Search Results

Search found 19055 results on 763 pages for 'high performance'.

Page 138/763 | < Previous Page | 134 135 136 137 138 139 140 141 142 143 144 145  | Next Page >

  • How to tune down the Hyperic built-in postgresql database for a small setup

    - by Svish
    We are testing out Hyperic 4.5.1 in a quite small environment for now. Currently there are just 1-5 agents and there probably won't be any more than 10-15. When I run ps ax there are 20(!) postgres processes running. For a small setup like this, that can't be necessary, can it? I'm a software developer and don't have much experience with setting up servers and such though, so don't really know. Either way, what settings are appropriate for a small Hyperic setup like this? Current, default and untouched configuration file, hqdb/data/postgresql.conf: # ----------------------------- # PostgreSQL configuration file # ----------------------------- # # This file consists of lines of the form: # # name = value # # (The '=' is optional.) White space may be used. Comments are introduced # with '#' anywhere on a line. The complete list of option names and # allowed values can be found in the PostgreSQL documentation. The # commented-out settings shown in this file represent the default values. # # Please note that re-commenting a setting is NOT sufficient to revert it # to the default value, unless you restart the server. # # Any option can also be given as a command line switch to the server, # e.g., 'postgres -c log_connections=on'. Some options can be changed at # run-time with the 'SET' SQL command. # # This file is read on server startup and when the server receives a # SIGHUP. If you edit the file on a running system, you have to SIGHUP the # server for the changes to take effect, or use "pg_ctl reload". Some # settings, which are marked below, require a server shutdown and restart # to take effect. # # Memory units: kB = kilobytes MB = megabytes GB = gigabytes # Time units: ms = milliseconds s = seconds min = minutes h = hours d = days #--------------------------------------------------------------------------- # FILE LOCATIONS #--------------------------------------------------------------------------- # The default values of these variables are driven from the -D command line # switch or PGDATA environment variable, represented here as ConfigDir. #data_directory = 'ConfigDir' # use data in another directory # (change requires restart) #hba_file = 'ConfigDir/pg_hba.conf' # host-based authentication file # (change requires restart) #ident_file = 'ConfigDir/pg_ident.conf' # ident configuration file # (change requires restart) # If external_pid_file is not explicitly set, no extra PID file is written. #external_pid_file = '(none)' # write an extra PID file # (change requires restart) #--------------------------------------------------------------------------- # CONNECTIONS AND AUTHENTICATION #--------------------------------------------------------------------------- # - Connection Settings - #listen_addresses = 'localhost' # what IP address(es) to listen on; # comma-separated list of addresses; # defaults to 'localhost', '*' = all # (change requires restart) port = 9432 # (change requires restart) max_connections = 100 # (change requires restart) # Note: increasing max_connections costs ~400 bytes of shared memory per # connection slot, plus lock space (see max_locks_per_transaction). You # might also need to raise shared_buffers to support more connections. #superuser_reserved_connections = 3 # (change requires restart) #unix_socket_directory = '' # (change requires restart) #unix_socket_group = '' # (change requires restart) #unix_socket_permissions = 0777 # octal # (change requires restart) #bonjour_name = '' # defaults to the computer name # (change requires restart) # - Security & Authentication - #authentication_timeout = 1min # 1s-600s #ssl = off # (change requires restart) #password_encryption = on #db_user_namespace = off # Kerberos #krb_server_keyfile = '' # (change requires restart) #krb_srvname = 'postgres' # (change requires restart) #krb_server_hostname = '' # empty string matches any keytab entry # (change requires restart) #krb_caseins_users = off # (change requires restart) # - TCP Keepalives - # see 'man 7 tcp' for details #tcp_keepalives_idle = 0 # TCP_KEEPIDLE, in seconds; # 0 selects the system default #tcp_keepalives_interval = 0 # TCP_KEEPINTVL, in seconds; # 0 selects the system default #tcp_keepalives_count = 0 # TCP_KEEPCNT; # 0 selects the system default #--------------------------------------------------------------------------- # RESOURCE USAGE (except WAL) #--------------------------------------------------------------------------- # - Memory - shared_buffers = 64MB # min 128kB or max_connections*16kB # (change requires restart) #temp_buffers = 8MB # min 800kB #max_prepared_transactions = 5 # can be 0 or more # (change requires restart) # Note: increasing max_prepared_transactions costs ~600 bytes of shared memory # per transaction slot, plus lock space (see max_locks_per_transaction). work_mem = 2MB # min 64kB maintenance_work_mem = 32MB # min 1MB #max_stack_depth = 2MB # min 100kB # - Free Space Map - max_fsm_pages = 204800 # min max_fsm_relations*16, 6 bytes each # (change requires restart) #max_fsm_relations = 1000 # min 100, ~70 bytes each # (change requires restart) # - Kernel Resource Usage - #max_files_per_process = 1000 # min 25 # (change requires restart) #shared_preload_libraries = '' # (change requires restart) # - Cost-Based Vacuum Delay - #vacuum_cost_delay = 0 # 0-1000 milliseconds #vacuum_cost_page_hit = 1 # 0-10000 credits #vacuum_cost_page_miss = 10 # 0-10000 credits #vacuum_cost_page_dirty = 20 # 0-10000 credits #vacuum_cost_limit = 200 # 0-10000 credits # - Background writer - #bgwriter_delay = 200ms # 10-10000ms between rounds #bgwriter_lru_percent = 1.0 # 0-100% of LRU buffers scanned/round #bgwriter_lru_maxpages = 5 # 0-1000 buffers max written/round #bgwriter_all_percent = 0.333 # 0-100% of all buffers scanned/round #bgwriter_all_maxpages = 5 # 0-1000 buffers max written/round #--------------------------------------------------------------------------- # WRITE AHEAD LOG #--------------------------------------------------------------------------- # - Settings - fsync = on # turns forced synchronization on or off #wal_sync_method = fsync # the default is the first option # supported by the operating system: # open_datasync # fdatasync # fsync # fsync_writethrough # open_sync #full_page_writes = on # recover from partial page writes #wal_buffers = 64kB # min 32kB # (change requires restart) commit_delay = 100000 # range 0-100000, in microseconds #commit_siblings = 5 # range 1-1000 # - Checkpoints - checkpoint_segments = 10 # in logfile segments, min 1, 16MB each #checkpoint_timeout = 5min # range 30s-1h #checkpoint_warning = 30s # 0 is off # - Archiving - #archive_command = '' # command to use to archive a logfile segment #archive_timeout = 0 # force a logfile segment switch after this # many seconds; 0 is off #--------------------------------------------------------------------------- # QUERY TUNING #--------------------------------------------------------------------------- # - Planner Method Configuration - #enable_bitmapscan = on #enable_hashagg = on #enable_hashjoin = on #enable_indexscan = on #enable_mergejoin = on #enable_nestloop = on #enable_seqscan = on #enable_sort = on #enable_tidscan = on # - Planner Cost Constants - #seq_page_cost = 1.0 # measured on an arbitrary scale #random_page_cost = 4.0 # same scale as above #cpu_tuple_cost = 0.01 # same scale as above #cpu_index_tuple_cost = 0.005 # same scale as above #cpu_operator_cost = 0.0025 # same scale as above #effective_cache_size = 128MB # - Genetic Query Optimizer - #geqo = on #geqo_threshold = 12 #geqo_effort = 5 # range 1-10 #geqo_pool_size = 0 # selects default based on effort #geqo_generations = 0 # selects default based on effort #geqo_selection_bias = 2.0 # range 1.5-2.0 # - Other Planner Options - #default_statistics_target = 10 # range 1-1000 #constraint_exclusion = off #from_collapse_limit = 8 #join_collapse_limit = 8 # 1 disables collapsing of explicit # JOINs #--------------------------------------------------------------------------- # ERROR REPORTING AND LOGGING #--------------------------------------------------------------------------- # - Where to Log - log_destination = 'stderr' # Valid values are combinations of # stderr, syslog and eventlog, # depending on platform. # This is used when logging to stderr: redirect_stderr = on # Enable capturing of stderr into log # files # (change requires restart) # These are only used if redirect_stderr is on: log_directory = '../../logs' # Directory where log files are written # Can be absolute or relative to PGDATA log_filename = 'hqdb-%Y-%m-%d.log' # Log file name pattern. # Can include strftime() escapes #log_truncate_on_rotation = off # If on, any existing log file of the same # name as the new log file will be # truncated rather than appended to. But # such truncation only occurs on # time-driven rotation, not on restarts # or size-driven rotation. Default is # off, meaning append to existing files # in all cases. log_rotation_age = 1d # Automatic rotation of logfiles will # happen after that time. 0 to # disable. #log_rotation_size = 10MB # Automatic rotation of logfiles will # happen after that much log # output. 0 to disable. # These are relevant when logging to syslog: #syslog_facility = 'LOCAL0' #syslog_ident = 'postgres' # - When to Log - #client_min_messages = notice # Values, in order of decreasing detail: # debug5 # debug4 # debug3 # debug2 # debug1 # log # notice # warning # error #log_min_messages = notice # Values, in order of decreasing detail: # debug5 # debug4 # debug3 # debug2 # debug1 # info # notice # warning # error # log # fatal # panic #log_error_verbosity = default # terse, default, or verbose messages #log_min_error_statement = error # Values in order of increasing severity: # debug5 # debug4 # debug3 # debug2 # debug1 # info # notice # warning # error # fatal # panic (effectively off) log_min_duration_statement = 10000 # -1 is disabled, 0 logs all statements # and their durations. #silent_mode = off # DO NOT USE without syslog or # redirect_stderr # (change requires restart) # - What to Log - #debug_print_parse = off #debug_print_rewritten = off #debug_print_plan = off #debug_pretty_print = off #log_connections = off #log_disconnections = off #log_duration = off #log_line_prefix = '' # Special values: # %u = user name # %d = database name # %r = remote host and port # %h = remote host # %p = PID # %t = timestamp (no milliseconds) # %m = timestamp with milliseconds # %i = command tag # %c = session id # %l = session line number # %s = session start timestamp # %x = transaction id # %q = stop here in non-session # processes # %% = '%' # e.g. '<%u%%%d> ' #log_statement = 'none' # none, ddl, mod, all #log_hostname = off #--------------------------------------------------------------------------- # RUNTIME STATISTICS #--------------------------------------------------------------------------- # - Query/Index Statistics Collector - #stats_command_string = on #update_process_title = on stats_start_collector = on # needed for block or row stats # (change requires restart) stats_block_level = on stats_row_level = on stats_reset_on_server_start = off # (change requires restart) # - Statistics Monitoring - #log_parser_stats = off #log_planner_stats = off #log_executor_stats = off #log_statement_stats = off #--------------------------------------------------------------------------- # AUTOVACUUM PARAMETERS #--------------------------------------------------------------------------- #autovacuum = off # enable autovacuum subprocess? # 'on' requires stats_start_collector # and stats_row_level to also be on #autovacuum_naptime = 1min # time between autovacuum runs #autovacuum_vacuum_threshold = 500 # min # of tuple updates before # vacuum #autovacuum_analyze_threshold = 250 # min # of tuple updates before # analyze #autovacuum_vacuum_scale_factor = 0.2 # fraction of rel size before # vacuum #autovacuum_analyze_scale_factor = 0.1 # fraction of rel size before # analyze #autovacuum_freeze_max_age = 200000000 # maximum XID age before forced vacuum # (change requires restart) #autovacuum_vacuum_cost_delay = -1 # default vacuum cost delay for # autovacuum, -1 means use # vacuum_cost_delay #autovacuum_vacuum_cost_limit = -1 # default vacuum cost limit for # autovacuum, -1 means use # vacuum_cost_limit #--------------------------------------------------------------------------- # CLIENT CONNECTION DEFAULTS #--------------------------------------------------------------------------- # - Statement Behavior - #search_path = '"$user",public' # schema names #default_tablespace = '' # a tablespace name, '' uses # the default #check_function_bodies = on #default_transaction_isolation = 'read committed' #default_transaction_read_only = off #statement_timeout = 0 # 0 is disabled #vacuum_freeze_min_age = 100000000 # - Locale and Formatting - datestyle = 'iso, mdy' #timezone = unknown # actually, defaults to TZ # environment setting #timezone_abbreviations = 'Default' # select the set of available timezone # abbreviations. Currently, there are # Default # Australia # India # However you can also create your own # file in share/timezonesets/. #extra_float_digits = 0 # min -15, max 2 #client_encoding = sql_ascii # actually, defaults to database # encoding # These settings are initialized by initdb -- they might be changed lc_messages = 'C' # locale for system error message # strings lc_monetary = 'C' # locale for monetary formatting lc_numeric = 'C' # locale for number formatting lc_time = 'C' # locale for time formatting # - Other Defaults - #explain_pretty_print = on #dynamic_library_path = '$libdir' #local_preload_libraries = '' #--------------------------------------------------------------------------- # LOCK MANAGEMENT #--------------------------------------------------------------------------- #deadlock_timeout = 1s #max_locks_per_transaction = 64 # min 10 # (change requires restart) # Note: each lock table slot uses ~270 bytes of shared memory, and there are # max_locks_per_transaction * (max_connections + max_prepared_transactions) # lock table slots. #--------------------------------------------------------------------------- # VERSION/PLATFORM COMPATIBILITY #--------------------------------------------------------------------------- # - Previous Postgres Versions - #add_missing_from = off #array_nulls = on #backslash_quote = safe_encoding # on, off, or safe_encoding #default_with_oids = off #escape_string_warning = on #standard_conforming_strings = off #regex_flavor = advanced # advanced, extended, or basic #sql_inheritance = on # - Other Platforms & Clients - #transform_null_equals = off #--------------------------------------------------------------------------- # CUSTOMIZED OPTIONS #--------------------------------------------------------------------------- #custom_variable_classes = '' # list of custom variable class names SELECT * FROM pg_stat_activity; datid | datname | procpid | usesysid | usename | current_query | waiting | query_start | backend_start | client_addr | client_port -------+---------+---------+----------+---------+---------------------------------+---------+-------------------------------+-------------------------------+-------------+------------- 16384 | hqdb | 3267 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.036781+01 | 2011-02-08 15:51:20.02413+01 | 127.0.0.1 | 47892 16384 | hqdb | 3268 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.050994+01 | 2011-02-08 15:51:20.047393+01 | 127.0.0.1 | 47893 16384 | hqdb | 3269 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.056661+01 | 2011-02-08 15:51:20.053201+01 | 127.0.0.1 | 47894 16384 | hqdb | 3271 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.062351+01 | 2011-02-08 15:51:20.058822+01 | 127.0.0.1 | 47895 16384 | hqdb | 3272 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.068328+01 | 2011-02-08 15:51:20.064517+01 | 127.0.0.1 | 47896 16384 | hqdb | 3273 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.07444+01 | 2011-02-08 15:51:20.070755+01 | 127.0.0.1 | 47897 16384 | hqdb | 3274 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.080941+01 | 2011-02-08 15:51:20.076983+01 | 127.0.0.1 | 47898 16384 | hqdb | 3275 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.08741+01 | 2011-02-08 15:51:20.083697+01 | 127.0.0.1 | 47899 16384 | hqdb | 3276 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:20.093597+01 | 2011-02-08 15:51:20.089977+01 | 127.0.0.1 | 47900 16384 | hqdb | 3277 | 10 | hqadmin | <IDLE> in transaction | f | 2011-02-08 15:51:20.133974+01 | 2011-02-08 15:51:20.096149+01 | 127.0.0.1 | 47901 16384 | hqdb | 3308 | 10 | hqadmin | <IDLE> | f | 2011-02-09 10:49:27.402197+01 | 2011-02-08 15:51:29.826321+01 | 127.0.0.1 | 47902 16384 | hqdb | 3309 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.572395+01 | 2011-02-08 15:51:29.865243+01 | 127.0.0.1 | 47903 16384 | hqdb | 3310 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.586273+01 | 2011-02-08 15:51:29.874346+01 | 127.0.0.1 | 47904 16384 | hqdb | 3311 | 10 | hqadmin | <IDLE> | f | 2011-02-09 10:10:03.024088+01 | 2011-02-08 15:51:29.883598+01 | 127.0.0.1 | 47905 16384 | hqdb | 3312 | 10 | hqadmin | <IDLE> in transaction | f | 2011-02-08 15:51:35.804457+01 | 2011-02-08 15:51:29.892925+01 | 127.0.0.1 | 47906 16384 | hqdb | 3418 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.580207+01 | 2011-02-08 15:51:55.56911+01 | 127.0.0.1 | 47910 16384 | hqdb | 3419 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.59781+01 | 2011-02-08 15:51:55.588609+01 | 127.0.0.1 | 47911 16384 | hqdb | 3422 | 10 | hqadmin | <IDLE> | f | 2011-02-09 10:10:02.668836+01 | 2011-02-08 15:51:55.603076+01 | 127.0.0.1 | 47914 16384 | hqdb | 3421 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.770427+01 | 2011-02-08 15:51:55.603086+01 | 127.0.0.1 | 47913 16384 | hqdb | 3420 | 10 | hqadmin | <IDLE> | f | 2011-02-08 15:51:55.680785+01 | 2011-02-08 15:51:55.637058+01 | 127.0.0.1 | 47912 16384 | hqdb | 18233 | 10 | hqadmin | SELECT * FROM pg_stat_activity; | f | 2011-02-09 10:49:29.688949+01 | 2011-02-09 10:48:13.031475+01 | | -1 (21 rows)

