - Professional Development Resource Paras is known for his to–the-point writing, and has summarized the five part series very precisely. He read the five part series and created a digest summary of the blog post. If you are in a rush and have no time to read my five series – I suggest you read his blog post. Training Resources I am often asked what the best resources for learning new technology are. This is the most difficult question EVER. There are plenty of good training resources available. When it is about training our needs are different, our preference of learning is different and we all have an opinion. Additionally, we all are located in different geographic locations worldwide and there is no way one solution will fit all. However, let me list a few of the training resources which I have built so far and you can consume them if you find it relevant to your need. SQL Server Books SQL Server Interview Questions and Answers SQL Wait Stats SQL Programming Joes 2 Pros SQL Server Video Tutorials SQL Server Questions and Answers SQL Server Performance: Indexing Basics SQL Server Performance: Introduction to Query Tuning SQL in Sixty Seconds Series of Sixty Seconds Learning Video on YouTube Trust me worldwide web is very big and there are plenty of high quality learning materials available worldwide – trainer-led as well online. I suggest you explore various options and make the best choice for yourself. Remember, training is your personal journey and it should never stop. Are you ready? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Developer Training, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Use an Ubuntu Live CD to Securely Wipe Your PC’s Hard Drive

    - by Trevor Bekolay
    Deleting files or quickly formatting a drive isn’t enough for sensitive personal information. We’ll show you how to get rid of it for good using a Ubuntu Live CD. When you delete a file in Windows, Ubuntu, or any other operating system, it doesn’t actually destroy the data stored on your hard drive, it just marks that data as “deleted.” If you overwrite it later, then that data is generally unrecoverable, but if the operating system don’t happen to overwrite it, then your data is still stored on your hard drive, recoverable by anyone who has the right software. By securely delete files or entire hard drives, your data will be gone for good. Note: Modern hard drives are extremely sophisticated, as are the experts who recover data for a living. There is no guarantee that the methods covered in this article will make your data completely unrecoverable; however, they will make your data unrecoverable to the majority of recovery methods, and all methods that are readily available to the general public. Shred individual files Most of the data stored on your hard drive is harmless, and doesn’t reveal anything about you. If there are just a few files that you know you don’t want someone else to see, then the easiest way to get rid of them is a built-in Linux utility called shred. Open a terminal window by clicking on Applications at the top-left of the screen, then expanding the Accessories menu and clicking on Terminal. Navigate to the file that you want to delete using cd to change directories and ls to list the files and folders in the current directory. As an example, we’ve got a file called BankInfo.txt on a Windows NTFS-formatted hard drive. We want to delete it securely, so we’ll call shred by entering the following in the terminal window: shred <file> which is, in our example: shred BankInfo.txt Notice that our BankInfo.txt file still exists, even though we’ve shredded it. A quick look at the contents of BankInfo.txt make it obvious that the file has indeed been securely overwritten. We can use some command-line arguments to make shred delete the file from the hard drive as well. We can also be extra-careful about the shredding process by upping the number of times shred overwrites the original file. To do this, in the terminal, type in: shred –remove –iterations=<num> <file> By default, shred overwrites the file 25 times. We’ll double this, giving us the following command: shred –remove –iterations=50 BankInfo.txt BankInfo.txt has now been securely wiped on the physical disk, and also no longer shows up in the directory listing. Repeat this process for any sensitive files on your hard drive! Wipe entire hard drives If you’re disposing of an old hard drive, or giving it to someone else, then you might instead want to wipe your entire hard drive. shred can be invoked on hard drives, but on modern file systems, the shred process may be reversible. We’ll use the program wipe to securely delete all of the data on a hard drive. Unlike shred, wipe is not included in Ubuntu by default, so we have to install it. Open up the Synaptic Package Manager by clicking on System in the top-left corner of the screen, then expanding the Administration folder and clicking on Synaptic Package Manager. wipe is part of the Universe repository, which is not enabled by default. We’ll enable it by clicking on Settings > Repositories in the Synaptic Package Manager window. Check the checkbox next to “Community-maintained Open Source software (universe)”. Click Close. You’ll need to reload Synaptic’s package list. Click on the Reload button in the main Synaptic Package Manager window. Once the package list has been reloaded, the text over the search field will change to “Rebuilding search index”. Wait until it reads “Quick search,” and then type “wipe” into the search field. The wipe package should come up, along with some other packages that perform similar functions. Click on the checkbox to the left of the label “wipe” and select “Mark for Installation”. Click on the Apply button to start the installation process. Click the Apply button on the Summary window that pops up. Once the installation is done, click the Close button and close the Synaptic Package Manager window. Open a terminal window by clicking on Applications in the top-left of the screen, then Accessories > Terminal. You need to figure our the correct hard drive to wipe. If you wipe the wrong hard drive, that data will not be recoverable, so exercise caution! In the terminal window, type in: sudo fdisk -l A list of your hard drives will show up. A few factors will help you identify the right hard drive. One is the file system, found in the System column of  the list – Windows hard drives are usually formatted as NTFS (which shows up as HPFS/NTFS). Another good identifier is the size of the hard drive, which appears after its identifier (highlighted in the following screenshot). In our case, the hard drive we want to wipe is only around 1 GB large, and is formatted as NTFS. We make a note of the label found under the the Device column heading. If you have multiple partitions on this hard drive, then there will be more than one device in this list. The wipe developers recommend wiping each partition separately. To start the wiping process, type the following into the terminal: sudo wipe <device label> In our case, this is: sudo wipe /dev/sda1 Again, exercise caution – this is the point of no return! Your hard drive will be completely wiped. It may take some time to complete, depending on the size of the drive you’re wiping. Conclusion If you have sensitive information on your hard drive – and chances are you probably do – then it’s a good idea to securely delete sensitive files before you give away or dispose of your hard drive. The most secure way to delete your data is with a few swings of a hammer, but shred and wipe from a Ubuntu Live CD is a good alternative! Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDScan a Windows PC for Viruses from a Ubuntu Live CDRecover Deleted Files on an NTFS Hard Drive from a Ubuntu Live CDCreate a Bootable Ubuntu 9.10 USB Flash DriveCreate a Bootable Ubuntu USB Flash Drive the Easy Way TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi LocPDF is a Visual PDF Search Tool Download Free iPad Wallpapers at iPad Decor Get Your Delicious Bookmarks In Firefox’s Awesome Bar

