Search Results

Search found 5819 results on 233 pages for 'compiler theory'.

Page 143/233 | < Previous Page | 139 140 141 142 143 144 145 146 147 148 149 150  | Next Page >

  • SQL SERVER – #TechEdIn – Presenting Tomorrow on Speed Up! – Parallel Processes and Unparalleled Performance at TechEd India 2012

    - by pinaldave
    Performance tuning is always a very hot topic when it is about SQL Server. SQL Server Performance Tuning is a very challenging subject that requires expertise in Database Administration and Database Development. I always have enjoyed talking about SQL Server Performance tuning subject. However, in India, it’s actually the very first time someone is presenting on this interesting subject, so this time I had the biggest challenge to present this session. Frequently enough, we get these two kind of questions: How to turn off parallelism as it is reducing performance? How to turn on parallelism as I want more performance? The reality is that not everyone knows what exactly is needed by their system. In this session, I have attempted to answer this very question. I’ve decided to provide a balanced view but stay away from theory, which leads us to say “It depends”. The session will have a clear message about this towards its end. Deck Details Slides: 45+ Demos: 7+ Bonus Quiz: 5 Images: 10+ Session delivery time: 52 Mins + 8 Mins of Q & A I have presented this session a couple of times to my friends and so far have received good feedback. Oftentimes, when people hear that I am going to present 45 slides, they all say it is too much to cover. However, when I am done with the session the usual reaction is that I truly gave justice to those slides. Action Item Here are a few of the action items for all of those who are going to attend this session: If you want to attend the session, just come early. There’s a good chance that you may not get a seat because right before me, there is a session from SQL Guru Vinod Kumar. He performs a powerful delivery of million concepts in just a little time. Quiz. I will be asking few questions during the session as well as before the session starts. If you get the correct answer, I will give unique learning material for you. You may not want to miss this learning opportunity at any cosst. Session Details Title: Speed Up! – Parallel Processes and Unparalleled Performance (Add to Calendar) Abstract: “More CPU, More Performance” – A  very common understanding is that usage of multiple CPUs can improve the performance of the query. To get a maximum performance out of any query, one has to master various aspects of the parallel processes. In this deep-dive session, we will explore this complex subject with a very simple interactive demo. Attendees will walk away with proper understanding of CX_PACKET wait types, MAXDOP, parallelism threshold and various other concepts. Date and Time: March 23, 2012, 12:15 to 13:15 Location: Hotel Lalit Ashok - Kumara Krupa High Grounds, Bengaluru – 560001, Karnataka, India. Add to Calendar Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Interview Questions and Answers, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Programmatically disclosing a node in af:tree and af:treeTable

    - by Frank Nimphius
    A common developer requirement when working with af:tree or af:treeTable components is to programmatically disclose (expand) a specific node in the tree. If the node to disclose is not a top level node, like a location in a LocationsView -> DepartmentsView -> EmployeesView hierarchy, you need to also disclose the node's parent node hierarchy for application users to see the fully expanded tree node structure. Working on ADF Code Corner sample #101, I wrote the following code lines that show a generic option for disclosing a tree node starting from a handle to the node to disclose. The use case in ADF Coder Corner sample #101 is a drag and drop operation from a table component to a tree to relocate employees to a new department. The tree node that receives the drop is a department node contained in a location. In theory the location could be part of a country and so on to indicate the depth the tree may have. Based on this structure, the code below provides a generic solution to parse the current node parent nodes and its child nodes. The drop event provided a rowKey for the tree node that received the drop. Like in af:table, the tree row key is not of type oracle.jbo.domain.Key but an implementation of java.util.List that contains the row keys. The JUCtrlHierBinding class in the ADF Binding layer that represents the ADF tree binding at runtime provides a method named findNodeByKeyPath that allows you to get a handle to the JUCtrlHierNodeBinding instance that represents a tree node in the binding layer. CollectionModel model = (CollectionModel) your_af_tree_reference.getValue(); JUCtrlHierBinding treeBinding = (JUCtrlHierBinding ) model.getWrappedData(); JUCtrlHierNodeBinding treeDropNode = treeBinding.findNodeByKeyPath(dropRowKey); To disclose the tree node, you need to create a RowKeySet, which you do using the RowKeySetImpl class. Because the RowKeySet replaces any existing row key set in the tree, all other nodes are automatically closed. RowKeySetImpl rksImpl = new RowKeySetImpl(); //the first key to add is the node that received the drop //operation (departments).            rksImpl.add(dropRowKey);    Similar, from the tree binding, the root node can be obtained. The root node is the end of all parent node iteration and therefore important. JUCtrlHierNodeBinding rootNode = treeBinding.getRootNodeBinding(); The following code obtains a reference to the hierarchy of parent nodes until the root node is found. JUCtrlHierNodeBinding dropNodeParent = treeDropNode.getParent(); //walk up the tree to expand all parent nodes while(dropNodeParent != null && dropNodeParent != rootNode){    //add the node's keyPath (remember its a List) to the row key set    rksImpl.add(dropNodeParent.getKeyPath());      dropNodeParent = dropNodeParent.getParent(); } Next, you disclose the drop node immediate child nodes as otherwise all you see is the department node. Its not quite exactly "dinner for one", but the procedure is very similar to the one handling the parent node keys ArrayList<JUCtrlHierNodeBinding> childList = (ArrayList<JUCtrlHierNodeBinding>) treeDropNode.getChildren();                     for(JUCtrlHierNodeBinding nb : childList){   rksImpl.add(nb.getKeyPath()); } Next, the row key set is defined as the disclosed row keys on the tree so when you refresh (PPR) the tree, the new disclosed state shows tree.setDisclosedRowKeys(rksImpl); AdfFacesContext.getCurrentInstance().addPartialTarget(tree.getParent()); The refresh in my use case is on the tree parent component (a layout container), which usually shows the best effect for refreshing the tree component. 

