Search Results

Search found 24043 results on 962 pages for 'private methods'.

Page 141/962 | < Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >

  • What's my best approach on this simple hierarchy Java Problem?

    - by Nazgulled
    First, I'm sorry for the question title but I can't think of a better one to describe my problem. Feel free to change it :) Let's say I have this abstract class Box which implements a couple of constructors, methods and whatever on some private variables. Then I have a couple of sub classes like BoxA and BoxB. Both of these implement extra things. Now I have another abstract class Shape and a few sub classes like Square and Circle. For both BoxA and BoxB I need to have a list of Shape objects but I need to make sure that only Square objects go into BoxA's list and only Circle objects go into BoxB's list. For that list (on each box), I need to have a get() and set() method and also a addShape() and removeShape() methods. Another important thing to know is that for each box created, either BoxA or BoxB, each respectively Shape list is exactly the same. Let's say I create a list of Square's named ls and two BoxA objects named boxA1 and boxA2. No matter what, both boxA1 and boxA2 must have the same ls list. This is my idea: public abstract class Box { // private instance variables public Box() { // constructor stuff } // public instance methods } public class BoxA extends Box { // private instance variables private static List<Shape> list; public BoxA() { // constructor stuff } // public instance methods public static List<Square> getList() { List<Square> aux = new ArrayList<Square>(); for(Square s : list.values()) { aux.add(s.clone()); // I know what I'm doing with this clone, don't worry about it } return aux; } public static void setList(List<Square> newList) { list = new ArrayList<Square>(newList); } public static void addShape(Square s) { list.add(s); } public static void removeShape(Square s) { list.remove(list.indexOf(s)); } } As the list needs to be the same for that type of object, I declared as static and all methods that work with that list are also static. Now, for BoxB the class would be almost the same regarding the list stuff. I would only replace Square by Triangle and the problem was solved. So, for each BoxA object created, the list would be only one and the same for each BoxB object created, but a different type of list of course. So, what's my problem you ask? Well, I don't like the code... The getList(), setList(), addShape() and removeShape() methods are basically repeated for BoxA and BoxB, only the type of the objects that the list will hold is different. I can't think of way to do it in the super class Box instead. Doing it statically too, using Shape instead of Square and Triangle, wouldn't work because the list would be only one and I need it to be only one but for each sub class of Box. How could I do this differently and better? P.S: I could not describe my real example because I don't know the correct words in English for the stuff I'm doing, so I just used a box and shapes example, but it's basically the same.

    Read the article

  • Thread Synchronization and Synchronization Primitives

    When considering synchronization in an application, the decision truly depends on what the application and its worker threads are going to do. I would use synchronization if two or more threads could possibly manipulate the same instance of an object at the same time. An example of this in C# can be demonstrated through the use of storing data in a static object. A static object is initialized once per application and the data within the object can be accessed by all threads. I would use the synchronization primitives to prevent any data from being manipulated by multiple threads simultaneously. This would reduce any data corruption from occurring within the object. On the other hand if all the threads used non static objects and were independent of the other tasks there would be no need to use synchronization. Synchronization Primitives in C#: Basic Blocking Locking Signaling Non-Blocking Synchronization Constructs The Basic Blocking methods include Sleep, Join, and Task.Wait.  These methods force threads to wait until other threads have completed. In addition, these methods can also force a thread to wait a set amount of time before continuing to work.   The Locking primitive prevents a thread from entering a critical section of code while another thread is in the same critical section.  If another thread attempts to enter a locked code, it will wait, until the code block is released. The Signaling primitive allows a thread to temporarily pause work until receiving a notification from another thread that it is ok to continue working. The Signaling primitive removes the need for polling.The Non-Blocking Synchronization Constructs protect access to a common field by calling upon processor primitives.