    Read the article

  • Best available technology for layered disk cache in linux

    - by SpliFF
    I've just bought a 6-core Phenom with 16G of RAM. I use it primarily for compiling and video encoding (and occassional web/db). I'm finding all activities get disk-bound and I just can't keep all 6 cores fed. I'm buying an SSD raid to sit between the HDD and tmpfs. I want to setup a "layered" filesystem where reads are cached on tmpfs but writes safely go through to the SSD. I want files (or blocks) that haven't been read lately on the SSD to then be written back to a HDD using a compressed FS or block layer. So basically reads: - Check tmpfs - Check SSD - Check HD And writes: - Straight to SSD (for safety), then tmpfs (for speed) And periodically, or when space gets low: - Move least frequently accessed files down one layer. I've seen a few projects of interest. CacheFS, cachefsd, bcache seem pretty close but I'm having trouble determining which are practical. bcache seems a little risky (early adoption), cachefs seems tied to specific network filesystems. There are "union" projects unionfs and aufs that let you mount filesystems over each other (USB device over a DVD usually) but both are distributed as a patch and I get the impression this sort of "transparent" mounting was going to become a kernel feature rather than a FS. I know the kernel has a built-in disk cache but it doesn't seem to work well with compiling. I see a 20x speed improvement when I move my source files to tmpfs. I think it's because the standard buffers are dedicated to a specific process and compiling creates and destroys thousands of processes during a build (just guessing there). It looks like I really want those files precached. I've read tmpfs can use virtual memory. In that case is it practical to create a giant tmpfs with swap on the SSD? I don't need to boot off the resulting layered filesystem. I can load grub, kernel and initrd from elsewhere if needed. So that's the background. The question has several components I guess: Recommended FS and/or block layer for the SSD and compressed HDD. Recommended mkfs parameters (block size, options etc...) Recommended cache/mount technology to bind the layers transparently Required mount parameters Required kernel options / patches, etc..