    Read the article

  • Exploring TCP throughput with DTrace

    - by user12820842
    One key measure to use when assessing TCP throughput is assessing the amount of unacknowledged data in the pipe. This is sometimes termed the Bandwidth Delay Product (BDP) (note that BDP is often used more generally as the product of the link capacity and the end-to-end delay). In DTrace terms, the amount of unacknowledged data in bytes for the connection is the different between the next sequence number to send and the lowest unacknoweldged sequence number (tcps_snxt - tcps_suna). According to the theory, when the number of unacknowledged bytes for the connection is less than the receive window of the peer, the path bandwidth is the limiting factor for throughput. In other words, if we can fill the pipe without the peer TCP complaining (by virtue of its window size reaching 0), we are purely bandwidth-limited. If the peer's receive window is too small however, the sending TCP has to wait for acknowledgements before it can send more data. In this case the round-trip time (RTT) limits throughput. In such cases the effective throughput limit is the window size divided by the RTT, e.g. if the window size is 64K and the RTT is 0.5sec, the throughput is 128K/s. So a neat way to visually determine if the receive window of clients may be too small should be to compare the distribution of BDP values for the server versus the client's advertised receive window. If the BDP distribution overlaps the send window distribution such that it is to the right (or lower down in DTrace since quantizations are displayed vertically), it indicates that the amount of unacknowledged data regularly exceeds the client's receive window, so that it is possible that the sender may have more data to send but is blocked by a zero-window on the client side. In the following example, we compare the distribution of BDP values to the receive window advertised by the receiver (10.175.96.92) for a large file download via http. # dtrace -s tcp_tput.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 6 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 9 4096 | 14 8192 | 27 16384 | 67 32768 |@@ 1464 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32396 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 16384 | 0 32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 17067 65536 | 0 Here we have a puzzle. We can see that the receiver's advertised window is in the 32768-65535 range, while the amount of unacknowledged data in the pipe is largely in the 65536-131071 range. What's going on here? Surely in a case like this we should see zero-window events, since the amount of data in the pipe regularly exceeds the window size of the receiver. We can see that we don't see any zero-window events since the SWND distribution displays no 0 values - it stays within the 32768-65535 range. The explanation is straightforward enough. TCP Window scaling is in operation for this connection - the Window Scale TCP option is used on connection setup to allow a connection to advertise (and have advertised to it) a window greater than 65536 bytes. In this case the scaling shift is 1, so this explains why the SWND values are clustered in the 32768-65535 range rather than the 65536-131071 range - the SWND value needs to be multiplied by two since the reciever is also scaling its window by a shift factor of 1. Here's the simple script that compares BDP and SWND distributions, fixed to take account of window scaling. #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @bdp["BDP(bytes)", args[2]-ip_daddr, args[4]-tcp_sport] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); } tcp:::receive / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @swnd["SWND(bytes)", args[2]-ip_saddr, args[4]-tcp_dport] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } And here's the fixed output. # dtrace -s tcp_tput_scaled.d ^C BDP(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count -1 | 0 0 | 39 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 22 16384 | 37 32768 |@ 99 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3858 131072 | 0 SWND(bytes) 10.175.96.92 80 value ------------- Distribution ------------- count 512 | 0 1024 | 1 2048 | 0 4096 | 2 8192 | 4 16384 | 7 32768 | 14 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1956 131072 | 0

    Read the article

  • How can I make sound work without starting X?

    - by Magnus Hoff
    I have a headless machine connected to my sound system, and I am using it to run a music playing daemon that I control over the network. (Among other things) However, I can't seem to be able to have sound come out of my speakers without running X. I am running pulse audio in a system wide instance and my daemon is not running within X. Nevertheless, when my daemon is playing music without me hearing it, I can fix it by running startx in an unrelated session. After X starts, I can hear the sound. The sound disappears again if I kill the X server. Interestingly/annoyingly, the sound also stops after X has been running for a few minutes. This could possibly be because of a screen saver of some sort, but I haven't been able to verify or falsify this theory. So my current workaround is to ssh into the box whenever I want music and startx, and restart it every fifteen minutes or so. I'd like to do better. I have been able to verify the following: Adjustments in alsamixer have no effect on this problem. The relevant output channel is never muted In alsamixer, I can see no difference between when the sound is working and when it isn't Nothing is muted in pactl list There is no difference in the output from pactl list between before starting X and after it's started. (Except the identifier of the pactl instance connected to pulse, which is different each time you run pactl) The user running the music daemon is a member of the groups audio, pulse and pulse-access The music daemon program does not report any error messages and acts as if it is playing the music like it should Some form of dbus daemon is running. ps aux|grep dbus reports dbus-daemon --system --fork --activation=upstart before and after I have started X Some details about my hardware: Motherboard: http://www.asus.com/Motherboards/AT5IONTI_DELUXE/ Sound chip: Nvidia GPU 0b HDMI/DP (from alsamixer) Using HDMI for output (Machine also has an Intel Realtek ALC887 that I am not using) Output of lsmod: Module Size Used by deflate 12617 0 zlib_deflate 27139 1 deflate ctr 13201 0 twofish_generic 16635 0 twofish_x86_64_3way 25287 0 twofish_x86_64 12907 1 twofish_x86_64_3way twofish_common 20919 3 twofish_generic,twofish_x86_64_3way,twofish_x86_64 camellia 29348 0 serpent 29125 0 blowfish_generic 12530 0 blowfish_x86_64 21466 0 blowfish_common 16739 2 blowfish_generic,blowfish_x86_64 cast5 25112 0 des_generic 21415 0 xcbc 12815 0 rmd160 16744 0 bnep 18281 2 rfcomm 47604 12 sha512_generic 12796 0 crypto_null 12918 0 parport_pc 32866 0 af_key 36389 0 ppdev 17113 0 binfmt_misc 17540 1 nfsd 281980 2 ext2 73795 1 nfs 436929 1 lockd 90326 2 nfsd,nfs fscache 61529 1 nfs auth_rpcgss 53380 2 nfsd,nfs nfs_acl 12883 2 nfsd,nfs sunrpc 255224 16 nfsd,nfs,lockd,auth_rpcgss,nfs_acl btusb 18332 2 vesafb 13844 2 pl2303 17957 1 ath3k 12961 0 bluetooth 180153 24 bnep,rfcomm,btusb,ath3k snd_hda_codec_hdmi 32474 4 nvidia 11308613 0 ftdi_sio 40679 1 usbserial 47113 6 pl2303,ftdi_sio psmouse 97485 0 snd_hda_codec_realtek 224173 1 snd_hda_intel 33719 5 snd_hda_codec 127706 3 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel serio_raw 13211 0 snd_seq_midi 13324 0 snd_hwdep 17764 1 snd_hda_codec snd_pcm 97275 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_rawmidi 30748 1 snd_seq_midi snd_seq_midi_event 14899 1 snd_seq_midi snd_seq 61929 2 snd_seq_midi,snd_seq_midi_event snd_timer 29990 2 snd_pcm,snd_seq snd_seq_device 14540 3 snd_seq_midi,snd_rawmidi,snd_seq snd 79041 20 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device asus_atk0110 18078 0 mac_hid 13253 0 jc42 13948 0 soundcore 15091 1 snd snd_page_alloc 18529 2 snd_hda_intel,snd_pcm coretemp 13554 0 i2c_i801 17570 0 lp 17799 0 parport 46562 3 parport_pc,ppdev,lp r8169 62154 0 Any ideas? What does X do that's so important?