    Read the article

  • Using RIA DomainServices with ASP.NET and MVC 2

    - by Bobby Diaz
    Recently, I started working on a new ASP.NET MVC 2 project and I wanted to reuse the data access (LINQ to SQL) and business logic methods (WCF RIA Services) that had been developed for a previous project that used Silverlight for the front-end.  I figured that I would be able to instantiate the various DomainService classes from within my controller’s action methods, because after all, the code for those services didn’t look very complicated.  WRONG!  I didn’t realize at first that some of the functionality is handled automatically by the framework when the domain services are hosted as WCF services.  After some initial searching, I came across an invaluable post by Joe McBride, which described how to get RIA Service .svc files to work in an MVC 2 Web Application, and another by Brad Abrams.  Unfortunately, Brad’s solution was for an earlier preview release of RIA Services and no longer works with the version that I am running (PDC Preview). I have not tried the RC version of WCF RIA Services, so I am not sure if any of the issues I am having have been resolved, but I wanted to come up with a way to reuse the shared libraries so I wouldn’t have to write a non-RIA version that basically did the same thing.  The classes I came up with work with the scenarios I have encountered so far, but I wanted to go ahead and post the code in case someone else is having the same trouble I had.  Hopefully this will save you a few headaches! 1. Querying When I first tried to use a DomainService class to perform a query inside one of my controller’s action methods, I got an error stating that “This DomainService has not been initialized.”  To solve this issue, I created an extension method for all DomainServices that creates the required DomainServiceContext and passes it to the service’s Initialize() method.  Here is the code for the extension method; notice that I am creating a sort of mock HttpContext for those cases when the service is running outside of IIS, such as during unit testing!     public static class ServiceExtensions     {         /// <summary>         /// Initializes the domain service by creating a new <see cref="DomainServiceContext"/>         /// and calling the base DomainService.Initialize(DomainServiceContext) method.         /// </summary>         /// <typeparam name="TService">The type of the service.</typeparam>         /// <param name="service">The service.</param>         /// <returns></returns>         public static TService Initialize<TService>(this TService service)             where TService : DomainService         {             var context = CreateDomainServiceContext();             service.Initialize(context);             return service;         }           private static DomainServiceContext CreateDomainServiceContext()         {             var provider = new ServiceProvider(new HttpContextWrapper(GetHttpContext()));             return new DomainServiceContext(provider, DomainOperationType.Query);         }           private static HttpContext GetHttpContext()         {             var context = HttpContext.Current;   #if DEBUG             // create a mock HttpContext to use during unit testing...             if ( context == null )             {                 var writer = new StringWriter();                 var request = new SimpleWorkerRequest("/", "/",                     String.Empty, String.Empty, writer);                   context = new HttpContext(request)                 {                     User = new GenericPrincipal(new GenericIdentity("debug"), null)                 };             } #endif               return context;         }     }   With that in place, I can use it almost as normally as my first attempt, except with a call to Initialize():     public ActionResult Index()     {         var service = new NorthwindService().Initialize();         var customers = service.GetCustomers();           return View(customers);     } 2. Insert / Update / Delete Once I got the records showing up, I was trying to insert new records or update existing data when I ran into the next issue.  I say issue because I wasn’t getting any kind of error, which made it a little difficult to track down.  But once I realized that that the DataContext.SubmitChanges() method gets called automatically at the end of each domain service submit operation, I could start working on a way to mimic the behavior of a hosted domain service.  What I came up with, was a base class called LinqToSqlRepository<T> that basically sits between your implementation and the default LinqToSqlDomainService<T> class.     [EnableClientAccess()]     public class NorthwindService : LinqToSqlRepository<NorthwindDataContext>     {         public IQueryable<Customer> GetCustomers()         {             return this.DataContext.Customers;         }           public void InsertCustomer(Customer customer)         {             this.DataContext.Customers.InsertOnSubmit(customer);         }           public void UpdateCustomer(Customer currentCustomer)         {             this.DataContext.Customers.TryAttach(currentCustomer,                 this.ChangeSet.GetOriginal(currentCustomer));         }           public void DeleteCustomer(Customer customer)         {             this.DataContext.Customers.TryAttach(customer);             this.DataContext.Customers.DeleteOnSubmit(customer);         }     } Notice the new base class name (just change LinqToSqlDomainService to LinqToSqlRepository).  I also added a couple of DataContext (for Table<T>) extension methods called TryAttach that will check to see if the supplied entity is already attached before attempting to attach it, which would cause an error! 3. LinqToSqlRepository<T> Below is the code for the LinqToSqlRepository class.  The comments are pretty self explanatory, but be aware of the [IgnoreOperation] attributes on the generic repository methods, which ensures that they will be ignored by the code generator and not available in the Silverlight client application.     /// <summary>     /// Provides generic repository methods on top of the standard     /// <see cref="LinqToSqlDomainService&lt;TContext&gt;"/> functionality.     /// </summary>     /// <typeparam name="TContext">The type of the context.</typeparam>     public abstract class LinqToSqlRepository<TContext> : LinqToSqlDomainService<TContext>         where TContext : System.Data.Linq.DataContext, new()     {         /// <summary>         /// Retrieves an instance of an entity using it's unique identifier.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="keyValues">The key values.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual TEntity GetById<TEntity>(params object[] keyValues) where TEntity : class         {             var table = this.DataContext.GetTable<TEntity>();             var mapping = this.DataContext.Mapping.GetTable(typeof(TEntity));               var keys = mapping.RowType.IdentityMembers                 .Select((m, i) => m.Name + " = @" + i)                 .ToArray();               return table.Where(String.Join(" && ", keys), keyValues).FirstOrDefault();         }           /// <summary>         /// Creates a new query that can be executed to retrieve a collection         /// of entities from the <see cref="DataContext"/>.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <returns></returns>         [IgnoreOperation]         public virtual IQueryable<TEntity> GetEntityQuery<TEntity>() where TEntity : class         {             return this.DataContext.GetTable<TEntity>();         }           /// <summary>         /// Inserts the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Insert<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.InsertOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Insert);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity) where TEntity : class         {             return this.Update(entity, null);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <param name="original">The original.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity, TEntity original)             where TEntity : class         {             if ( original == null )             {                 original = GetOriginal(entity);             }               var table = this.DataContext.GetTable<TEntity>();             table.TryAttach(entity, original);               return this.Submit(entity, original, DomainOperation.Update);         }           /// <summary>         /// Deletes the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Delete<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.TryAttach(entity);             //table.DeleteOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Delete);         }           protected virtual bool Submit(Object entity, Object original, DomainOperation operation)         {             var entry = new ChangeSetEntry(0, entity, original, operation);             var changes = new ChangeSet(new ChangeSetEntry[] { entry });             return base.Submit(changes);         }           private TEntity GetOriginal<TEntity>(TEntity entity) where TEntity : class         {             var context = CreateDataContext();             var table = context.GetTable<TEntity>();             return table.FirstOrDefault(e => e == entity);         }     } 4. Conclusion So there you have it, a fully functional Repository implementation for your RIA Domain Services that can be consumed by your ASP.NET and MVC applications.  I have uploaded the source code along with unit tests and a sample web application that queries the Customers table from inside a Controller, as well as a Silverlight usage example. As always, I welcome any comments or suggestions on the approach I have taken.  If there is enough interest, I plan on contacting Colin Blair or maybe even the man himself, Brad Abrams, to see if this is something worthy of inclusion in the WCF RIA Services Contrib project.  What do you think? Enjoy!

    Read the article

  • What is Polymorphism?

    - by SAMIR BHOGAYTA
    * Polymorphism is one of the primary characteristics (concept) of object-oriented programming. * Poly means many and morph means form. Thus, polymorphism refers to being able to use many forms of a type without regard to the details. * Polymorphism is the characteristic of being able to assign a different meaning specifically, to allow an entity such as a variable, a function, or an object to have more than one form. * Polymorphism is the ability to process objects differently depending on their data types. * Polymorphism is the ability to redefine methods for derived classes. Types of Polymorphism * Compile time Polymorphism * Run time Polymorphism Compile time Polymorphism * Compile time Polymorphism also known as method overloading * Method overloading means having two or more methods with the same name but with different signatures Example of Compile time polymorphism public class Calculations { public int add(int x, int y) { return x+y; } public int add(int x, int y, int z) { return x+y+z; } } Run time Polymorphism * Run time Polymorphism also known as method overriding * Method overriding means having two or more methods with the same name , same signature but with different implementation Example of Run time Polymorphism class Circle { public int radius = 0; public double getArea() { return 3.14 * radius * radius } } class Sphere { public double getArea() { return 4 * 3.14 * radius * radius } }

    Read the article

  • Is duck typing a subset of polymorphism

    - by Raynos
    From Polymorphism on WIkipedia In computer science, polymorphism is a programming language feature that allows values of different data types to be handled using a uniform interface. From duck typing on Wikipedia In computer programming with object-oriented programming languages, duck typing is a style of dynamic typing in which an object's current set of methods and properties determines the valid semantics, rather than its inheritance from a particular class or implementation of a specific interface. My interpretation is that based on duck typing, the objects methods/properties determine the valid semantics. Meaning that the objects current shape determines the interface it upholds. From polymorphism you can say a function is polymorphic if it accepts multiple different data types as long as they uphold an interface. So if a function can duck type, it can accept multiple different data types and operate on them as long as those data types have the correct methods/properties and thus uphold the interface. (Usage of the term interface is meant not as a code construct but more as a descriptive, documenting construct) What is the correct relationship between ducktyping and polymorphism ? If a language can duck type, does it mean it can do polymorphism ?

    Read the article

  • How to gain accurate results with Painter's algorithm?

    - by pimvdb
    A while ago I asked how to determine when a face is overlapping another. The advice was to use a Z-buffer. However, I cannot use a Z-buffer in my current project and hence I would like to use the Painter's algorithm. I have no good clue as to when a surface is behind or in front of another, though. I've tried numerous methods but they all fail in edge cases, or they fail even in general cases. This is a list of sorting methods I've tried so far: Distance to midpoint of each face Average distance to each vertex of each face Average z value of each vertex Higest z value of vertices of each face and draw those first Lowest z value of vertices of each face and draw those last The problem is that a face might have a closer distance but is still further away. All these methods seem unreliable. Edit: For example, in the following image the surface with the blue point as midpoint is painted over the surface with the red point as midpoint, because the blue point is closer. However, this is because the surface of the red point is larger and the midpoint is further away. The surface with the red point should be painted over the blue one, because it is closer, whilst the midpoint distance says the opposite. What exactly is used in the Painter's algorithm to determine the order in which objects should be drawn?

