Search Results

Search found 24011 results on 961 pages for 'call me dummy'.

Page 142/961 | < Previous Page | 138 139 140 141 142 143 144 145 146 147 148 149  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • soapfault: Couldn't create SOAP message

    - by polarw
    11-23 16:19:30.085: SoapFault - faultcode: 'S:Client' faultstring: 'Couldn't create SOAP message due to exception: Unable to create StAX reader or writer' faultactor: 'null' detail: null 11-23 16:19:30.085: at org.ksoap2.serialization.SoapSerializationEnvelope.parseBody(SoapSerializationEnvelope.java:121) 11-23 16:19:30.085: at org.ksoap2.SoapEnvelope.parse(SoapEnvelope.java:137) 11-23 16:19:30.085: at org.ksoap2.transport.Transport.parseResponse(Transport.java:63) 11-23 16:19:30.085: at org.ksoap2.transport.HttpTransportSE.call(HttpTransportSE.java:104) 11-23 16:19:30.085: at com.mobilebox.webservice.CommonWSClient.callWS(CommonWSClient.java:247) 11-23 16:19:30.085: at com.mobilebox.webservice.CommonWSClient.access$1(CommonWSClient.java:217) 11-23 16:19:30.085: at com.mobilebox.webservice.CommonWSClient$WSHandle.run(CommonWSClient.java:201) 11-23 16:19:30.085: at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1088) 11-23 16:19:30.085: at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:581) 11-23 16:19:30.085: at java.lang.Thread.run(Thread.java:1019) My Android application use Soap webservice client to call remote method. Sometimes, it will return the excepion as above. When I call it with SoapUI, it never occours.

    Read the article

  • Giving a child window focus in IE8

    - by Andrew K
    I'm trying to launch a popup window from a Javascript function and ensure it has focus using the following call: window.open(popupUrl, popupName, "...").focus(); It works in every other browser, but IE8 leaves the new window in the background with the flashing orange taskbar notification. Apparently this is a feature of IE8: http://msdn.microsoft.com/en-us/library/ms536425%28VS.85%29.aspx It says that I should be able to focus the window by making a focus() call originating from the new page, but that doesn't seem to work either. I've tried inserting window.focus() in script tags in the page and the body's onload but it has no effect. Is there something I'm missing about making a focus() call as the page loads, or another way to launch a popup that IE8 won't hide?

    Read the article

  • jquery.autocomplete doesn't work in compability mode

    - by Oskar Kjellin
    I've read all the results I can find on SO about this without finding anything that applies to me, so don't judge me too quickly :) I am using jquery.autocomplete downloaded from here: http://www.dyve.net/jquery/?autocomplete together with http://ajax.microsoft.com/ajax/jquery/jquery-1.3.2.js This all works well in IE8 and FF, but as soon as I activate compability mode in IE8 I keep getting: Microsoft JScript runtime error: Object doesn't support this property or method When looking in the call stack, This is the one where it breaks: <script type="text/javascript"> $().ready(function() { $("#friendsearch").autocomplete("/Account/FindFriends"); }); </script> and then the calling function is this: if ( jQuery.readyList ) { // Execute all of them jQuery.each( jQuery.readyList, function(){ this.call( document, jQuery ); }); // Reset the list of functions jQuery.readyList = null; } where this line throws the error: this.call( document, jQuery ); Does anybody know why this happens? As mentioned above, works super in IE8 and firefox, but not in compability mode(IE7)

    Read the article

  • access violation in wglMakeCurrent

    - by Stefan
    Sometimes in my OpenGL application I get an access violation in the following API call: wglMakeCurrent(NULL, NULL); The application only has one single thread, and I've checked that before that call, both the DC and HGLRC that are currently used are correct and valid. There are three different windows with OpenGL content, and they're all redrawn on WM_PAINT messages and if a refresh is required due to user interaction (e.g., picking an object). Also this access violation happens on different machines with different graphic cards, so I don't think it's a driver issue. What could make this API call crash? What should I investigate in the app code to find out where/why this happens? I'm really lost here since I've checked everything I could think of already. I hope someone can give me hints/ideas on what more to check.