    Read the article

  • Going by the eBook

    - by Tony Davis
    The book and magazine publishing world is rapidly going digital, and the industry is faced with making drastic changes to their ways of doing business. The sudden take-up of digital readers by the book-buying public has surprised even the most technological-savvy of the industry. Printed books just aren't selling like they did. In contrast, eBooks are doing well. The ePub file format is the standard around which all publishers are converging. ePub is a standard for formatting book content, so that it can be reflowed for various devices, with their widely differing screen-sizes, and can be read offline. If you unzip an ePub file, you'll find familiar formats such as XML, XHTML and CSS. This is both a blessing and a curse. Whilst it is good to be able to use familiar technologies that have been developed to a level of considerable sophistication, it doesn't get us all the way to producing a viable publication. XHTML is a page-description language, not a book-description language, as we soon found out during our initial experiments, when trying to specify headers, footers, indexes and chaptering. As a result, it is difficult to predict how any particular eBook application will decide to render a book. There isn't even a consensus as to how the cover image is specified. All of this is awkward for the publisher. Each book must be created and revised in a form from which can be generated a whole range of 'printed media', from print books, to Mobi for kindles, ePub for most Tablets and SmartPhones, HTML for excerpted chapters on websites, and a plethora of other formats for other eBook readers, each with its own idiosyncrasies. In theory, if we can get our content into a clean, semantic XML form, such as DOCBOOKS, we can, from there, after every revision, perform a series of relatively simple XSLT transformations to output anything from a HTML article, to an ePub file for reading on an iPad, to an ICML file (an XML-based file format supported by the InDesign tool), ready for print publication. As always, however, the task looks bigger the closer you get to the detail. On the way to the utopian world of an XML-based book format that encompasses all the diverse requirements of the different publication media, ePub looks like a reasonable format to adopt. Its forthcoming support for HTML 5 and CSS 3, with ePub 3.0, means that features, such as widow-and-orphan controls, multi-column flow and multi-media graphics can be incorporated into eBooks. This starts to make it possible to build an "app-like" experience into the eBook and to free publishers to think of putting context before container; to think of what content is required, be it graphical, textual or audio, from the point of view of the user, rather than what's possible in a given, traditional book "Container". In the meantime, there is a gap between what publishers require and what current technology can provide and, of course building this app-like experience is far from plain sailing. Real portability between devices is still a big challenge, and achieving the sort of wizardry seen in the likes of Theodore Grey's "Elements" eBook will require some serious device-specific programming skills. Cheers, Tony.

    Read the article

  • Problems with moving 2D circle/box collision detection

    - by dario3004
    This is my first game ever and I'm a newbie in computer physics. I've got this code for the collision detection and it works fine for BOTTOM and TOP collision.It miss the collision detection with the paddle's edge and angles so I've (roughly) tried to implement it. Main method that is called for bouncing, it checks if it bounce with wall, or with top (+ right/left side) or with bottom (+ right/left side): protected void handleBounces(float px, float py) { handleWallBounce(px, py); if(mBall.y < getHeight()/4){ if (handleRedFastBounce(mRed, px, py)) return; if (handleRightSideBounce(mRed,px,py)) return; if (handleLeftSideBounce(mRed,px,py)) return; } if(mBall.y > getHeight()/4 * 3){ if (handleBlueFastBounce(mBlue, px, py)) return; if (handleRightSideBounce(mBlue,px,py)) return; if (handleLeftSideBounce(mBlue,px,py)) return; } } This is the code for the BOTTOM bounce: protected boolean handleRedFastBounce(Paddle paddle, float px, float py) { if (mBall.goingUp() == false) return false; // next position tx = mBall.x; ty = mBall.y - mBall.getRadius(); // actual position ptx = px; pty = py - mBall.getRadius(); dyp = ty - paddle.getBottom(); xc = tx + (tx - ptx) * dyp / (ty - pty); if ((ty < paddle.getBottom() && pty > paddle.getBottom() && xc > paddle.getLeft() && xc < paddle.getRight())) { mBall.x = xc; mBall.y = paddle.getBottom() + mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } else return false; } As long as I understood it should be something like this: So I tried to make the "left side" and "right side" bounce method: protected boolean handleLeftSideBounce(Paddle paddle, float px, float py){ // next position tx = mBall.x + mBall.getRadius(); ty = mBall.y; // actual position ptx = px + mBall.getRadius(); pty = py; dyp = tx - paddle.getLeft(); yc = ty + (pty - ty) * dyp / (ptx - tx); if (ptx < paddle.getLeft() && tx > paddle.getLeft()){ System.out.println("left side bounce1"); System.out.println("yc: " + yc + "top: " + paddle.getTop() + " bottom: " + paddle.getBottom()); if (yc > paddle.getTop() && yc < paddle.getBottom()){ System.out.println("left side bounce2"); mBall.y = yc; mBall.x = paddle.getLeft() - mBall.getRadius(); mBall.bouncePaddle(paddle); playSound(mPaddleSFX); increaseDifficulty(); return true; } } return false; } I think I'm quite near to the solution but I'm having big troubles with the new "yc" formula. I tried so many versions of it but since I don't know the theory behind it I can't adjust for the Y axis. Since the Y axis is inverted I even tried this: yc = ty - (pty - ty) * dyp / (ptx - tx); I tried Googling it but I can't seem to find a solution for it. Also this method fails when ball touches the angle and I don't think is a nice way because it just test "one" point of the ball and probably there will be many cases in which the ball won't bounce.