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

  • What is the difference between String and string in C#

    - by SAMIR BHOGAYTA
    string : ------ The string type represents a sequence of zero or more Unicode characters. string is an alias for String in the .NET Framework. 'string' is the intrinsic C# datatype, and is an alias for the system provided type "System.String". The C# specification states that as a matter of style the keyword ('string') is preferred over the full system type name (System.String, or String). Although string is a reference type, the equality operators (== and !=) are defined to compare the values of string objects, not references. This makes testing for string equality more intuitive. For example: String : ------ A String object is called immutable (read-only) because its value cannot be modified once it has been created. Methods that appear to modify a String object actually return a new String object that contains the modification. If it is necessary to modify the actual contents of a string-like object Difference between string & String : ---------- ------- ------ - ------ the string is usually used for declaration while String is used for accessing static string methods we can use 'string' do declare fields, properties etc that use the predefined type 'string', since the C# specification tells me this is good style. we can use 'String' to use system-defined methods, such as String.Compare etc. They are originally defined on 'System.String', not 'string'. 'string' is just an alias in this case. we can also use 'String' or 'System.Int32' when communicating with other system, especially if they are CLR-compliant. I.e. - if I get data from elsewhere, I'd deserialize it into a System.Int32 rather than an 'int', if the origin by definition was something else than a C# system.

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • Today at Oracle OpenWorld 2012

    - by Scott McNeil
    We have another full day of great Oracle OpenWorld keynotes, sessions, demos and customer presentations in the Seen and Be Heard threater. Here's a quick run down of what's happening today with Oracle Enterprise Manager 12c: Download the Oracle Enterprise Manager 12c OpenWorld schedule (PDF) Oracle Enterprise Manager Cloud Control 12c (and Private Cloud) General Session Tues 2 Oct, 2012 Time Title Location 11:45 AM - 12:45 PM General Session: Using Oracle Enterprise Manager to Manage Your Own Private Cloud Moscone South - 103* 1:15 PM - 2:15 PM General Session: Breakthrough Efficiency in Private Cloud Infrastructure Moscone West - 3014 Conference Session Tues 2 Oct, 2012 Time Title Location 10:15 AM - 11:15 AM Oracle Exadata/Oracle Enterprise Manager 12c: Journey into Oracle Database Cloud Moscone West - 3018 10:15 AM - 11:15 AM Bulletproof Your Application Upgrades with Secure Data Masking and Subsetting Moscone West - 3020 10:15 AM - 11:15 AM Oracle Enterprise Manager 12c: Architecture Deep Dive, Tips, and Techniques Moscone South - 303 11:45 AM - 12:45 PM RDBMS Forensics: Troubleshooting with Active Session History Moscone West - 3018 11:45 AM - 12:45 PM Building and Operationalizing Your Data Center Environment with Oracle Exalogic Moscone South - 309 11:45 AM - 12:45 PM Securely Building a National Electronic Health Record: Singapore Case Study Westin San Francisco - Concordia 1:15 PM - 2:15 PM Managing Heterogeneous Environments with Oracle Enterprise Manager Moscone West - 3018 1:15 PM - 2:15 PM Complete Oracle WebLogic Server Management with Oracle Enterprise Manager 12c Moscone South - 309 1:15 PM - 2:15 PM Database Lifecycle Management with Oracle Enterprise Manager 12c Moscone West - 3020 1:15 PM - 2:15 PM Best Practices, Key Features, Tips, Techniques for Oracle Enterprise Manager 12c Upgrade Moscone South - 307 1:15 PM - 2:15 PM Enterprise Cloud with CSC’s Foundation Services for Oracle and Oracle Enterprise Manager 12c Moscone South - 236 5:00 PM - 6:00 PM Deep Dive 3-D on Oracle Exadata Management: From Discovery to Deployment to Diagnostics Moscone West - 3018 5:00 PM - 6:00 PM Everything You Need to Know About Monitoring and Troubleshooting Oracle GoldenGate Moscone West - 3005 5:00 PM - 6:00 PM Oracle Enterprise Manager 12c: The Nerve Center of Oracle Cloud Moscone West - 3020 5:00 PM - 6:00 PM Advanced Management of Oracle E-Business Suite with Oracle Enterprise Manager Moscone West - 2016 5:00 PM - 6:00 PM Oracle Enterprise Manager 12c Cloud Control Performance Pages: Falling in Love Again Moscone West - 3014 Hands-on Labs Tues 2 Oct, 2012 Time Title Location 10:15 AM - 12:45 PM Managing the Cloud with Oracle Enterprise Manager 12c Marriott Marquis - Salon 5/6 1:15 PM - 2:15 PM Database Performance Tuning Hands-on Lab Marriott Marquis - Salon 5/6 Scene and Be Heard Theater Session Tues 2 Oct, 2012 Time Title Location 10:30 AM - 10:50 AM Start Small, Grow Big: Hands-On Oracle Private Cloud—A Step-by-Step Guide Moscone South Exhibition Hall - Booth 2407 12:30 PM - 12:50 PM Blue Medora’s Oracle Enterprise Manager Plug-in for VMware vSphere Monitoring Moscone South Exhibition Hall - Booth 2407 Demos Demo Location Application and Infrastructure Testing Moscone West - W-092 Automatic Application and SQL Tuning Moscone South, Left - S-042 Automatic Fault Diagnostics Moscone South, Left - S-036 Automatic Performance Diagnostics Moscone South, Left - S-033 Complete Care for Oracle Using My Oracle Support Moscone South, Left - S-031 Complete Cloud Lifecycle Management Moscone North, Upper Lobby - N-019 Complete Database Lifecycle Management Moscone South, Left - S-030 Comprehensive Infrastructure as a Service via Oracle Enterprise Manager Moscone South, Left - S-045 Data Masking and Data Subsetting Moscone South, Left - S-034 Database Testing with Oracle Real Application Testing Moscone South, Left - S-041 Identity Management Monitoring with Oracle Enterprise Manager Moscone South, Right - S-212 Mission-Critical, SPARC-Powered Infrastructure as a Service Moscone South, Center - S-157 Oracle E-Business Suite, Siebel, JD Edwards, and PeopleSoft Management Moscone West - W-084 Oracle Enterprise Manager Cloud Control 12c Overview Moscone South, Left - S-039 Oracle Enterprise Manager: Complete Data Center Management Moscone South, Left - S-040 Oracle Exadata Management Moscone South, Center - Oracle Exalogic Management Moscone South, Center - Oracle Fusion Applications Management Moscone West - W-018 Oracle Real User Experience Insight Moscone South, Right - S-226 Oracle WebLogic Server Management and Java Diagnostics Moscone South, Right - S-206 Platform as a Service Using Oracle Enterprise Manager Moscone North, Upper Lobby - N-020 SOA Management Moscone South, Right - S-225 Self-Service Application Testing on Private and Public Clouds Moscone West - W-110 Oracle OpenWorld Music Festival New this year is Oracle’s first annual Oracle OpenWorld Musical Festival, featuring some of today's breakthrough musicians from around the country and the world. It's five nights of back-to-back performances in the heart of San Francisco—free to registered attendees. See the lineup Not Heading to OpenWorld—Watch it Live! Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • How to install Radeon 3670 HD graphics drivers for Ubuntu 10.04 64 bit with OpenGL 2.0 support?