    Read the article

  • When tab groups are loaded, Firefox becomes unresponsible for minutes (Unresponsive script)

    - by unor
    I have several tab groups (~ 20) in Firefox. I can start the browser without any problems. However, as soon as I … click at the "Group tabs" icon in the toolbar, or right-click on a tab and hover over "Move to tab group", … Firefox becomes unresponsible/freezes for a rather long time (more than 2 minutes). It seems to load all tab groups (it doesn't load all the pages! I deactivated this in the settings). While this is happening, I get several "Unresponsive script" warnings, like: Script: chrome://global/content/bindings/tabbox.xml:0 (most of the time) Script: chrome://global/content/bindings/tabbox.xml:418 Script: chrome://browser/content/tabview.js:400 Script: chrome://browser/content/tabview.js:522 Script: resource://modules/sessionstore/SessionStore.jsm:3578 Script: resource:///components/PageThumbsProtocol.js:79 (rare) Script: resource://gre/modules/XPCOMUtils.jsm:323 (rare) (probably also other warnings, didn't record them yet, though) On all of these I click "Continue". After ~ 2-3 minutes and 3-5 warnings, I can use Firefox again. Now I can switch tab groups without any problems. Why is this happening? How can I prevent the long loading time? Is there maybe a about:config setting I could try? I started Firefox in Safe Mode (= without any add-ons): the problem still exists.

    Read the article

  • SQL 2008 Database tuning advisor won’t start

    - by Andrew Hancox
    For some reason I can't get DTA to connect to my development machine. It connects to a remote DB just fine but when I point it to my dev machine I get an error saying: Failed to initialize MSDB database for tuning (exit code: -1073741819). I'm pretty sure it's not a permissions issue since I've used profiler to capture what it's doing and all of the commands it's run so far look fine and are being run under my account which is associated with the sysadmin role, when I run them in sql management studio they go through fine. I'm pretty convinced that the problem is related to creating the objects in MSDB that are used by DTA but I tried creating these manually (I found scripts on the web) and it just seems to push the problem along the line slightly. I'm going out of my mind - have even tried reinstalling SQL but that's not fixed it. I'm using SQL 2008 with SP1 (10.0.2531) on windows server 2008 (patched up to date). SAVE ME!!!!!

    Read the article

  • PostgreSQL lots of writes

    - by strife911
    Hi, I am using postgreSQL for a scientific application (unsupervised clustering). The python program is multi-threaded so that each thread manages its own postmaster process (one per core). Hence, their is a lot of concurrency. Each thread-process loop infinitely though two SQL queries. The first is for reading, the second is for writing. The read operation considers 500 time the amount of rows the write operation considers. Here is the output of dstat: ----total-cpu-usage---- ------memory-usage----- -dsk/total- --paging-- --io/total- usr sys idl wai hiq siq| used buff cach free| read writ| in out | read writ 4 0 32 64 0 0|3599M 63M 57G 1893M|1524k 16M| 0 0 | 98 2046 1 0 35 64 0 0|3599M 63M 57G 1892M|1204k 17M| 0 0 | 68 2062 2 0 32 66 0 0|3599M 63M 57G 1890M|1132k 17M| 0 0 | 62 2033 2 1 32 65 0 0|3599M 63M 57G 1904M|1236k 18M| 0 0 | 80 1994 2 0 31 67 0 0|3599M 63M 57G 1903M|1312k 16M| 0 0 | 70 1900 2 0 37 60 0 0|3599M 63M 57G 1899M|1116k 15M| 0 0 | 71 1594 2 1 37 60 0 0|3599M 63M 57G 1898M| 448k 17M| 0 0 | 39 2001 2 0 25 72 0 0|3599M 63M 57G 1896M|1192k 17M| 0 0 | 78 1946 1 0 40 58 0 0|3599M 63M 57G 1895M| 432k 15M| 0 0 | 38 1937 I am pretty sure I could write more often than that for I have seen it write up to 110-140M on dstat. How can I optimize this process?