    Read the article

  • .NET Code Evolution

    - by Alois Kraus
    Originally posted on: http://geekswithblogs.net/akraus1/archive/2013/07/24/153504.aspxAt my day job I do look at a lot of code written by other people. Most of the code is quite good and some is even a masterpiece. And there is also code which makes you think WTF… oh it was written by me. Hm not so bad after all. There are many excuses reasons for bad code. Most often it is time pressure followed by not enough ambition (who cares) or insufficient training. Normally I do care about code quality quite a lot which makes me a (perceived) slow worker who does write many tests and refines the code quite a lot because of the design deficiencies. Most of the deficiencies I do find by putting my design under stress while checking for invariants. It does also help a lot to step into the code with a debugger (sometimes also Windbg). I do this much more often when my tests are red. That way I do get a much better understanding what my code really does and not what I think it should be doing. This time I do want to show you how code can evolve over the years with different .NET Framework versions. Once there was  time where .NET 1.1 was new and many C++ programmers did switch over to get rid of not initialized pointers and memory leaks. There were also nice new data structures available such as the Hashtable which is fast lookup table with O(1) time complexity. All was good and much code was written since then. At 2005 a new version of the .NET Framework did arrive which did bring many new things like generics and new data structures. The “old” fashioned way of Hashtable were coming to an end and everyone used the new Dictionary<xx,xx> type instead which was type safe and faster because the object to type conversion (aka boxing) was no longer necessary. I think 95% of all Hashtables and dictionaries use string as key. Often it is convenient to ignore casing to make it easy to look up values which the user did enter. An often followed route is to convert the string to upper case before putting it into the Hashtable. Hashtable Table = new Hashtable(); void Add(string key, string value) { Table.Add(key.ToUpper(), value); } This is valid and working code but it has problems. First we can pass to the Hashtable a custom IEqualityComparer to do the string matching case insensitive. Second we can switch over to the now also old Dictionary type to become a little faster and we can keep the the original keys (not upper cased) in the dictionary. Dictionary<string, string> DictTable = new Dictionary<string, string>(StringComparer.OrdinalIgnoreCase); void AddDict(string key, string value) { DictTable.Add(key, value); } Many people do not user the other ctors of Dictionary because they do shy away from the overhead of writing their own comparer. They do not know that .NET has for strings already predefined comparers at hand which you can directly use. Today in the many core area we do use threads all over the place. Sometimes things break in subtle ways but most of the time it is sufficient to place a lock around the offender. Threading has become so mainstream that it may sound weird that in the year 2000 some guy got a huge incentive for the idea to reduce the time to process calibration data from 12 hours to 6 hours by using two threads on a dual core machine. Threading does make it easy to become faster at the expense of correctness. Correct and scalable multithreading can be arbitrarily hard to achieve depending on the problem you are trying to solve. Lets suppose we want to process millions of items with two threads and count the processed items processed by all threads. A typical beginners code might look like this: int Counter; void IJustLearnedToUseThreads() { var t1 = new Thread(ThreadWorkMethod); t1.Start(); var t2 = new Thread(ThreadWorkMethod); t2.Start(); t1.Join(); t2.Join(); if (Counter != 2 * Increments) throw new Exception("Hmm " + Counter + " != " + 2 * Increments); } const int Increments = 10 * 1000 * 1000; void ThreadWorkMethod() { for (int i = 0; i < Increments; i++) { Counter++; } } It does throw an exception with the message e.g. “Hmm 10.222.287 != 20.000.000” and does never finish. The code does fail because the assumption that Counter++ is an atomic operation is wrong. The ++ operator is just a shortcut for Counter = Counter + 1 This does involve reading the counter from a memory location into the CPU, incrementing value on the CPU and writing the new value back to the memory location. When we do look at the generated assembly code we will see only inc dword ptr [ecx+10h] which is only one instruction. Yes it is one instruction but it is not atomic. All modern CPUs have several layers of caches (L1,L2,L3) which try to hide the fact how slow actual main memory accesses are. Since cache is just another word for redundant copy it can happen that one CPU does read a value from main memory into the cache, modifies it and write it back to the main memory. The problem is that at least the L1 cache is not shared between CPUs so it can happen that one CPU does make changes to values which did change in meantime in the main memory. From the exception you can see we did increment the value 20 million times but half of the changes were lost because we did overwrite the already changed value from the other thread. This is a very common case and people do learn to protect their  data with proper locking.   void Intermediate() { var time = Stopwatch.StartNew(); Action acc = ThreadWorkMethod_Intermediate; var ar1 = acc.BeginInvoke(null, null); var ar2 = acc.BeginInvoke(null, null); ar1.AsyncWaitHandle.WaitOne(); ar2.AsyncWaitHandle.WaitOne(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Intermediate did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Intermediate() { for (int i = 0; i < Increments; i++) { lock (this) { Counter++; } } } This is better and does use the .NET Threadpool to get rid of manual thread management. It does give the expected result but it can result in deadlocks because you do lock on this. This is in general a bad idea since it can lead to deadlocks when other threads use your class instance as lock object. It is therefore recommended to create a private object as lock object to ensure that nobody else can lock your lock object. When you read more about threading you will read about lock free algorithms. They are nice and can improve performance quite a lot but you need to pay close attention to the CLR memory model. It does make quite weak guarantees in general but it can still work because your CPU architecture does give you more invariants than the CLR memory model. For a simple counter there is an easy lock free alternative present with the Interlocked class in .NET. As a general rule you should not try to write lock free algos since most likely you will fail to get it right on all CPU architectures. void Experienced() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Experienced); t1.Wait(); t2.Wait(); if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Experienced did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Experienced() { for (int i = 0; i < Increments; i++) { Interlocked.Increment(ref Counter); } } Since time does move forward we do not use threads explicitly anymore but the much nicer Task abstraction which was introduced with .NET 4 at 2010. It is educational to look at the generated assembly code. The Interlocked.Increment method must be called which does wondrous things right? Lets see: lock inc dword ptr [eax] The first thing to note that there is no method call at all. Why? Because the JIT compiler does know very well about CPU intrinsic functions. Atomic operations which do lock the memory bus to prevent other processors to read stale values are such things. Second: This is the same increment call prefixed with a lock instruction. The only reason for the existence of the Interlocked class is that the JIT compiler can compile it to the matching CPU intrinsic functions which can not only increment by one but can also do an add, exchange and a combined compare and exchange operation. But be warned that the correct usage of its methods can be tricky. If you try to be clever and look a the generated IL code and try to reason about its efficiency you will fail. Only the generated machine code counts. Is this the best code we can write? Perhaps. It is nice and clean. But can we make it any faster? Lets see how good we are doing currently. Level Time in s IJustLearnedToUseThreads Flawed Code Intermediate 1,5 (lock) Experienced 0,3 (Interlocked.Increment) Master 0,1 (1,0 for int[2]) That lock free thing is really a nice thing. But if you read more about CPU cache, cache coherency, false sharing you can do even better. int[] Counters = new int[12]; // Cache line size is 64 bytes on my machine with an 8 way associative cache try for yourself e.g. 64 on more modern CPUs void Master() { var time = Stopwatch.StartNew(); Task t1 = Task.Factory.StartNew(ThreadWorkMethod_Master, 0); Task t2 = Task.Factory.StartNew(ThreadWorkMethod_Master, Counters.Length - 1); t1.Wait(); t2.Wait(); Counter = Counters[0] + Counters[Counters.Length - 1]; if (Counter != 2 * Increments) throw new Exception(String.Format("Hmm {0:N0} != {1:N0}", Counter, 2 * Increments)); Console.WriteLine("Master did take: {0:F1}s", time.Elapsed.TotalSeconds); } void ThreadWorkMethod_Master(object number) { int index = (int) number; for (int i = 0; i < Increments; i++) { Counters[index]++; } } The key insight here is to use for each core its own value. But if you simply use simply an integer array of two items, one for each core and add the items at the end you will be much slower than the lock free version (factor 3). Each CPU core has its own cache line size which is something in the range of 16-256 bytes. When you do access a value from one location the CPU does not only fetch one value from main memory but a complete cache line (e.g. 16 bytes). This means that you do not pay for the next 15 bytes when you access them. This can lead to dramatic performance improvements and non obvious code which is faster although it does have many more memory reads than another algorithm. So what have we done here? We have started with correct code but it was lacking knowledge how to use the .NET Base Class Libraries optimally. Then we did try to get fancy and used threads for the first time and failed. Our next try was better but it still had non obvious issues (lock object exposed to the outside). Knowledge has increased further and we have found a lock free version of our counter which is a nice and clean way which is a perfectly valid solution. The last example is only here to show you how you can get most out of threading by paying close attention to your used data structures and CPU cache coherency. Although we are working in a virtual execution environment in a high level language with automatic memory management it does pay off to know the details down to the assembly level. Only if you continue to learn and to dig deeper you can come up with solutions no one else was even considering. I have studied particle physics which does help at the digging deeper part. Have you ever tried to solve Quantum Chromodynamics equations? Compared to that the rest must be easy ;-). Although I am no longer working in the Science field I take pride in discovering non obvious things. This can be a very hard to find bug or a new way to restructure data to make something 10 times faster. Now I need to get some sleep ….