    - by Daniel
    I've been having trouble with getting graphics drivers to work that support OpenGL 2.0. I've had some luck with the Ubuntu drivers, however these only support OpenGL 1.3. I thought I would document the methods that I have tried both to see if anyone else has ideas, and to save time for people with a similar problem. System details: Ubuntu 10.04 (Lucid) 64 bit Kernel Linux 2.6.32-44-generic GNOME 2.30.2 ATI Mobility Radeon HD 3670 Attempted Methods The methods I have tried are: 1. Installing Proprietary Drivers using the "Hardware Drivers" (Jockey) GUI This GUI offers an "ATI/AMD proprietary FGLRX graphics driver" however any attempts to install it result in a "Sorry, installation of this driver failed" error. The log file is here. There is an Ask Ubuntu question that covers this scenario, and notes that there is a known bug with Jockey. 2. Installing the Proprietary Drivers manually The answer to the question above linked to this wiki page, which gives instructions for installing Catalyst 12.6. This supported hardware list states that the 3670 is not supported in 12.6, and 12.4 must be used. This is somewhat confusing, as AMD's website suggests that the 12.6 driver should be installed for the 3670. There have been user reports that R600 (the GPU inside the 3670 card) doesn't work with 12.6, so I'm sticking with 12.4. I'm following these instructions to install the proprietary drivers on Lucid. I downloaded the 12.4 driver from the AMD website. Building the package worked fine, generating the fglrx, fglrx-dev, fglrx-amdcccle, and fglrx-modaliases deb packages successfully. However, when I try to install these using dpkg it gives me these errors. The make log referenced in the error is here. Ask Ubuntu References What is the correct way to install ATI Catalyst Video Drivers? Cannot install ATI/AMD FGLRX restricted graphic drivers Is my ATI graphics card supported in Ubuntu?

    Read the article

  • Ongoing confusion about ivars and properties in objective C

    - by Earl Grey
    After almost 8 months being in ios programming, I am again confused about the right approach. Maybe it is not the language but some OOP principle I am confused about. I don't know.. I was trying C# a few years back. There were fields (private variables, private data in an object), there were getters and setters (methods which exposed something to the world) ,and properties which was THE exposed thing. I liked the elegance of the solution, for example there could be a class that would have a property called DailyRevenue...a float...but there was no private variable called dailyRevenue, there was only a field - an array of single transaction revenues...and the getter for DailyRevenue property calculated the revenue transparently. If somehow the internals of daily revenue calculation would change, it would not affect somebody who consumed my DailyRevenue property in any way, since he would be shielded from getter implementation. I understood that sometimes there was , and sometimes there wasn't a 1-1 relationship between fields and properties. depending on the requirements. It seemed ok in my opinion. And that properties are THE way to acces the data in object. I know the difference betweeen private, protected, and public keyword. Now lets get to objectiveC. On what factor should I base my decision about making someting only an ivar or making it as a property? Is the mental model the same as I describe above? I know that ivars are "protected" by default, not "private" asi in c#..But thats ok I think, no big deal for my presnet level of understanding the whole ios development. The point is ivars are not accesible from outside (given i don't make them public..but i won't). The thing that clouds my clear understanding is that I can have IBOutlets from ivars. Why am I seeing internal object data in the UI? *Why is it ok?* On the other hand, if I make an IBOutlet from property, and I do not make it readonly, anybody can change it. Is this ok too? Let's say I have a ParseManager object. This object would use a built in Foundation framework class called NSXMLParser. Obviously my ParseManager will utilize this nsxmlparser's capabilities but will also do some additional work. Now my question is, who should initialize this NSXMLParser object and in which way should I make a reference to it from the ParseManager object, when there is a need to parse something. A) the ParseManager -1) in its default init method (possible here ivar - or - ivar+ppty) -2) with lazyloading in getter (required a ppty here) B) Some other object - who will pass a reference to NSXMLParser object to the ParseManager object. -1) in some custom initializer (initWithParser:(NSXMLPArser *) parser) when creating the ParseManager object.. A1 - the problem is, we create a parser and waste memory while it is not yet needed. However, we can be sure that all methods that are part ot ParserManager object, can use the ivar safely, since it exists. A2 - the problem is, the nsxmlparser is exposed to outside world, although it could be read only. Would we want a parser to be exposed in some scenario? B1 - this could maybe be useful when we would want to use more types of parsers..i dont know... I understand that architectural requirements and and language is not the same. But clearly the two are in relation. How to get out of that mess of my? Please bear with me, I wasn't able to come up with a single ultimate question. And secondly, it's better to not scare me with some superadvanced newspeak that talks about some crazy internals (what the compiler does) and edge cases.

    Read the article

  • JavaScript objects and Crockford's The Good Parts

    - by Jonathan
    I've been thinking quite a bit about how to do OOP in JS, especially when it comes to encapsulation and inheritance, recently. According to Crockford, classical is harmful because of new(), and both prototypal and classical are limited because their use of constructor.prototype means you can't use closures for encapsulation. Recently, I've considered the following couple of points about encapsulation: Encapsulation kills performance. It makes you add functions to EACH member object rather than to the prototype, because each object's methods have different closures (each object has different private members). Encapsulation forces the ugly "var that = this" workaround, to get private helper functions to have access to the instance they're attached to. Either that or make sure you call them with privateFunction.apply(this) everytime. Are there workarounds for either of two issues I mentioned? if not, do you still consider encapsulation to be worth it? Sidenote: The functional pattern Crockford describes doesn't even let you add public methods that only touch public members, since it completely forgoes the use of new() and constructor.prototype. Wouldn't a hybrid approach where you use classical inheritance and new(), but also call Super.apply(this, arguments) to initialize private members and privileged methods, be superior?

    Read the article

  • Abstracting entity caching in XNA

    - by Grofit
    I am in a situation where I am writing a framework in XNA and there will be quite a lot of static (ish) content which wont render that often. Now I am trying to take the same sort of approach I would use when doing non game development, where I don't even think about caching until I have finished my application and realise there is a performance problem and then implement a layer of caching over whatever needs it, but wrap it up so nothing is aware its happening. However in XNA the way we would usually cache would be drawing our objects to a texture and invalidating after a change occurs. So if you assume an interface like so: public interface IGameComponent { void Update(TimeSpan elapsedTime); void Render(GraphicsDevice graphicsDevice); } public class ContainerComponent : IGameComponent { public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it } public void Render(GraphicsDevice graphicsDevice) { foreach(var component in ChildComponents) { // draw every component } } } Then I was under the assumption that we just draw everything directly to the screen, then when performance becomes an issue we just add a new implementation of the above like so: public class CacheableContainerComponent : IGameComponent { private Texture2D cachedOutput; private bool hasChanged; public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it // set hasChanged to true if required } public void Render(GraphicsDevice graphicsDevice) { if(hasChanged) { CacheComponents(graphicsDevice); } // Draw cached output } private void CacheComponents(GraphicsDevice graphicsDevice) { // Clean up existing cache if needed var cachedOutput = new RenderTarget2D(...); graphicsDevice.SetRenderTarget(renderTarget); foreach(var component in ChildComponents) { // draw every component } graphicsDevice.SetRenderTarget(null); } } Now in this example you could inherit, but your Update may become a bit tricky then without changing your base class to alert you if you had changed, but it is up to each scenario to choose if its inheritance/implementation or composition. Also the above implementation will re-cache within the rendering cycle, which may cause performance stutters but its just an example of the scenario... Ignoring those facts as you can see that in this example you could use a cache-able component or a non cache-able one, the rest of the framework needs not know. The problem here is that if lets say this component is drawn mid way through the game rendering, other items will already be within the default drawing buffer, so me doing this would discard them, unless I set it to be persisted, which I hear is a big no no on the Xbox. So is there a way to have my cake and eat it here? One simple solution to this is make an ICacheable interface which exposes a cache method, but then to make any use of this interface you would need the rest of the framework to be cache aware, and check if it can cache, and to then do so. Which then means you are polluting and changing your main implementations to account for and deal with this cache... I am also employing Dependency Injection for alot of high level components so these new cache-able objects would be spat out from that, meaning no where in the actual game would they know they are caching... if that makes sense. Just incase anyone asked how I expected to keep it cache aware when I would need to new up a cachable entity.