    Read the article

  • UserControl Focus Issue - Focus() sometimes returns false

    - by Craigger
    I have a user control that behaves similar to a tab control. The tab headers are UserControls that override Paint events to make them look custom. In order to leverage the Validating events on various controls on our tab pages, when the user clicks on the tab headers, we set the Focus to the TabHeader user control. I've noticed that Control.Focus() returns false sometimes but the documentation does not say why Control.Focus() will ever return false other than that the control can't receive focus. But I don't know why. Here's what i see. If my TabHeader UserControl does not contain any subcontrols, and I call myControl.Focus() from the MouseClick event, focus returns true. If my TabHeader UserControl contains a subcontrol, and I call myControl.Focus() from the MouseClick event, focus returns false. If my TabHeader UserControl contains a subcontrol, and I call myControl.subControl.Focus() from the myControl.MouseClick event, focus returns true. Can someone explain this?

    Read the article

  • ExternalInterface in flex calling javascript function works for mozilla/chrome but NOT IE

    - by Rees
    hello, i have a flex application that does a simple ExternalInterface.call("shareOptions"), which calls a shareOptions() javascript method and works absolutely fine with Mozilla and chrome, however when I test with IE i get the following error: Error: [object Error] at flash.external::ExternalInterface$/_toAS() at flash.external::ExternalInterface$/call() I looked at the adobe livedocs documentation but can't determine what the issue is with IE. is there something i'm missing?? if anyone knows, please let me know ASAP! thanks in advance. private function shareOptions(event:MouseEvent):void{ ExternalInterface.marshallExceptions = true; if (ExternalInterface.available){ ExternalInterface.call("shareOptions"); } } the javascript <script language="JavaScript" type="text/javascript"> function shareOptions() { myWin = window.open('http://www.mysite.shareOptions.php','yeee!','width=640,height=690,toolbar=no,location=0,directories=no,status=no,menubar=no,scrollbars=no,copyhistory=no,resizable=yes,x=500,y=500'); myWin.moveTo(300,300); } </script>

    Read the article

  • How to programmatically disable onClick handler on Android AppWidget Button

    - by Gaks
    I have a Button on appwidget, that I need to 'enable'/'disable' programmatically from a Service. First idea was to call setBoolean(R.id.buttonid, "setClickable", false) to disable it, but apparently you can't call setClickable remotely. Another idea was was remove the text label from it with rv.setTextViewText(R.id.buttonid, "") and then remove the click handler by rv.setOnClickPendingIntent(R.id.buttonid, null). Unfortunately passing null to it causes NullPointerException in in android.app.ActivityThread.handleServiceArgs Is there some other way to programmatically disable/enable appwidget Button? I could just call rv.setViewVisibility(R.id.buttonid, View.GONE) to hide the button completely instead of disabling it. This would however completely break whole widget layout and I would like to avoid it. The solution I'm using now is hiding the button with setViewVisibility and showing other blank button instead to the keep appwidget layout as it was before.

    Read the article

  • django manage.py syncdb not working?

    - by Diego
    Trying to learn Django, I closed the shell and am getting this problem now when I call python manage.py syncdb, any idea what happened?: I've already set up a db. I have manage.py set up in the folder django_bookmarks. What's up here? Traceback (most recent call last): File "manage.py", line 2, in from django.core.management import execute_manager ImportError: No module named django.core.management my-computer:~/Django-1.1.1/django_bookmarks mycomp$ export PATH=/Users/mycomp/bin:$PATH my-computer:~/Django-1.1.1/django_bookmarks mycomp$ python manage.py syncdb Traceback (most recent call last): File "manage.py", line 2, in from django.core.management import execute_manager ImportError: No module named django.core.management my-computer:~/Django-1.1.1/django_bookmarks mycomp$

    Read the article

  • Facebook graph API - OAuth Token

    - by Simon R
    I'm trying to retrieve data using the new graph API, however the token I'm retriving from OAuth doesn't appear to be working. The call I'm making is as follows; $token = file_get_contents('https://graph.facebook.com/oauth/access_token?type=client_cred&client_id=<app_id>&client_secret=<app secret>'); This returns a token with a string length of 41. To give you an example of what is returned I have provided below a sample (converted all numbers to 0, all capital letters to 'A' and small case letters to 'a' access_token=000000000000|AaaAaaAaaAAaAaaaaAaaAa0aaAA. I take this access token and attach it to the call request for data, it doesn't appear to be the correct token as it returns nothing. I make the data call as follows; file_get_contents('https://graph.facebook.com/<my_page's_id>/statuses?access_token=000000000000|AaaAaaAaaAAaAaaaaAaaAa0aaAA.') When I manually retrieve this page directly through the browser I get an 500/Internal Server Error Message. Any assistance would be grately appreciated.