    Read the article

  • virtual directory make file copy operation extremely slow on UNC Path (IIS 7.5 bug?)

    - by user144737
    When i create a website/virtual directory pointing to UNC path, its make our file copy extremely slow on the UNC path. 6 seconds for file copy (~13 M) on the UNC path without any virtual directory/website pointing to it. over 1 mins. for file copy (same files ~13M) on the same UNC path with virtual directory/website pointing to it. All file copy operation run on web server side. Our setting as below: Web server - Windows Server standard R2 2008 / IIS 7.5 File server - Windows Server standard 2003 I have tested this case on 3 servers (Windows Server standard R2 2008 / IIS 7.5) and got same result. I also tested this case on 2 windows 2003 / IIS 6, it won't slow down the file copy. Is it IIS 7.5 bug? any patch/hotfix to solve this case? Thank you. Gordon

    Read the article

  • Perfmon - Redirector current command 0 result

    - by Dave
    I'd like to monitor how many SMB connections there are at any given time for my 2008R2 file server, but when I add Redirector/Current Commands in perfmon, I get 0 results. This KB from Microsoft isn't exactly helpful either: http://support.microsoft.com/kb/2523382 It mearly confirms there is an issue, but doesn't provide a work around. How would I go about getting the current number of SMB connections? Thanks for your help in advance.

    Read the article

  • System Monitoring service - Hosted

    - by sevitzdotcom
    I'm looking for a system monitoring service, a bit like New Relic, but for more the system itself than the ruby side of things. i.e. something like Zabbix, but hosted like New Relic. I wont something I can just drop an 'agent' on the servers, and then do all the config and monitoring and notifications on a nice slick 3rd party system. So essential Zabbix Meats New Relic meets Pingdom. Any ideas?

    Read the article

  • GlusterFS vs Ceph, which is better for production use for the moment?

    - by Mickey Shine
    I am evaluating GlusterFS and Ceph, seems Gluster is FUSE based which means it may be not as fast as Ceph. But looks like Gluster got a very friendly control panel and is ease to use. Ceph was merged into linux kernel a few days ago and this indicates that it has much more potential energy and may be a good choice in the future. I am wondering which(even out of the two?) is a better choice for production use? It would be nice if you could share your practical experiences

    Read the article

  • Perfmon: which counter identifies that threads are waiting?

    - by frankadelic
    While load testing an ASP.NET app, we find that the pages are taking 20-30 sec under heavy load. We suspect this is because the pages are waiting for database calls or web services. Is there a particular perfmon counter that can identify this sort of bottleneck on the web servers? CPU, Memory, and Disk are normal. Or must we use a tool other than perfmon to track down this bottleneck?

    Read the article

  • Process runs slower as a scheduled task than it does interactively

    - by Charlie
    I have a scheduled task which is very CPU- and IO-intensive, and takes about four hours to run (building source code, if you're curious). The task is a Powershell script which spawns various sub-processes to do its work. When I run the same process interactively from a Powershell prompt, as the same user account, it runs in about two and a half hours. The task is running on Windows Server 2008 R2. What I want to know is why it takes so much longer to run as a scheduled task - more than an hour longer. One thing I noticed is that the task scheduler runs at Below-Normal priority, so when my task starts, it inherits the same lowered priority. However, I've updated the script to set the Powershell process priority back to Normal, and it still takes just as long. Anybody have an idea what could be different between the two scenarios? I've ruled out differences in processor and IO load - this task is the only thing the system is used for, so there's nothing else running that could be competing for resources.

    Read the article

  • Running perfmon continuously with periodic reports

    - by Sal
    I have a question very similar to this one, but I want to continuously run perfmon, during reboots and throughout the day. Further, I'd like to generate a perfmon report every 10 mins or so. The original question tells me how to run perfmon when the server is restarted, but I don't know how to make perfmon continuously run while throwing periodic files. I've tried setting it as a scheduled task that needs to be done every 10 mins, but this is too sloppy, and when the scheduled task kicks another instance, the current perfmon report writer crashes, and I get a garbage report. I've also tried writing a sloppy batch script that would fire off the task at scheduled intervals, but this is the same problem as the scheduled task. I'm sure I'm just missing something silly, but I don't see it. Ideas? (If it helps, I'm running Windows 7 locally, and I'm trying to set up the processes for boxes running Windows 2008.)