    Read the article

  • Learn Many Languages

    - by Jeff Foster
    My previous blog, Deliberate Practice, discussed the need for developers to “sharpen their pencil” continually, by setting aside time to learn how to tackle problems in different ways. However, the Sapir-Whorf hypothesis, a contested and somewhat-controversial concept from language theory, seems to hold reasonably true when applied to programming languages. It states that: “The structure of a language affects the ways in which its speakers conceptualize their world.” If you’re constrained by a single programming language, the one that dominates your day job, then you only have the tools of that language at your disposal to think about and solve a problem. For example, if you’ve only ever worked with Java, you would never think of passing a function to a method. A good developer needs to learn many languages. You may never deploy them in production, you may never ship code with them, but by learning a new language, you’ll have new ideas that will transfer to your current “day-job” language. With the abundant choices in programming languages, how does one choose which to learn? Alan Perlis sums it up best. “A language that doesn‘t affect the way you think about programming is not worth knowing“ With that in mind, here’s a selection of languages that I think are worth learning and that have certainly changed the way I think about tackling programming problems. Clojure Clojure is a Lisp-based language running on the Java Virtual Machine. The unique property of Lisp is homoiconicity, which means that a Lisp program is a Lisp data structure, and vice-versa. Since we can treat Lisp programs as Lisp data structures, we can write our code generation in the same style as our code. This gives Lisp a uniquely powerful macro system, and makes it ideal for implementing domain specific languages. Clojure also makes software transactional memory a first-class citizen, giving us a new approach to concurrency and dealing with the problems of shared state. Haskell Haskell is a strongly typed, functional programming language. Haskell’s type system is far richer than C# or Java, and allows us to push more of our application logic to compile-time safety. If it compiles, it usually works! Haskell is also a lazy language – we can work with infinite data structures. For example, in a board game we can generate the complete game tree, even if there are billions of possibilities, because the values are computed only as they are needed. Erlang Erlang is a functional language with a strong emphasis on reliability. Erlang’s approach to concurrency uses message passing instead of shared variables, with strong support from both the language itself and the virtual machine. Processes are extremely lightweight, and garbage collection doesn’t require all processes to be paused at the same time, making it feasible for a single program to use millions of processes at once, all without the mental overhead of managing shared state. The Benefits of Multilingualism By studying new languages, even if you won’t ever get the chance to use them in production, you will find yourself open to new ideas and ways of coding in your main language. For example, studying Haskell has taught me that you can do so much more with types and has changed my programming style in C#. A type represents some state a program should have, and a type should not be able to represent an invalid state. I often find myself refactoring methods like this… void SomeMethod(bool doThis, bool doThat) { if (!(doThis ^ doThat)) throw new ArgumentException(“At least one arg should be true”); if (doThis) DoThis(); if (doThat) DoThat(); } …into a type-based solution, like this: enum Action { DoThis, DoThat, Both }; void SomeMethod(Action action) { if (action == Action.DoThis || action == Action.Both) DoThis(); if (action == Action.DoThat || action == Action.Both) DoThat(); } At this point, I’ve removed the runtime exception in favor of a compile-time check. This is a trivial example, but is just one of many ideas that I’ve taken from one language and implemented in another.