    Read the article

  • Ajaxing a link in a table

    - by Colin Desmond
    I have a table of results in an ASP.Net MVC page where the last column is an View Details link. I want to have the user click the View Details link and an AJAX method be called to open the results in floating dialog. What I am struggling with is how to link the AJAX call to the link in the results table. I was using a link which embedded the ~/ControllerName/ViewDetails/InstanceId link directly in it. Clicking it took the user to a new page and it is this behaviour I want to replace with an AJAX call and a dialog window. Now I want to attach a jQuery handler to the link to trigger the AJAX call and I can't see how to do this other than write an jQuery handler for each row in the results table. There must be a way to mark the link as an ViewDetails link (using a class?) and attach the jQuery click handler to all instances of type class ViewDetails.

    Read the article

  • unrobustive jQuery and rails with ajax and form validation

    - by bogumbiker
    Hello, I am looking for a way to call successfully custom function from submitHandler to do proper ajax post. Here is my custom function: jQuery.fn.submitWithAjax = function() { this.submit(function() { $.post(this.action, $(this).serialize(), null, "script"); return false; }) return this; }; Before using validate plugin I had following which worked fine: $(document).ready(function() { $("#my_form").submitWithAjax(); } Now I have added the validation part and have no idea how to call my custom submitWithAjax function?? $(document).ready(function() { $("#my_form").validate({ /*Validations - works perfectly!! */ }, submitHandler: function(form) { /* $("#my_form").submitWithAjax(); - this works but introduces recursion */ /* how to call custom subitWithAjax() ????? */ } }); }) Thanks!

    Read the article

  • How to tell whether Code Access Security is allowed in library code

    - by Sander Rijken
    In .NET 4 Code Access Security (CAS) is deprecated. Whenever you call a method that implicitly uses it, it fails with a NotSupportedException, that can be resolved with a configuration switch that makes it fall back to the old behavior. We have a common library that's used in both .NET 3.5 and .NET 4, so we need to be able to tell whether or not we should use the CAS method. For example, in .NET 3.5 I should call: Assembly.Load(string, Evidence); Whereas in .NET 4 I want to call Assembly.Load(string); Calling Load(string, Evidence) throws a NotSupportedException. Of course this works, but I'd like to know if there's a better method: try { asm = Assembly.Load(someString, someEvidence); } catch(NotSupportedException) { asm = Assembly.Load(someString); }

    Read the article

  • AjaxSubmit File Upload - Trying to get response $(document).ready() to fire

    - by ncyankee
    I'm using the jquery form plugin (http://malsup.com/jquery/form/) to upload a file via ajax which is processed in the background. The upload is working correctly, and I am using ASP.Net MVC to return a partial view which contains a $(document).ready call to setup a 'timer' to check on the status of the upload file's processing status. When I return the partial view which contains a script block wit ha $(document).ready call, it is never fired, therefore the 'timer' to check for the status of the upload is never started. When I do this via a regular $.post call (without upload) the function fires correctly after the html is loaded into the DOM. Is there anything else I need to do when calling the ajaxSubmit function to get this to fire? Just a sample bit of code: $('form').live('submit', function () { $(this).ajaxSubmit({ success: function (data) { $('#statusDiv').html(data); } }); return false; });

    Read the article

  • Delphi and prevent event handling

    - by pKarelian
    How do you prevent a new event handling to start when an event handling is already running? I press a button1 and event handler start e.g. slow printing job. There are several controls in form buttons, edits, combos and I want that a new event allowed only after running handler is finnished. I have used fRunning variable to lock handler in shared event handler. Is there more clever way to handle this? procedure TFormFoo.Button_Click(Sender: TObject); begin if not fRunning then try fRunning := true; if (Sender = Button1) then // Call something slow ... if (Sender = Button2) then // Call something ... if (Sender = Button3) then // Call something ... finally fRunning := false; end; end;