    Read the article

  • IPCop server slows down download speed

    - by noocyte
    I have an IPCop server running at home, been doing just fine for ~5 months, but last week I suddenly started getting time-outs and slow downloads from the 'net. I first thought that this was my ISP acting up, then I thought it might be one of my 3 switches or some of my cabling. In due order I've tested everything above and found them all to be working as they should. The only factor remaining is my IPCop server. Facts: I've got a 15/15 Mbit line (fiber) and I get ~15 Mbit upload, but only 0.5 Mbit download with the IPCop box as router (ISP router set in bridge mode). If I connect without the IPCop box (using the ISP router) I get ~12 Mbit upload and ~15 Mbit download. The load on the IPCop box appears to be light and it used to handle this traffic just fine 2 weeks ago. The memory usage is ~60%, I tried to restart it and test again, the memory fell to ~50% then (5 months of uptime). I'm thinking that one of my nics are busted, but I'm sort of perplexed that this could be the outcome; slow download but full speed upload. Anybody ever seen that happening before? Could it just be one of the nics that needs to be replaced? Will try that as soon as I can get my hands on a couple of new ones.

    Read the article

  • Running perfmon continuously with periodic files

    - by Sal
    I have a question very similar to this one, but I want to continuously run perfmon, during reboots and throughout the day. Further, I'd like to generate a perfmon report every 10 mins or so. The original question tells me how to run perfmon when the server is restarted, but I don't know how to make perfmon continuously run while throwing periodic files. I've tried setting it as a scheduled task that needs to be done every 10 mins, but this is too sloppy, and when the scheduled task kicks another instance, the current perfmon report writer crashes, and I get a garbage report. I've also tried writing a sloppy batch script that would fire off the task at scheduled intervals, but this is the same problem as the scheduled task. I'm sure I'm just missing something silly, but I don't see it. Ideas? (If it helps, I'm running Windows 7 locally, and I'm trying to set up the processes for boxes running Windows 2008.)

    Read the article

  • COM+/Desktop Heap errors in IIS affecting sites at random?

    - by tresstylez
    We have a Win2K3 server that is hosting 30+ sites. Each site is configured to have its own unique application pool -- so that we can manually recycle specific sites if needed and not kill sessions for the others. From what I've read, the consequence of this type of setup is that each application pool worker process gets allocated a Desktop Heap (normally 512 kb's) and we limit the number of app pools we can serve. http://blogs.msdn.com/b/david.wang/archive/2006/01/25/security-considerations-of-usesharedwpdesktop-on-iis6.aspx PROBLEM: What we're seeing is that occasionally COM+ errors get triggered, presumably by hitting our 512 kb limit of the desktop heap -- and certain sites become unresponsive (or have errors) until we manually recycle that specific app pool. I know that I can increase the desktop heap limit to 1024, and make other tweaks/tunes, but I've been tasked with finding out what exactly causes one site's heap to max out as opposed to another. It seems that when we start seeing COM+ errors, the sites it affects are random -- small sites or big sites (heavier used). Is it based on process id? Traffic? Any pointers on understanding this a little more would be excellent. Thanks! jg