    Read the article

  • Talks Submitted for Ann Arbor Day of .NET 2010

    - by PSteele
    Just submitted my session abstracts for Ann Arbor's Day of .NET 2010.   Getting up to speed with .NET 3.5 -- Just in time for 4.0! Yes, C# 4.0 is just around the corner.  But if you haven't had the chance to use C# 3.5 extensively, this session will start from the ground up with the new features of 3.5.  We'll assume everyone is coming from C# 2.0.  This session will show you the details of extension methods, partial methods and more.  We'll also show you how LINQ -- Language Integrated Query -- can help decrease your development time and increase your code's readability.  If time permits, we'll look at some .NET 4.0 features, but the goal is to get you up to speed on .NET 3.5.   Go Ahead and Mock Me! When testing specific parts of your application, there can be a lot of external dependencies required to make your tests work.  Writing fake or mock objects that act as stand-ins for the real dependencies can waste a lot of time.  This is where mocking frameworks come in.  In this session, Patrick Steele will introduce you to Rhino Mocks, a popular mocking framework for .NET.  You'll see how a mocking framework can make writing unit tests easier and leads to less brittle unit tests.   Inversion of Control: Who's got control and why is it being inverted? No doubt you've heard of "Inversion of Control".  If not, maybe you've heard the term "Dependency Injection"?  The two usually go hand-in-hand.  Inversion of Control (IoC) along with Dependency Injection (DI) helps simplify the connections and lifetime of all of the dependent objects in the software you write.  In this session, Patrick Steele will introduce you to the concepts of IoC and DI and will show you how to use a popular IoC container (Castle Windsor) to help simplify the way you build software and how your objects interact with each other. If you're interested in speaking, hurry up and get your submissions in!  The deadline is Monday, April 5th! Technorati Tags: .NET,Ann Arbor,Day of .NET

    Read the article

  • 20 of the Best of Shortcut and Hotkey Tips for Your Windows PC

    - by Lori Kaufman
    For those of you who like to use the quickest methods of getting things done on your computer, we have shown you many Windows shortcuts and hotkeys for performing useful tasks in the past. This article compiles 20 of the best Windows shortcuts and hotkeys we have documented. Use Amazon’s Barcode Scanner to Easily Buy Anything from Your Phone How To Migrate Windows 7 to a Solid State Drive Follow How-To Geek on Google+