    Read the article

  • Double title bar issue iPhone app

    - by Nick Brunch
    I have noticed that whenever a phone call comes in while my app is in use (Or I simulate in-call status bar using the simulator), and the phone call ends, I end up with a double status bar in my app. The status bar goes away if I click any other tab and come back to the original tab (my app has a UITTabBar in it). I have tried so many options that I am losing track now. The most I have read are to set your UIView's size to be flexible in interface builder but nothing seems to work. Please look at the screenshots. I am pasting a default view of the sizing options in interface builder but believe me I have tried every single configuration option there.

    Read the article

  • Emacs - Error when calling (server-start)

    - by Jonas Gorauskas
    I am currently using GNU Emacs 23.0.93.1 in Windows Vista SP1. In my .emacs file I make a call to (server-start) and that is causing an error with the message The directory ~/.emacs.d/server is unsafe. Has anyone seen this and know a fix or workaround? ... other than leaving server turned off ;) Here is the stack trace: Debugger entered--Lisp error: (error "The directory ~/.emacs.d/server is unsafe") signal(error ("The directory ~/.emacs.d/server is unsafe")) error("The directory %s is unsafe" "~/.emacs.d/server") server-ensure-safe-dir("~\\.emacs.d\\server\\") server-start(nil) call-interactively(server-start t nil) execute-extended-command(nil) call-interactively(execute-extended-command nil nil)

    Read the article

  • Setting treeview background color in VB6 has a flaw - help?

    - by RenMan
    I have successfully implemented this method of using the Win32 API to set the background color of a treeview in VB 6: http://support.microsoft.com/kb/178491 However, one thing goes wrong: when you expand the tree nodes more than two levels deep, the area to the left of (and sometimes under) the inner plus [+] and minus [-] signs is still white. Does anyone know how to get this area to the correct background color, too? Note: I'm also setting the BackColor of each node, and also the BackColor of the treeview's imagelist. Here's my version of the code: Public Sub TreeView_SetBackgroundColor(TreeView As MSComctlLib.TreeView, BackgroundColor As Long) Dim lStyle As Long, Node As MSComctlLib.Node For Each Node In TreeView.Nodes Node.BackColor = BackgroundColor Next TreeView.ImageList.BackColor = BackgroundColor Call SendMessage( _ TreeView.hwnd, _ TVM_SETBKCOLOR, _ 0, _ ByVal BackgroundColor) 'Now reset the style so that the tree lines appear properly. lStyle = GetWindowLong(TreeView.hwnd, GWL_STYLE) Call SetWindowLong(TreeView.hwnd, GWL_STYLE, lStyle - TVS_HASLINES) Call SetWindowLong(TreeView.hwnd, GWL_STYLE, lStyle) End Sub

    Read the article

  • how to temporarily set makeprg in vim

    - by Haiyuan Zhang
    In the normal case I use vim's make utility I will set makeprg to the Makefile of the project I'm currently working for. Since usually the project will last for weeks or even longer, I don't need to change the setting of makeprg very often . But sometimes I need to write some "foobar" code either for practicing my c++ skill or for prototyping some primitive ideas in my mind. So whenever I switch to the "foobar" mode of vim usage, I need to comments the original makeprg setting add the new setting as following : au FileType c set makeprg=gcc\ % au FileType cpp set makeprg=g++\ % which is really very very inconvenient . when I back to the "normal project mode" of vim usage, I need to change back to the original setting . back and forth .... what I want to know from you guys is that : is it possible to make the setting of makeprg temporarily . for example , define a function in which first set a local value of makeprg and then call make before return form the function call automatically restore makeprg to the value before the function call.

    Read the article

  • mouse over and ajax tooltip

    - by vichet
    I have a number of links which I would like to get some information by using ajax calls and display the information as tooltip. I have bind the function that make the ajax call with the event on mouseover of the link something like: $('#div a').bind('mouseover', function () { //sending the ajax call } everything looks/work fine except, when the user unintentionally move the mouse pointer over all the links, I saw that there are many ajax calls. so my question how can I prevent the ajax call unless the users hover the mouse pointer on the link for at least 3 or 4 seconds first.