    Read the article

  • Best Practices - updated: which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains). This is an updated and enlarged version of the post on this topic originally posted October 2012. One frequent question "what type of domain should I use to run applications?" There used to be a simple answer: "run applications in guest domains in almost all cases", but now there are more things to consider. Enhancements to Oracle VM Server for SPARC and introduction of systems like the current SPARC servers including the T4 and T5 systems, the Oracle SuperCluster T5-8 and Oracle SuperCluster M6-32 provide scale and performance much higher than the original servers that ran domains. Single-CPU performance, I/O capacity, memory sizes, are much larger now, and far more demanding applications are now being hosted in logical domains. The general advice continues to be "use guest domains in almost all cases", meaning, "use virtual I/O rather than physical I/O", unless there is a specific reason to use the other domain types. The sections below will discuss the criteria for choosing between domain types. Review: division of labor and types of domain Oracle VM Server for SPARC offloads management and I/O functionality from the hypervisor to domains (also called virtual machines), providing a modern alternative to older VM architectures that use a "thick", monolithic hypervisor. This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, further improving reliability and security. Oracle VM Server for SPARC defines the following types of domain, each with their own roles: Control domain - management control point for the server, runs the logical domain daemon and constraints engine, and is used to configure domains and manage resources. The control domain is the first domain to boot on a power-up, is always an I/O domain, and is usually a service domain as well. It doesn't have to be, but there's no reason to not leverage it for virtual I/O services. There is one control domain per T-series system, and one per Physical Domain (PDom) on an M5-32 or M6-32 system. M5 and M6 systems can be physically domained, with logical domains within the physical ones. I/O domain - a domain that has been assigned physical I/O devices. The devices may be one more more PCIe root complexes (in which case the domain is also called a root complex domain). The domain has native access to all the devices on the assigned PCIe buses. The devices can be any device type supported by Solaris on the hardware platform. a SR-IOV (Single-Root I/O Virtualization) function. SR-IOV lets a physical device (also called a physical function) or PF) be subdivided into multiple virtual functions (VFs) which can be individually assigned directly to domains. SR-IOV devices currently can be Ethernet or InfiniBand devices. direct I/O ownership of one or more PCI devices residing in a PCIe bus slot. The domain has direct access to the individual devices An I/O domain has native performance and functionality for the devices it owns, unmediated by any virtualization layer. It may also have virtual devices. Service domain - a domain that provides virtual network and disk devices to guest domains. The services are defined by commands that are run in the control domain. It usually is an I/O domain as well, in order for it to have devices to virtualize and serve out. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Device considerations Consider the following when choosing between virtual devices and physical devices: Virtual devices provide the best flexibility - they can be dynamically added to and removed from a running domain, and you can have a large number of them up to a per-domain device limit. Virtual devices are compatible with live migration - domains that exclusively have virtual devices can be live migrated between servers supporting domains. On the other hand: Physical devices provide the best performance - in fact, native "bare metal" performance. Virtual devices approach physical device throughput and latency, especially with virtual network devices that can now saturate 10GbE links, but physical devices are still faster. Physical I/O devices do not add load to service domains - all the I/O goes directly from the I/O domain to the device, while virtual I/O goes through service domains, which must be provided sufficient CPU and memory capacity. Physical I/O devices can be other than network and disk - we virtualize network, disk, and serial console, but physical devices can be the wide range of attachable certified devices, including things like tape and CDROM/DVD devices. In some cases the lines are now blurred: virtual devices have better performance than previously: starting with Oracle VM Server for SPARC 3.1 there is near-native virtual network performance. There is more flexibility with physical devices than before: SR-IOV devices can now be dynamically reconfigured on domains. Tradeoffs one used to have to make are now relaxed: you can often have the flexibility of virtual I/O with performance that previously required physical I/O. You can have the performance and isolation of SR-IOV with the ability to dynamically reconfigure it, just like with virtual devices. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI buses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain that is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure, as described in Availability Best Practices - Avoiding Single Points of Failure . Guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device does not result in an application outage. This also permits "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O buses, so there is more I/O capacity that can be used for applications. Increased server capacity made it attractive to run more vertically-scaled applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the Oracle SuperCluster engineered systems mentioned previously. In those engineered systems, I/O domains are used for high performance applications with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. Not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O to guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm command must be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. For reference, an excellent guide to secure deployment of domains by Stefan Hinker is at Secure Deployment of Oracle VM Server for SPARC. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. They should be considered the default domain type to use unless there is a specific requirement that mandates an I/O domain. I/O domains can be used for applications with the highest performance requirements. Single Root I/O Virtualization (SR-IOV) makes this more attractive by giving direct I/O access to more domains, and by permitting dynamic reconfiguration of SR-IOV devices. Today's larger systems provide multiple PCIe buses - for example, 16 buses on the T5-8 - making it possible to configure multiple I/O domains each owning their own bus. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so interruption of service in one service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. Oracle SuperCluster uses the control domain for applications, but it is an exception. It's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity servers that run Oracle VM Server for SPARC are attractive for applications with the most demanding resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide peak performance for critical applications. That said, the improved virtual device performance in Oracle VM Server means that the default choice should still be guest domains with virtual I/O.

    Read the article

  • How do I calculate the amount of tuning needed for my server ?

    - by Low Kian Seong
    I have a server which is running a few discrete Python, Java application which most of the time imports data into a PostGreSQL database. I would like to know from people out there who have experience tuning enterprise grade servers how do i go about calculating in a holistic way the amount of tuning needed for my server for example vm.swappiness, vm.overcommit_ratio and other numerical tunings needed for my server. I tried to enable sar on my server to capture daily numbers but these are more along the lines of total numbers and I can't figure out how to allocate memory for my applications. Help would be appreciated. Thanks.

    Read the article

  • Dedicated NIC or dedicated port for iSCSI?

    - by Newt
    When spec'ing and configuring a machine that will utilise shared iSCSI storage, I've read a lot of documentation which suggests a dedicated network adapter should be used for iSCSI communication. That makes a lot of sense and I have no problem with it. The question I do have, is this - should that suggestion be taken to mean that a separate physical NIC should be used, or will a dedicated port/ports on a dual/quad port NIC be just as good? My suspicion is that simply using dedicated port(s) on a shared NIC would be just as good. Any input greatly appreciated.

    Read the article

  • Fastest SFTP client

    - by Stan
    Protocol: SFTP (port 22) I've tested CuteFtp, FileZilla, SecureCRT and several others. Looks like CuteFTP has the best throughput, usually 200%-400% than others. I've read something about SecureFtp may have slower rate from here. Can anyone explain why CuteFtp has better throughput? And, is there any other FTP client even faster than CuteFtp? Thanks a lot!

    Read the article

< Previous Page | 134 135 136 137 138 139 140 141 142 143 144 145  | Next Page >