    Read the article

  • ActAs and OnBehalfOf support in WIF

    - by cibrax
    I discussed a time ago how WIF supported a new WS-Trust 1.4 element, “ActAs”, and how that element could be used for authentication delegation.  The thing is that there is another feature in WS-Trust 1.4 that also becomes handy for this kind of scenario, and I did not mention in that last post, “OnBehalfOf”. Shiung Yong wrote an excellent summary about the difference of these two new features in this forum thread. He basically commented the following, “An ActAs RST element indicates that the requestor wants a token that contains claims about two distinct entities: the requestor, and an external entity represented by the token in the ActAs element. An OnBehalfOf RST element indicates that the requestor wants a token that contains claims only about one entity: the external entity represented by the token in the OnBehalfOf element. In short, ActAs feature is typically used in scenarios that require composite delegation, where the final recipient of the issued token can inspect the entire delegation chain and see not just the client, but all intermediaries to perform access control, auditing and other related activities based on the whole identity delegation chain. The ActAs feature is commonly used in multi-tiered systems to authenticate and pass information about identities between the tiers without having to pass this information at the application/business logic layer. OnBehalfOf feature is used in scenarios where only the identity of the original client is important and is effectively the same as identity impersonation feature available in the Windows OS today. When the OnBehalfOf is used the final recipient of the issued token can only see claims about the original client, and the information about intermediaries is not preserved. One common pattern where OnBehalfOf feature is used is the proxy pattern where the client cannot access the STS directly but is instead communicating through a proxy gateway. The proxy gateway authenticates the caller and puts information about him into the OnBehalfOf element of the RST message that it then sends to the real STS for processing. The resulting token is going to contain only claims related to the client of the proxy, making the proxy completely transparent and not visible to the receiver of the issued token.” Going back to WIF, “ActAs” and “OnBehalfOf” are both supported as extensions methods in the WCF client channel. public static class ChannelFactoryOperations {   public static T CreateChannelActingAs<T>(this ChannelFactory<T> factory,     SecurityToken actAs);     public static T CreateChannelOnBehalfOf<T>(this ChannelFactory<T> factory,     SecurityToken onBehalfOf); } Both methods receive the security token with the identity of the original caller.