    Read the article

  • PowerShell and SMO – be careful how you iterate

    - by Fatherjack
    I’ve yet to have a totally smooth experience with PowerShell and it was late on Friday when I crashed into this problem. I haven’t investigated if this is a generally well understood circumstance and if it is then I apologise for repeating everything. Scenario: I wanted to scan a number of server for many properties, including existing logins and to identify which accounts are bestowed with sysadmin privileges. A great task to pass to PowerShell, so with a heavy heart I started up PowerShellISE and started typing. The script doesn’t come easily to me but I follow the logic of SMO and the properties and methods available with the language so it seemed something I should be able to master. Version #1 of my script. And the results it returns when executed against my home laptop server. These results looked good and for a long time I was concerned with other parts of the script, for all intents and purposes quite happy that this was an accurate assessment of the server. Let’s just review my logic for each step of the code at the top. Lines 1 to 7 just set up our variables and write out the header message Line 8 our first loop, to go through each login on the server Line 10 an inner loop that will assess each role name that each login has been assigned Line 11 a test to see if each role has the name ‘sysadmin’ Line 13 write out the login name with a bright format as it is a sysadmin login Line 17 write out the login name with no formatting It is quite possible that here someone with more PowerShell experience than me will be shouting at their screen pointing at the error I made but to me this made total sense. Until I altered the code, I altered lines 6 and 7 of code above to be: $c = $Svr.Logins.Count write-host “There are $c Logins on the server” This changed my output to look like this: This started alarm bells ringing – there are clearly not 13 logins listed So, let’s see where things are going wrong, edit the script so it looks like this. I’ve highlighted the changes to make Running this code shows me these results Our $n variable should count up by one for each login returned and We are clearly missing some logins. I referenced this list back to Management Studio for my server and see the Logins as below, where there are clearly 13 logins. We see a Login called Annette in SSMS but not in the script results so I opened that up and looked at its properties and it’s server roles in particular. The account has only public access to the server. Inspection of the other logins that the PowerShell script misses out show they too are only members of the public role. Right now I can’t work out whether there is a good reason for this and if it should be expected behaviour or not. Please spend a few minutes to leave a comment if you have an opinion or theory for this. How to get the full list of logins. Clearly I needed to get a full list of the logins so set about reviewing my code to see if there was a better way to iterate through the roles for each login. This is the code that I came up with and I think it is doing everything that I need it to. It gives me the expected results like this: So it seems that the ListMembers() method is the trouble maker in my first versions of the code. I would have expected that ListMembers should return Logins that are only members of the public role, certainly Technet makes no reference to it being left out in it’s Login.ListMembers details. Suffice to say, it’s a lesson learned and I will approach using it with caution in future circumstances.

    Read the article

  • Blind As a Bat in Multi-Monitor Hell &ndash; Free Program Inside!

    - by ToStringTheory
    If you know me personally, then you probably know that I am going blind thanks to a rare genetic eye disease.  My eye disease has already been a huge detriment to my eyesight.  One of the big things to suffer is my ability to see small things moving fast right in front of me.  On a multi-monitor setup, this makes finding the cursor absolute hell. The Problem I’ll keep this short, as I’ve basically already told you what the problem is.  On my three monitor development computer, I am constantly losing the mouse during the day.  I had used the Microsoft accessibility mousefinder (press CTRL, and it pings around the mouse).  The problem with this is, there is only an effect around 50-100 PX around the mouse, and it is a very light gray, almost unnoticeable.. For someone like me, if I am not looking at the monitor when I click the CTRL button, I have to click it multiple times and dart my eyes back and forth in a futile attempt to catch a glimpse of the action…  I had tried other cursor finders, but none I liked… The Solution So what’s a guy to do when he doesn’t like his options?  MAKE A NEW OPTION…  What else should we as developers do, am I right?  So, I went ahead and made a mousefinder of my own, with 6 separate settings to change the effect.  I am releasing it here for anyone else that may also have problems finding their mouse at times. Some of its features include: Multiple options to change to achieve the exact effect you want. If your mouse moves while it is honing in, it will hone in on its current position. Many times, I would press the button and move my mouse at the same time, and many times, the mouse happened to be at a screen edge, so I would miss it. This program will restart its animation on a new screen if the mouse changes its screen while playing. Tested on Windows 7 x64 Stylish color changing from green to red. Deployed as a ClickOnce, so easy to remove if you don't like it. Press Right CTRL to trigger effect Application lives in notification area so that you can easily reach configuration or close it. To get it to run on startup, copy its application shortcut from its startmenu directory to the “Startup” folder in your startmenu. Conclusion I understand if you don’t download this…  You don’t know me and I don’t know you.  I can only say that I have honestly NOT added any virus’ or malware to the package. Yeah, I know it’s weird Download: ‘ToString(theory) Mousefinder.zip’ CRC32: EEBCE300 MD5: 0394DA581BE6F3371B5BA11A8B24BC91 SHA-1: 2080C4930A2E7D98B81787BB5E19BB24E118991C Finally, if you do use this application - please leave a comment, or email me and tell me what you think of it. Encounter a bug or hashes no longer match? I want to know that too! <warning type=”BadPun”>Now, stop messing around and start mousing around!</warning>

    Read the article

  • What Counts For a DBA – Depth

    - by Louis Davidson
    SQL Server offers very simple interfaces to many of its features. Most people could open up SSMS, connect to a server, write a simple query and see the results. Even several of the core DBA tasks are deceptively straightforward. It doesn’t take a rocket scientist to perform a basic database backup or run a trace (even using the newfangled Extended Events!). However, appearances can be deceptive, and often times it is really important that a DBA understands not just the basics of how to perform a task, but why we do a task, and how that task works. As an analogy, consider a child walking into a darkened room. Most would know that they need to turn on the light, and how to do it, so they flick the switch. But what happens if light fails to shine forth. Most would immediately tell you that you need to consider changing the light bulb. So you hop in the car and take them to the local home store and instruct them to buy a replacement. Confronted with a 40 foot display of light bulbs, how will they decide which of the hundreds of types of bulbs, of different types, fittings, shapes, colors, power and efficiency ratings, is the right choice? Obviously the main lesson the child is going to learn this day is how to use their cell phone as a flashlight so they don’t have to ask for help the next time. Likewise, when the metaphorical toddlers who use your database server have issues, they will instinctively know something is wrong, and may even have some idea what caused it, but will have no depth of knowledge to figure out the right solution. That is where the DBA comes in and attempts to save the day. However, when one looks beneath the shiny UI, SQL Server has its own “40 foot display of light bulbs”, in the form of the tremendous number of tools and the often-bewildering amount of information they can present to the DBA, to help us find issues. Unfortunately, resorting to guesswork, to trying different “bulbs” over and over, hoping to stumble on the answer. This is where the right depth of knowledge goes a long way. If we need to write a SELECT statement, then knowing the syntax and where to find the data is not enough. Knowledge of indexes and query plans is essential. Without it, we might hit on a query that “works”, but we are basically still a user, not a programmer, because we have no real control over our platform. Is that level of knowledge deep enough? Probably not, since knowledge of the underlying metadata and structures would be very useful in helping us make sense of any query plan. Understanding the structure of an index makes the “key lookup” operator not sound like what you do when someone tapes your car key to the ceiling. So is even this level of understanding deep enough? Do we need to understand the memory architecture used to process the query? It might be a comforting level of knowledge, and will doubtless come in handy at some point, but is not strictly necessary in most cases. Beyond that lies (more or less) full knowledge of SQL language and the intricacies of every step the SQL Server engine takes to process our query. My personal theory is that, as a professional, our knowledge of a given task should extend, at a minimum, one level deeper than is strictly necessary to perform the task. Anything deeper can be left to the ridiculously smart, or obsessive, or both. As an example. tasked with storing an integer value between 0 and 99999999, it’s essential that I know that choosing an Integer over Decimal(8,0) will likely offer performance benefits. It is then useful that I also understand the value of adding a CHECK constraint, to make sure the values are valid to the desired range; and comforting that I know a little about the underlying processors, registers and computer math. Anything further, I leave to the likes of Joe Chang, whose recent blog post on the topic offers depth by the bucketful!  