    Read the article

  • Get entities ids from two similar collections using one method

    - by Patryk Roszczyniala
    I've got two lists: List<Integer, ZooEntity> zoos; List<Integer, List<ZooEntity>> groupOfZoos; These operations will return collections of values: Collection<ZooEntity> cz = zoos.values(); Collection<List<ZooEntity>> czList = groupOfZoos.values(); What I want to achieve is to get list of all zoo ids. List<Integer> zooIds = cz ids + czList ids; Of course I can create two methods to do what I want: public List<Integer> getIdsFromFlatList(Collection<ZooEntity> list) { List<Integer> ids = new ArrayList<Integer>(); for (ZooEntity z : list) { ids.add(z.getId()); } return ids; } public List<Integer> getIdsFromNestedList(Collection<List<ZooEntity>> list) { List<Integer> ids = new ArrayList<Integer>(); for (List<ZooEntity> zList : list) { for (ZooEntity z : zList) { ids.add(z.getId()); } } return ids; } As you can see those two methods are very similar and here is my question: Is it good to create one method (for example using generics) which will get ids from those two lists (zoos and groupOfZoos). If yes how it should look like? If no what is the best solution? BTW. This is only the example. I've got very similar problem at job and I want to do it in preety way (I can't change enities, I can change only getIds...() methods).

    Read the article

  • LibGdx drawing weird behaviour

    - by Ryckes
    I am finding strange behaviour while rendering TextureRegions in my game, only when pausing it. I am making a game for Android, in Java with LibGdx. When I comment out the line "drawLevelPaused()" everything seems to work fine, both running and paused. When it's not commented, everything works fine until I pause the screen, then it draws those two rectangles, but maybe ships are not shown, and if I comment out drawShips() and drawTarget() (just trying) maybe one of the planets disappears, or if I change the order, other things disappear and those that disappeared before now are rendered again. I can't find the way to fix this behaviour I beg your help, and I hope it's my mistake and not a LibGdx issue. I use OpenGL ES 2.0, stated in AndroidManifest.xml, if it is of any help. Thank you in advance. My Screen render method(game loop) is as follows: @Override public void render(float delta) { Gdx.gl.glClearColor(0.1f, 0.1f, 0.1f, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); controller.update(delta); renderer.render(); } When world state is PAUSED controller.update does nothing at all, there is a switch in it. And renderer.render() is as follows: public void render() { int worldState=this.world.getWorldState(); updateCamera(); spriteBatch.begin(); drawPlanets(); drawTarget(); drawShips(); if(worldState==World.PAUSED) { drawLevelPaused(); } else if(worldState==World.LEVEL_WON) { drawLevelWin(); } spriteBatch.end(); } And those methods are: private void updateCamera() { this.offset=world.getCameraOffset(); } private void drawPlanets() { for(Planet planet : this.world.getPlanets()) { this.spriteBatch.draw(this.textures.getTexture(planet.getTexture()), (planet.getPosition().x - this.offset[0]) * ppuX, (planet.getPosition().y - this.offset[1]) * ppuY); } } private void drawTarget() { Target target=this.world.getTarget(); this.spriteBatch.draw(this.textures.getTexture(target.getTexture()), (target.getPosition().x - this.offset[0]) * ppuX, (target.getPosition().y - this.offset[1]) * ppuY); } private void drawShips() { for(Ship ship : this.world.getShips()) { this.spriteBatch.draw(this.textures.getTexture(ship.getTexture()), (ship.getPosition().x - this.offset[0]) * ppuX, (ship.getPosition().y - this.offset[1]) * ppuY, ship.getBounds().width*ppuX/2, ship.getBounds().height*ppuY/2, ship.getBounds().width*ppuX, ship.getBounds().height*ppuY, 1.0f, 1.0f, ship.getAngle()-90.0f); } if(this.world.getStillShipVisibility()) { Ship ship=this.world.getStillShip(); Arrow arrow=this.world.getArrow(); this.spriteBatch.draw(this.textures.getTexture(ship.getTexture()), (ship.getPosition().x - this.offset[0]) * ppuX, (ship.getPosition().y - this.offset[1]) * ppuY, ship.getBounds().width*ppuX/2, ship.getBounds().height*ppuY/2, ship.getBounds().width*ppuX, ship.getBounds().height*ppuY, 1f, 1f, ship.getAngle() - 90f); this.spriteBatch.draw(this.textures.getTexture(arrow.getTexture()), (ship.getCenter().x - this.offset[0] - arrow.getBounds().width/2) * ppuX, (ship.getCenter().y - this.offset[1]) * ppuY, arrow.getBounds().width*ppuX/2, 0, arrow.getBounds().width*ppuX, arrow.getBounds().height*ppuY, 1f, arrow.getRate(), ship.getAngle() - 90f); } } private void drawLevelPaused() { this.shapeRenderer.begin(ShapeType.FilledRectangle); this.shapeRenderer.setColor(0f, 0f, 0f, 0.8f); this.shapeRenderer.filledRect(0, 0, this.width/this.ppuX, PAUSE_MARGIN_HEIGHT/this.ppuY); this.shapeRenderer.filledRect(0, (this.height-PAUSE_MARGIN_HEIGHT)/this.ppuY, this.width/this.ppuX, PAUSE_MARGIN_HEIGHT/this.ppuY); this.shapeRenderer.end(); for(Button button : this.world.getPauseButtons()) { this.spriteBatch.draw(this.textures.getTexture(button.getTexture()), (button.getPosition().x - this.offset[0]) * this.ppuX, (button.getPosition().y - this.offset[1]) * this.ppuY); } }

    Read the article

  • How to Open Any Folder as a Project in the NetBeans Platform

    - by Geertjan
    Typically, as described in the NetBeans Project Type Tutorial, you'll define a project type based on the presence of a file (e.g., "project.xml" or "customer.txt" or something like that) in a folder. I.e., if the file is there, then its parent, i.e., the folder that contains the file, is a project and should be opened in your application. However, in some scenarios (as with the HTML5 project type introduced in NetBeans IDE 7.3), the user should be able to open absolutely any folder at all into the application. How to create a project type that is that liberal? Here you go, the only condition that needs to be true is that the selected item in the "Open Project" dialog is a folder, as defined in the "isProject" method below. Nothing else. That's it. If you select a folder, it will be opened in your application, displaying absolutely everything as-is (since below there's no ProjectLogicalView defined): import java.beans.PropertyChangeListener; import java.io.IOException; import javax.swing.Icon; import org.netbeans.api.project.Project; import org.netbeans.api.project.ProjectInformation; import org.netbeans.spi.project.ProjectFactory; import org.netbeans.spi.project.ProjectState; import org.openide.filesystems.FileObject; import org.openide.loaders.DataFolder; import org.openide.loaders.DataObjectNotFoundException; import org.openide.nodes.FilterNode; import org.openide.util.Exceptions; import org.openide.util.ImageUtilities; import org.openide.util.Lookup; import org.openide.util.lookup.Lookups; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = ProjectFactory.class) public class FolderProjectFactory implements ProjectFactory { @Override public boolean isProject(FileObject projectDirectory) { return DataFolder.findFolder(projectDirectory) != null; } @Override public Project loadProject(FileObject dir, ProjectState state) throws IOException { return isProject(dir) ? new FolderProject(dir) : null; } @Override public void saveProject(Project prjct) throws IOException, ClassCastException { // leave unimplemented for the moment } private class FolderProject implements Project { private final FileObject projectDir; private Lookup lkp; private FolderProject(FileObject dir) { this.projectDir = dir; } @Override public FileObject getProjectDirectory() { return projectDir; } @Override public Lookup getLookup() { if (lkp == null) { lkp = Lookups.fixed(new Object[]{ new Info(), }); } return lkp; } private final class Info implements ProjectInformation { @Override public Icon getIcon() { Icon icon = null; try { icon = ImageUtilities.image2Icon( new FilterNode(DataFolder.find( getProjectDirectory()).getNodeDelegate()).getIcon(1)); } catch (DataObjectNotFoundException ex) { Exceptions.printStackTrace(ex); } return icon; } @Override public String getName() { return getProjectDirectory().getName(); } @Override public String getDisplayName() { return getName(); } @Override public void addPropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public void removePropertyChangeListener(PropertyChangeListener pcl) { //do nothing, won't change } @Override public Project getProject() { return FolderProject.this; } } } } Even the ProjectInformation implementation really isn't needed at all, since it provides nothing more than the icon in the "Open Project" dialog, the rest (i.e., the display name in the "Open Project" dialog) is provided by default regardless of whether you have a ProjectInformation implementation or not.