    Read the article

  • Calling Web Page from Windows Service

    - by David Moorhouse
    I have a Windows 2008 server. This has an instance of IIS7 installed and a website, accessible only via an internal hostname defined in the the servers hosts file. e.g. the server IP is 10.0.6.11 and the hosts file contains an entry 10.0.6.11 hl7.ourname.org I would like to call a URL on the website, e.g "http://hl7.ourname.org/updatestatus" from a Windows service. I can call the web site from an instance of IE7 running on the server. However, if try to call it from a Windows service I get a "Socket Error # 10061 Connection refused." This looks like a permission issue. The service is running as "Network Service" ,but maybe I should be running as a different user. Thanks

    Read the article

  • Python urllib.urlopen IOError

    - by Michael
    So I have the following lines of code in a function sock = urllib.urlopen(url) html = sock.read() sock.close() and they work fine when I call the function by hand. However, when I call the function in a loop (using the same urls as earlier) I get the following error: > Traceback (most recent call last): File "./headlines.py", line 256, in <module> main(argv[1:]) File "./headlines.py", line 37, in main write_articles(headline, output_folder + "articles_" + term +"/") File "./headlines.py", line 232, in write_articles print get_blogs(headline, 5) File "/Users/michaelnussbaum08/Documents/College/Sophmore_Year/Quarter_2/Innovation/Headlines/_code/get_content.py", line 41, in get_blogs sock = urllib.urlopen(url) File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib.py", line 87, in urlopen return opener.open(url) File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib.py", line 203, in open return getattr(self, name)(url) File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib.py", line 314, in open_http if not host: raise IOError, ('http error', 'no host given') IOError: [Errno http error] no host given Any ideas?

    Read the article

  • Specify Action on sub-controller when using Html.RenderAction

    - by iammaz
    I have a UserControl that I call with Html.RenderAction(...), so far so good.. Then I want to specify in the user control, which action should be used Html.BeginForm("DeleteComment", "Comments", new { Id = "frmDelete" }, FormMethod.Post);%> <%= Html.SubmitImage( "imgbtnDelete", "/image.png", new { ... })%> <% Html.EndForm(); %> And therein lies my problem; this calls the user control's controller/action. What I want to happen is to call the pages action first and then be able to specify what action to call on the user control's controller. Is this possible?? Thanks from an MVC noob

    Read the article

  • WCF Windows Service - Long operations/Callback to calling module

    - by A9S6
    I have a Windows Service that takes the name of a bunch of files and do operations on them (zip/unzip, updating db etc). The operations can take time depending on size and number of files sent to the service. (1) The module that is sending a request to this service waits until the files are processed. I want to know if there is a way to provide a callback in the service that will notify the calling module when it is finished processing the files. Please note that multiple modules can call the service at a time to process files so the service will need to provide some kind of a TaskId I guess. (2) If a service method is called and is running and another call is made to the same service, then how will that call be processed(I think there is only one thread asociated with the service). I have seen that when the service is taking time in processing a method, the threads associated with the service begin to increase.

    Read the article

  • Unobtrusive jQuery and Rails with AJAX and form validation

    - by bogumbiker
    Hello, I am looking for a way to call successfully custom function from submitHandler to do proper ajax post. Here is my custom function: jQuery.fn.submitWithAjax = function() { this.submit(function() { $.post(this.action, $(this).serialize(), null, "script"); return false; }) return this; }; Before using validate plugin I had following which worked fine: $(document).ready(function() { $("#my_form").submitWithAjax(); } Now I have added the validation part and have no idea how to call my custom submitWithAjax function?? $(document).ready(function() { $("#my_form").validate({ /*Validations - works perfectly!! */ }, submitHandler: function(form) { /* $("#my_form").submitWithAjax(); - this works but introduces recursion */ /* how to call custom subitWithAjax() ????? */ } }); }) Thanks!

    Read the article

< Previous Page | 138 139 140 141 142 143 144 145 146 147 148 149  | Next Page >