    Read the article

  • What Counts for a DBA: Skill

    - by drsql
    “Practice makes perfect:” right? Well, not exactly. The reality of it all is that this saying is an untrustworthy aphorism. I discovered this in my “younger” days when I was a passionate tennis player, practicing and playing 20+ hours a week. No matter what my passion level was, without some serious coaching (and perhaps a change in dietary habits), my skill level was never going to rise to a level where I could make any money at the sport that involved something other than selling tennis balls at a sporting goods store. My game may have improved with all that practice but I had too many bad practices to overcome. Practice by itself merely reinforces what we know and what we can figure out naturally. The truth is actually closer to the expression used by Vince Lombardi: “Perfect practice makes perfect.” So how do you get to become skilled as a DBA if practice alone isn’t sufficient? Hit the Internet and start searching for SQL training and you can find 100 different sites. There are also hundreds of blogs, magazines, books, conferences both onsite and virtual. But then how do you know who is good? Unfortunately often the worst guide can be to find out the experience level of the writer. Some of the best DBAs are frighteningly young, and some got their start back when databases were stored on stacks of paper with little holes in it. As a programmer, is it really so hard to understand normalization? Set based theory? Query optimization? Indexing and performance tuning? The biggest barrier often is previous knowledge, particularly programming skills cultivated before you get started with SQL. In the world of technology, it is pretty rare that a fresh programmer will gravitate to database programming. Database programming is very unsexy work, because without a UI all you have are a bunch of text strings that you could never impress anyone with. Newbies spend most of their time building UIs or apps with procedural code in C# or VB scoring obvious interesting wins. Making matters worse is that SQL programming requires mastery of a much different toolset than most any mainstream programming skill. Instead of controlling everything yourself, most of the really difficult work is done by the internals of the engine (written by other non-relational programmers…we just can’t get away from them.) So is there a golden road to achieving a high skill level? Sadly, with tennis, I am pretty sure I’ll never discover it. However, with programming it seems to boil down to practice in applying the appropriate techniques for whatever type of programming you are doing. Can a C# programmer build a great database? As long as they don’t treat SQL like C#, absolutely. Same goes for a DBA writing C# code. None of this stuff is rocket science, as long as you learn to understand that different types of programming require different skill sets and you as a programmer must recognize the difference between one of the procedural languages and SQL and treat them differently. Skill comes from practicing doing things the right way and making “right” a habit.

    Read the article

  • WebLogic stuck thread protection

    - by doublep
    By default WebLogic kills stuck threads after 15 min (600 s), this is controlled by StuckThreadMaxTime parameter. However, I cannot find more details on how exactly "stuckness" is defined. Specifically: What is the point at which 15 min countdown begins. Request processing start? Last wait()-like method? Something else? Does this apply only to request-processing threads or to all threads? I.e. can a request-processing thread "escape" this protection by spawning a worker thread for a long task? Especially, can it delegate response writing to such a worker without 15 min countdown? My usecase is download of huge files through a permission system. Since a user needs to be authenticated and have permissions to view a file, I cannot (or at least don't know how) leave this to a simple HTTP server, e.g. Apache. And because files can be huge, download could (at least in theory) take more than 15 minutes.

    Read the article

  • C++ : C++ Primer (Stanley Lipmann) or The C++ programming language (special edition)

    - by Kim
    I have a Computer Science degree (long2 time ago) .. I do know Java OOP but i am now trying to pick up C++. I do have C and of course data structure using C or pascal. I have started reading Bjarne Stroustrup book (The C++ Programming Language - Special Edition) but find it extremely difficult esp. some section which i don't have exposure such as Recursive Descent Parser (chapter 6). In terms of the language i don't foresee i have problem but i have problem as mentioned cos' those topic are usually covered in a Master Degree program such as construction of compiler. I just bought a book called C++ primer (Stanley Lipmann) which i heard it is a very good book for C++. Only setback is it's of course no match with the amount of information from the original C++ creator. Please advice. Thanks.

    Read the article

  • Visual Studio 2008 skipping projects when building a solution

    - by pragadheesh
    Hi, I recently installed VS2008 in Win2k8R2 machine and opened a VS2005 project(C++). After successful conversion to VS2008, i tried building the project in Debug x64 mode. But the project is getting skipped. I tried Clean as well as Rebuild, and it is getting skipped for those as well. I'm able to build in Debug win32 mode. But i need to build in x64 mode. Also the Build option is ticked in Build-Configuration Manager under x64. I have installed the x64 bit compiler too. Also I'm not able to see the Project properties for x64. How can i solve this problem and build the project in VS 2008?

    Read the article

  • WCF ChannelFactory caching

    - by Myles J
    I've just read this great article on WCF ChannelFactory caching by Wenlong Dong. My question is simply how can you actually prove that the ChannelFactory is in fact being cached between calls? I've followed the rules regarding the ClientBase’s constructors. We are using the following overloaded constructor on our object that inherits from ClientBase: ClientBase(string endpointConfigurationName, EndpointAddress remoteAddress); In the article mentioned above it is stated that: For these constructors, all arguments (including default ones) are in the following list: · InstanceContext callbackInstance · string endpointConfigurationName · EndpointAddress remoteAddress As long as these three arguments are the same when ClientBase is constructed, we can safely assume that the same ChannelFactory can be used. Fortunately, String and EndpointAddress types are immutable, i.e., we can make simple comparison to determine whether two arguments are the same. For InstanceContext, we can use Object reference comparison. The type EndpointTrait is thus used as the key of the MRU cache. To test the ChannelFactory cache theory we are checking the Hashcode in the ClientBase constructor e.g. var testHash = RuntimeHelpers.GetHashCode(base.ChannelFactory); The hash value is different between calls which makes us think that the ChannelFactory isn't actually cached. Any thoughts? Regards Myles

    Read the article

  • C# convert an IOrderedEnumerable<KeyValuePair<string, int>> into a Dictionary<string, int>