    Read the article

  • Object behaviour or separate class?

    - by Andrew Stephens
    When it comes to OO database access you see two common approaches - the first is to provide a class (say "Customer") with methods such as Retrieve(), Update(), Delete(), etc. The other is to keep the Customer class fairly lightweight (essentially just properties) and perform the database access elsewhere, e.g. using a repository. This choice of approaches doesn't just apply to database access, it can crop up in many different OOD scenarios. So I was wondering if one way is preferable over the other (although I suspect the answer will be "it depends")! Another dev on our team argues that to be truly OO the class should be "self-contained", i.e. providing all the methods necessary to manipulate and interact with that object. I personally prefer the repository approach - I don't like bloating the Customer class with all that functionality, and I feel it results in cleaner code having it elsewhere, but I can't help thinking I'm seriously violating core OO concepts! And what about memory implications? If I retrieve thousands of Customer objects I'm assuming those with the data access methods will take up a lot more memory than the property-only objects?

    Read the article

  • Search in Projects API

    - by Geertjan
    Today I got some help from Jaroslav Havlin, the creator of the new "Search in Projects API". Below are the steps to create a search provider that finds recently modified files, via a new tab in the "Find in Projects" dialog: Here's how to get to the above result. Create a new NetBeans module project named "RecentlyModifiedFilesSearch". Then set dependencies on these libraries: Search in Projects API Lookup API Utilities API Dialogs API Datasystems API File System API Nodes API Create and register an implementation of "SearchProvider". This class tells the application the name of the provider and how it can be used. It should be registered via the @ServiceProvider annotation.Methods to implement: Method createPresenter creates a new object that is added to the "Find in Projects" dialog when it is opened. Method isReplaceSupported should return true if this provider support replacing, not only searching. If you want to disable the search provider (e.g., there aren't required external tools available in the OS), return false from isEnabled. Method getTitle returns a string that will be shown in the tab in the "Find in Projects" dialog. It can be localizable. Example file "org.netbeans.example.search.ExampleSearchProvider": package org.netbeans.example.search; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Recent Files Search"; } } Next, we need to create a SearchProvider.Presenter. This is an object that is passed to the "Find in Projects" dialog and contains a visual component to show in the dialog, together with some methods to interact with it.Methods to implement: Method getForm returns a JComponent that should contain controls for various search criteria. In the example below, we have controls for a file name pattern, search scope, and the age of files. Method isUsable is called by the dialog to check whether the Find button should be enabled or not. You can use NotificationLineSupport passed as its argument to set a display error, warning, or info message. Method composeSearch is used to apply the settings and prepare a search task. It returns a SearchComposition object, as shown below. Please note that the example uses ComponentUtils.adjustComboForFileName (and similar methods), that modifies a JComboBox component to act as a combo box for selection of file name pattern. These methods were designed to make working with components created in a GUI Builder comfortable. Remember to call fireChange whenever the value of any criteria changes. Example file "org.netbeans.example.search.ExampleSearchPresenter": package org.netbeans.example.search; import java.awt.FlowLayout; import javax.swing.BoxLayout; import javax.swing.JComboBox; import javax.swing.JComponent; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.JSlider; import javax.swing.event.ChangeEvent; import javax.swing.event.ChangeListener; import org.netbeans.api.search.SearchScopeOptions; import org.netbeans.api.search.ui.ComponentUtils; import org.netbeans.api.search.ui.FileNameController; import org.netbeans.api.search.ui.ScopeController; import org.netbeans.api.search.ui.ScopeOptionsController; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.openide.NotificationLineSupport; import org.openide.util.HelpCtx; public class ExampleSearchPresenter extends SearchProvider.Presenter { private JPanel panel = null; ScopeOptionsController scopeSettingsPanel; FileNameController fileNameComboBox; ScopeController scopeComboBox; ChangeListener changeListener; JSlider slider; public ExampleSearchPresenter(SearchProvider searchProvider) { super(searchProvider, false); } /** * Get UI component that can be added to the search dialog. */ @Override public synchronized JComponent getForm() { if (panel == null) { panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.PAGE_AXIS)); JPanel row1 = new JPanel(new FlowLayout(FlowLayout.LEADING)); JPanel row2 = new JPanel(new FlowLayout(FlowLayout.LEADING)); JPanel row3 = new JPanel(new FlowLayout(FlowLayout.LEADING)); row1.add(new JLabel("Age in hours: ")); slider = new JSlider(1, 72); row1.add(slider); final JLabel hoursLabel = new JLabel(String.valueOf(slider.getValue())); row1.add(hoursLabel); row2.add(new JLabel("File name: ")); fileNameComboBox = ComponentUtils.adjustComboForFileName(new JComboBox()); row2.add(fileNameComboBox.getComponent()); scopeSettingsPanel = ComponentUtils.adjustPanelForOptions(new JPanel(), false, fileNameComboBox); row3.add(new JLabel("Scope: ")); scopeComboBox = ComponentUtils.adjustComboForScope(new JComboBox(), null); row3.add(scopeComboBox.getComponent()); panel.add(row1); panel.add(row3); panel.add(row2); panel.add(scopeSettingsPanel.getComponent()); initChangeListener(); slider.addChangeListener(new ChangeListener() { @Override public void stateChanged(ChangeEvent e) { hoursLabel.setText(String.valueOf(slider.getValue())); } }); } return panel; } private void initChangeListener() { this.changeListener = new ChangeListener() { @Override public void stateChanged(ChangeEvent e) { fireChange(); } }; fileNameComboBox.addChangeListener(changeListener); scopeSettingsPanel.addChangeListener(changeListener); slider.addChangeListener(changeListener); } @Override public HelpCtx getHelpCtx() { return null; // Some help should be provided, omitted for simplicity. } /** * Create search composition for criteria specified in the form. */ @Override public SearchComposition<?> composeSearch() { SearchScopeOptions sso = scopeSettingsPanel.getSearchScopeOptions(); return new ExampleSearchComposition(sso, scopeComboBox.getSearchInfo(), slider.getValue(), this); } /** * Here we return always true, but could return false e.g. if file name * pattern is empty. */ @Override public boolean isUsable(NotificationLineSupport notifySupport) { return true; } } The last part of our search provider is the implementation of SearchComposition. This is a composition of various search parameters, the actual search algorithm, and the displayer that presents the results.Methods to implement: The most important method here is start, which performs the actual search. In this case, SearchInfo and SearchScopeOptions objects are used for traversing. These objects were provided by controllers of GUI components (in the presenter). When something interesting is found, it should be displayed (with SearchResultsDisplayer.addMatchingObject). Method getSearchResultsDisplayer should return the displayer associated with this composition. The displayer can be created by subclassing SearchResultsDisplayer class or simply by using the SearchResultsDisplayer.createDefault. Then you only need a helper object that can create nodes for found objects. Example file "org.netbeans.example.search.ExampleSearchComposition": package org.netbeans.example.search; public class ExampleSearchComposition extends SearchComposition<DataObject> { SearchScopeOptions searchScopeOptions; SearchInfo searchInfo; int oldInHours; SearchResultsDisplayer<DataObject> resultsDisplayer; private final Presenter presenter; AtomicBoolean terminated = new AtomicBoolean(false); public ExampleSearchComposition(SearchScopeOptions searchScopeOptions, SearchInfo searchInfo, int oldInHours, Presenter presenter) { this.searchScopeOptions = searchScopeOptions; this.searchInfo = searchInfo; this.oldInHours = oldInHours; this.presenter = presenter; } @Override public void start(SearchListener listener) { for (FileObject fo : searchInfo.getFilesToSearch( searchScopeOptions, listener, terminated)) { if (ageInHours(fo) < oldInHours) { try { DataObject dob = DataObject.find(fo); getSearchResultsDisplayer().addMatchingObject(dob); } catch (DataObjectNotFoundException ex) { listener.fileContentMatchingError(fo.getPath(), ex); } } } } @Override public void terminate() { terminated.set(true); } @Override public boolean isTerminated() { return terminated.get(); } /** * Use default displayer to show search results. */ @Override public synchronized SearchResultsDisplayer<DataObject> getSearchResultsDisplayer() { if (resultsDisplayer == null) { resultsDisplayer = createResultsDisplayer(); } return resultsDisplayer; } private SearchResultsDisplayer<DataObject> createResultsDisplayer() { /** * Object to transform matching objects to nodes. */ SearchResultsDisplayer.NodeDisplayer<DataObject> nd = new SearchResultsDisplayer.NodeDisplayer<DataObject>() { @Override public org.openide.nodes.Node matchToNode( final DataObject match) { return new FilterNode(match.getNodeDelegate()) { @Override public String getDisplayName() { return super.getDisplayName() + " (" + ageInMinutes(match.getPrimaryFile()) + " minutes old)"; } }; } }; return SearchResultsDisplayer.createDefault(nd, this, presenter, "less than " + oldInHours + " hours old"); } private static long ageInMinutes(FileObject fo) { long fileDate = fo.lastModified().getTime(); long now = System.currentTimeMillis(); return (now - fileDate) / 60000; } private static long ageInHours(FileObject fo) { return ageInMinutes(fo) / 60; } } Run the module, select a node in the Projects window, press Ctrl-F, and you'll see the "Find in Projects" dialog has two tabs, the second is the one you provided above:

    Read the article

  • Split a 2D scene in layers or have a z coordinate

    - by Bane
    I am in the process of writing a 2D game engine, and a dilemma emerged. Let me explain the situation... I have a Scene class, to which various objects can be added (Drawable, ParticleEmitter, Light2D, etc), and as this is a 2D scene, things will obviously be drawn over each other. My first thought was that I could have basic add and remove methods, but I soon realized that then there would be no way for the programmer to control the order in which things were drawn. So I can up with two options, each with its pros and cons. A) Would be to split the scene in layers. By that I mean instead of having the scene be a container of objects, have it be a container of layers, which are in turn the containers of objects. B) Would require to have some kind of z-coordinate, and then have the scene sorted so objects with lower z get drawn first. Option A is pretty solid, but the problem is with the lights. In what layer do I add it? Does it work cross-layer? On all bottom layers? And I still need the Z coordinate to calculate the shadow! Option B would require me to change all my code from having Vector2D positions, to some kind of class that inherits from Vector2D and adds a z coordinate to it (I don't want it to be a Vector3D because I still need all the same methods the 2D kind has, just with .z clamped on). Am I missing something? Is there an alternative to these methods? I'm working in Javascript, if that makes a difference.

    Read the article

  • Why is a small fixed vocabulary seen as an advantage to RESTful services?

    - by Matt Esch
    So, a RESTful service has a fixed set of verbs in its vocabulary. A RESTful web service takes these from the HTTP methods. There are some supposed advantages to defining a fixed vocabulary, but I don't really grasp the point. Maybe someone can explain it. Why is a fixed vocabulary as outlined by REST better than dynamically defining a vocabulary for each state? For example, object oriented programming is a popular paradigm. RPC is described to define fixed interfaces, but I don't know why people assume that RPC is limited by these contraints. We could dynamically specify the interface just as a RESTful service dynamically describes its content structure. REST is supposed to be advantageous in that it can grow without extending the vocabulary. RESTful services grow dynamically by adding more resources. What's so wrong about extending a service by dynamically specifying a per-object vocabulary? Why don't we just use the methods that are defined on our objects as the vocabulary and have our services describe to the client what these methods are and whether or not they have side effects? Essentially I get the feeling that the description of a server side resource structure is equivalent to the definition of a vocabulary, but we are then forced to use the limited vocabulary in which to interact with these resources. Does a fixed vocabulary really decouple the concerns of the client from the concerns of the server? I surely have to be concerned with some configuration of the server, this is normally resource location in RESTful services. To complain at the use of a dynamic vocabulary seems unfair because we have to dynamically reason how to understand this configuration in some way anyway. A RESTful service describes the transitions you are able to make by identifying object structure through hypermedia. I just don't understand what makes a fixed vocabulary any better than any self-describing dynamic vocabulary, which could easily work very well in an RPC-like service. Is this just a poor reasoning for the limiting vocabulary of the HTTP protocol?