    Read the article

  • ParallelWork: Feature rich multithreaded fluent task execution library for WPF

    - by oazabir
    ParallelWork is an open source free helper class that lets you run multiple work in parallel threads, get success, failure and progress update on the WPF UI thread, wait for work to complete, abort all work (in case of shutdown), queue work to run after certain time, chain parallel work one after another. It’s more convenient than using .NET’s BackgroundWorker because you don’t have to declare one component per work, nor do you need to declare event handlers to receive notification and carry additional data through private variables. You can safely pass objects produced from different thread to the success callback. Moreover, you can wait for work to complete before you do certain operation and you can abort all parallel work while they are in-flight. If you are building highly responsive WPF UI where you have to carry out multiple job in parallel yet want full control over those parallel jobs completion and cancellation, then the ParallelWork library is the right solution for you. I am using the ParallelWork library in my PlantUmlEditor project, which is a free open source UML editor built on WPF. You can see some realistic use of the ParallelWork library there. Moreover, the test project comes with 400 lines of Behavior Driven Development flavored tests, that confirms it really does what it says it does. The source code of the library is part of the “Utilities” project in PlantUmlEditor source code hosted at Google Code. The library comes in two flavors, one is the ParallelWork static class, which has a collection of static methods that you can call. Another is the Start class, which is a fluent wrapper over the ParallelWork class to make it more readable and aesthetically pleasing code. ParallelWork allows you to start work immediately on separate thread or you can queue a work to start after some duration. You can start an immediate work in a new thread using the following methods: void StartNow(Action doWork, Action onComplete) void StartNow(Action doWork, Action onComplete, Action<Exception> failed) For example, ParallelWork.StartNow(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workEndedAt = DateTime.Now; }); Or you can use the fluent way Start.Work: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .Run(); Besides simple execution of work on a parallel thread, you can have the parallel thread produce some object and then pass it to the success callback by using these overloads: void StartNow<T>(Func<T> doWork, Action<T> onComplete) void StartNow<T>(Func<T> doWork, Action<T> onComplete, Action<Exception> fail) For example, ParallelWork.StartNow<Dictionary<string, string>>( () => { test = new Dictionary<string,string>(); test.Add("test", "test"); return test; }, (result) => { Assert.True(result.ContainsKey("test")); }); Or, the fluent way: Start<Dictionary<string, string>>.Work(() => { test = new Dictionary<string, string>(); test.Add("test", "test"); return test; }) .OnComplete((result) => { Assert.True(result.ContainsKey("test")); }) .Run(); You can also start a work to happen after some time using these methods: DispatcherTimer StartAfter(Action onComplete, TimeSpan duration) DispatcherTimer StartAfter(Action doWork,Action onComplete,TimeSpan duration) You can use this to perform some timed operation on the UI thread, as well as perform some operation in separate thread after some time. ParallelWork.StartAfter( () => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }, () => { workCompletedAt = DateTime.Now; }, waitDuration); Or, the fluent way: Start.Work(() => { workStartedAt = DateTime.Now; Thread.Sleep(howLongWorkTakes); }) .OnComplete(() => { workCompletedAt = DateTime.Now; }) .RunAfter(waitDuration);   There are several overloads of these functions to have a exception callback for handling exceptions or get progress update from background thread while work is in progress. For example, I use it in my PlantUmlEditor to perform background update of the application. // Check if there's a newer version of the app Start<bool>.Work(() => { return UpdateChecker.HasUpdate(Settings.Default.DownloadUrl); }) .OnComplete((hasUpdate) => { if (hasUpdate) { if (MessageBox.Show(Window.GetWindow(me), "There's a newer version available. Do you want to download and install?", "New version available", MessageBoxButton.YesNo, MessageBoxImage.Information) == MessageBoxResult.Yes) { ParallelWork.StartNow(() => { var tempPath = System.IO.Path.Combine( Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData), Settings.Default.SetupExeName); UpdateChecker.DownloadLatestUpdate(Settings.Default.DownloadUrl, tempPath); }, () => { }, (x) => { MessageBox.Show(Window.GetWindow(me), "Download failed. When you run next time, it will try downloading again.", "Download failed", MessageBoxButton.OK, MessageBoxImage.Warning); }); } } }) .OnException((x) => { MessageBox.Show(Window.GetWindow(me), x.Message, "Download failed", MessageBoxButton.OK, MessageBoxImage.Exclamation); }); The above code shows you how to get exception callbacks on the UI thread so that you can take necessary actions on the UI. Moreover, it shows how you can chain two parallel works to happen one after another. Sometimes you want to do some parallel work when user does some activity on the UI. For example, you might want to save file in an editor while user is typing every 10 second. In such case, you need to make sure you don’t start another parallel work every 10 seconds while a work is already queued. You need to make sure you start a new work only when there’s no other background work going on. Here’s how you can do it: private void ContentEditor_TextChanged(object sender, EventArgs e) { if (!ParallelWork.IsAnyWorkRunning()) { ParallelWork.StartAfter(SaveAndRefreshDiagram, TimeSpan.FromSeconds(10)); } } If you want to shutdown your application and want to make sure no parallel work is going on, then you can call the StopAll() method. ParallelWork.StopAll(); If you want to wait for parallel works to complete without a timeout, then you can call the WaitForAllWork(TimeSpan timeout). It will block the current thread until the all parallel work completes or the timeout period elapses. result = ParallelWork.WaitForAllWork(TimeSpan.FromSeconds(1)); The result is true, if all parallel work completed. If it’s false, then the timeout period elapsed and all parallel work did not complete. For details how this library is built and how it works, please read the following codeproject article: ParallelWork: Feature rich multithreaded fluent task execution library for WPF http://www.codeproject.com/KB/WPF/parallelwork.aspx If you like the article, please vote for me.

    Read the article

  • SQL Server Management Data Warehouse - quick tour on setting health monitoring policies

    - by ssqa.net
    Profiler, Perfmon, DMVs & scripts are legendary tools for a DBA to monitor the SQL arena. In line with these tools SQL Server 2008 throws a powerful stream with policy based management (PBM) framework & management data warehouse (MDW) methods, which is a relational database that contains the data that is collected from a server that is a data collection target. This data is used to generate the reports for the System Data collection sets, and can also be used to create custom reports. .....(read more)

    Read the article

  • Make your code gooder with the goodies gem

    - by kerry
    I have decided to publish all my Ruby tools via a gem called ‘goodies’.  To install this gem simply type ‘gem install goodies’. The source is hosted on GitHub.  The first version (0.1) has the Hash object accessors and the String file path utility methods discussed in the previous two posts. Enjoy!   Ruby Goodies @ GitHub Goodies on gemcutter.org

    Read the article

  • WCF client hell (2 replies)

    I've a remote service available via tcp://. When I add a service reference on my client project, VS doesn't create all proxy objects! I miss every xxxClient class, and I have only types used as parameters in my methods. I tried to start a new empty project, add the same service reference, and in this project I can see al proxy objects! It's an hell, what can I do? thanks

    Read the article

< Previous Page | 133 134 135 136 137 138 139 140 141 142 143 144  | Next Page >