    Read the article

  • Simple MVVM Walkthrough – Refactored

    - by Sean Feldman
    JR has put together a good introduction post into MVVM pattern. I love kick start examples that serve the purpose well. And even more than that I love examples that also can pass the real world projects check. So I took the sample code and refactored it slightly for a few aspects that a lot of developers might raise a brow. Michael has mentioned model (entity) visibility from view. I agree on that. A few other items that don’t settle are using property names as string (magical strings) and Saver class internal casting of a parameter (custom code for each Saver command). Fixing a property names usage is a straight forward exercise – leverage expressions. Something simple like this would do the initial job: class PropertyOf<T> { public static string Resolve(Expression<Func<T, object>> expression) { var member = expression.Body as MemberExpression; return member.Member.Name; } } With this, refactoring of properties names becomes an easy task, with confidence that an old property name string will not get left behind. An updated Invoice would look like this: public class Invoice : INotifyPropertyChanged { private int id; private string receiver; public event PropertyChangedEventHandler PropertyChanged; private void OnPropertyChanged(string propertyName) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } public int Id { get { return id; } set { if (id != value) { id = value; OnPropertyChanged(PropertyOf<Invoice>.Resolve(x => x.Id)); } } } public string Receiver { get { return receiver; } set { receiver = value; OnPropertyChanged(PropertyOf<Invoice>.Resolve(x => x.Receiver)); } } } For the saver, I decided to change it a little so now it becomes a “view-model agnostic” command, one that can be used for multiple commands/view-models. Updated Saver code now accepts an action at construction time and executes that action. No more black magic internal class Command : ICommand { private readonly Action executeAction; public Command(Action executeAction) { this.executeAction = executeAction; } public bool CanExecute(object parameter) { return true; } public event EventHandler CanExecuteChanged; public void Execute(object parameter) { // no more black magic executeAction(); } } Change in InvoiceViewModel is instantiation of Saver command and execution action for the specific command. public ICommand SaveCommand { get { if (saveCommand == null) saveCommand = new Command(ExecuteAction); return saveCommand; } set { saveCommand = value; } } private void ExecuteAction() { DisplayMessage = string.Format("Thanks for creating invoice: {0} {1}", Invoice.Id, Invoice.Receiver); } This way internal knowledge of InvoiceViewModel remains in InvoiceViewModel and Command (ex-Saver) is view-model agnostic. Now the sample is not only a good introduction, but also has some practicality in it. My 5 cents on the subject. Sample code MvvmSimple2.zip

    Read the article

  • (libgdx) Button doesn't work

    - by StercoreCode
    At the game I choose StopScreen. At this screen displays button. But if I click it - it doesn't work. What I expect - when I press button it must restart game. At this stage must display at least a message that the button is pressed. I tried to create new and clear project. Main class implement ApplicationListener. I put the same code in the appropriate methods. And it's works! But if i create this button in my game - it doesn't work. When i play and go to the StopScreen, i saw button. But if i click, or touch, nothing happens. I think that the proplem at the InputListener, although i set the stage as InputProcessor. Gdx.input.setInputProcessor(stage); I also try to addListener for Button as ClickListener. But it gave no results. Or it maybe problem that i implements Screen method - not ApplicationListener or Game. But if StopScreen implement ApplicationListener, at the mainGame I can't to setScreen. Just interests question: why button displays but nothing happens to it? Here is the code of StopScreen if it helps find my mistake: public class StopScreen implements Screen{ private OrthographicCamera camera; private SpriteBatch batch; public Stage stage; //** stage holds the Button **// private BitmapFont font; //** same as that used in Tut 7 **// private TextureAtlas buttonsAtlas; //** image of buttons **// private Skin buttonSkin; //** images are used as skins of the button **// public TextButton button; //** the button - the only actor in program **// public StopScreen(CurrusGame currusGame) { camera = new OrthographicCamera(); camera.setToOrtho(false, 800, 480); batch = new SpriteBatch(); buttonsAtlas = new TextureAtlas("button.pack"); //** button atlas image **// buttonSkin = new Skin(); buttonSkin.addRegions(buttonsAtlas); //** skins for on and off **// font = AssetLoader.font; //** font **// stage = new Stage(); stage.clear(); Gdx.input.setInputProcessor(stage); TextButton.TextButtonStyle style = new TextButton.TextButtonStyle(); style.up = buttonSkin.getDrawable("ButtonOff"); style.down = buttonSkin.getDrawable("ButtonOn"); style.font = font; button = new TextButton("PRESS ME", style); //** Button text and style **// button.setPosition(100, 100); //** Button location **// button.setHeight(100); //** Button Height **// button.setWidth(100); //** Button Width **// button.addListener(new InputListener() { public boolean touchDown(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Pressed"); return true; } public void touchUp(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Released"); } }); stage.addActor(button); } @Override public void render(float delta) { Gdx.gl.glClearColor(0, 1, 0, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); stage.act(); batch.setProjectionMatrix(camera.combined); batch.begin(); stage.draw(); batch.end(); }

    Read the article

  • Designing status management for a file processing module

    - by bot
    The background One of the functionality of a product that I am currently working on is to process a set of compressed files ( containing XML files ) that will be made available at a fixed location periodically (local or remote location - doesn't really matter for now) and dump the contents of each XML file in a database. I have taken care of the design for a generic parsing module that should be able to accommodate the parsing of any file type as I have explained in my question linked below. There is no need to take a look at the following link to answer my question but it would definitely provide a better context to the problem Generic file parser design in Java using the Strategy pattern The Goal I want to be able to keep a track of the status of each XML file and the status of each compressed file containing the XML files. I can probably have different statuses defined for the XML files such as NEW, PROCESSING, LOADING, COMPLETE or FAILED. I can derive the status of a compressed file based on the status of the XML files within the compressed file. e.g status of the compressed file is COMPLETE if no XML file inside the compressed file is in a FAILED state or status of the compressed file is FAILED if the status of at-least one XML file inside the compressed file is FAILED. A possible solution The Model I need to maintain the status of each XML file and the compressed file. I will have to define some POJOs for holding the information about an XML file as shown below. Note that there is no need to store the status of a compressed file as the status of a compressed file can be derived from the status of its XML files. public class FileInformation { private String compressedFileName; private String xmlFileName; private long lastModifiedDate; private int status; public FileInformation(final String compressedFileName, final String xmlFileName, final long lastModified, final int status) { this.compressedFileName = compressedFileName; this.xmlFileName = xmlFileName; this.lastModifiedDate = lastModified; this.status = status; } } I can then have a class called StatusManager that aggregates a Map of FileInformation instances and provides me the status of a given file at any given time in the lifetime of the appliciation as shown below : public class StatusManager { private Map<String,FileInformation> processingMap = new HashMap<String,FileInformation>(); public void add(FileInformation fileInformation) { fileInformation.setStatus(0); // 0 will indicates that the file is in NEW state. 1 will indicate that the file is in process and so on.. processingMap.put(fileInformation.getXmlFileName(),fileInformation); } public void update(String filename,int status) { FileInformation fileInformation = processingMap.get(filename); fileInformation.setStatus(status); } } That takes care of the model for the sake of explanation. So whats my question? Edited after comments from Loki and answer from Eric : - I would like to know if there are any existing design patterns that I can refer to while coming up with a design. I would also like to know how I should go about designing the status management classes. I am more interested in understanding how I can model the status management classes. I am not interested in how other components are going to be updated about a change in status at the moment as suggested by Eric.

    Read the article

  • REST Service and CQRS

    - by Paul Wade
    I am struggling with architecture on a new project. I am using the following patterns/technology. CQRS - anything going in goes through a command REST - using WebAPI MVC - asp.net mvc Angular - building a spa nhibernate I belive this provides some great separation and should help keep a very complex domain from growing into a giant set of services that mix queries with other business logic. The REST services have become non restful. They are putting methods in rest that are "SearchByDate", "SearchByItem" etc. Service Methods that execute commands are called with a "web" model class, a new command is built in the service and executed, I feel like there is a lot of extra code. I expected this to be much different but I wasn't around to keep things on track. Finally my questions are this... I would have liked to see PUT Person (CreatePersonCommand) but then I realized that isn't restful either is it? the put should be a person entity not a command. Can I make CQRS and REST service work together or am I going about this all wrong? How do I handle service methods that don't fit into a REST model. I am not performing CRUD on the object but rather executing some business logic. I.E. I don't want the UI to be responsible for how a shipment is "unshipped" I want the service layer to worry about that.

    Read the article

< Previous Page | 137 138 139 140 141 142 143 144 145 146 147 148  | Next Page >