    - by Kache4
    I was following the answer to another question, and I got: // itemCounter is a Dictionary<string, int>, and I only want to keep // key/value pairs with the top maxAllowed values if (itemCounter.Count > maxAllowed) { IEnumerable<KeyValuePair<string, int>> sortedDict = from entry in itemCounter orderby entry.Value descending select entry; sortedDict = sortedDict.Take(maxAllowed); itemCounter = sortedDict.ToDictionary<string, int>(/* what do I do here? */); } Visual Studio's asking for a parameter Func<string, int> keySelector. I tried following a few semi-relevant examples I've found online and put in k => k.Key, but that gives a compiler error: 'System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<string,int>>' does not contain a definition for 'ToDictionary' and the best extension method overload 'System.Linq.Enumerable.ToDictionary<TSource,TKey>(System.Collections.Generic.IEnumerable<TSource>, System.Func<TSource,TKey>)' has some invalid arguments

    Read the article

  • TVirtualStringTree compatibility between Delphi 7 and Delphi 2010 - 'Parameter lists differ'

    - by Brian Frost
    Hi, I've made a form containing a TVirtualStringTree that works in Delphi 7 and Delphi 2010. I notice that as I move between the two platforms I get the message '...parameter list differ..' on the tree events and that the string type is changing bewteen TWideString (D7) and string (D2010). The only trick I've found to work to suppress this error is to use compiler directives as follows: {$IFDEF TargetDelphi7} procedure VirtualStringTree1GetText(Sender: TBaseVirtualTree; Node: PVirtualNode; Column: TColumnIndex; TextType: TVSTTextType; var CellText: WideString); {$ELSE} procedure VirtualStringTree1GetText(Sender: TBaseVirtualTree; Node: PVirtualNode; Column: TColumnIndex; TextType: TVSTTextType; var CellText: string); {$ENDIF} and to repeat this where the events are implemented. Am I missing a simple solution? Thanks.

    Read the article

  • Add an objective @property attribute in objective-c

    - by morticae
    Does anyone know of a way to add additional attribute types to the @property keyword without modifying the compiler? Or can anyone think of another way to genericize getter/setter creation? Basically, I have a lot of cases in a recent project where it's handy for objects to lazily instantiate their array properties. This is because we have "event" objects that can have a wide variety of collections as properties. Subclassing for particular events is undesirable because many properties are shared, and it would become a usability nightmare. For example, if I had an object with an array of songs, I'd write a getter like the following: - (NSMutableArray *)songs { if (!songs) { songs = [[NSMutableArray alloc] init]; } return songs; } Rather than writing dozens of these getters, it would be really nice to get the behavior via... @property (nonatomic, retain, lazyGetter) NSMutableArray *songs; Maybe some fancy tricks via #defines or something? Other ideas?

    Read the article

  • Java POI 3.6 XWPF usage guidelines (reading content of docx file)

    - by Mr CooL
    I assume the following objects should be used to read contents of DOCX file: XWPFDocument XWPFWordExtractor However, somewhere the compiler warns me from not including the correct libraries needed in classpath. I think I'm kinda lost for not knowing which jar file is the right one to include for this since there are so many jar files (POI libraries). My project so far involve in reading doc and docx files as part of the project. I've managed to read the contents of doc file. However, for docx file, I'm still having problem with that. Can anyone show the guidelines in terms of the codes and libraries needed (jar files) to read the content of docx file? I'm trying to limit the libraries need to be added on into project since I need to read doc and docx only. The following works for doc: fs = new POIFSFileSystem(new FileInputStream(fileName)); HWPFDocument doc = new HWPFDocument(fs); WordExtractor we = new WordExtractor(doc); String[] p = we.getParagraphText();

    Read the article

  • Compile Delphi component package (bpl) for different Delphi versions

    - by FractalizeR
    Hello. The situation is the following. Typically I use RAD Studio 2010 for Delphi development. I have some components I would like to redistribute in binary form (*.bpl without source). But I would like people to be able to use them despite of their Delphi version. But, for example, dcu files can be used only by compiler version, which generated them. Almost the same situation is with bpl files as I know. Every bpl file will require corresponding VCLXX.bpl library depending on Delphi version. How do I make my bpls, compiled in 2010 to be able to be used in Delphi7, 2007 etc? Is the only solution to have ALL Delphi versions installed and compile bpl files separately in each?

    Read the article

  • iphone - creating a reference to a MPMoviePlayerController

    - by Mike
    At some point in my code I am creating a MPMoviePlayerController object and playing it. As I need to reference this object at some other methods in my code that runs asynchronously, I need to store a pointer to the movie object etc., so I can use that. Declaring MPMoviePlayerController * myMovie on the header file is out of question, because the compiler will give me an error saying "expected specifier-qualifier-list before 'MPMoviePlayerController'". If it was a view I could do something like [self.view viewWithTag:99]; to get the object, but the MPMoviePlayerController does not allow this. How can I obtain the movie object or store a reference to it, so I can call the object in other methods? thanks for any help.

    Read the article

  • Gomoku array-based AI-algorithm?

    - by Lasse V. Karlsen
    Way way back (think 20+ years) I encountered a Gomoku game source code in a magazine that I typed in for my computer and had a lot of fun with. The game was difficult to win against, but the core algorithm for the computer AI was really simply and didn't account for a lot of code. I wonder if anyone knows this algorithm and has some links to some source or theory about it. The things I remember was that it basically allocated an array that covered the entire board. Then, whenever I, or it, placed a piece, it would add a number of weights to all locations on the board that the piece would possibly impact. For instance (note that the weights are definitely wrong as I don't remember those): 1 1 1 2 2 2 3 3 3 444 1234X4321 3 3 3 2 2 2 1 1 1 Then it simply scanned the array for an open location with the lowest or highest value. Things I'm fuzzy on: Perhaps it had two arrays, one for me and one for itself and there was a min/max weighting? There might've been more to the algorithm, but at its core it was basically an array and weighted numbers Does this ring a bell with anyone at all? Anyone got anything that would help?

    Read the article

  • Parser Error Message: Could not load type 'TestMvcApplication.MvcApplication'

    - by Riaan Engelbrecht
    I am getting the following error on one of our production servers. Not sure why it is working on the DEV server? Parser Error Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Parser Error Message: Could not load type 'TestMvcApplication.MvcApplication'. Source Error: Line 1: <%@ Application Codebehind="Global.asax.cs" Inherits="TestMvcApplication.MvcApplication" Language="C#" % Source File: /global.asax Line: 1 Not sure if anybody came across this error before and how it was solved, but I have reached the end. Any help would be appreciated. I also need to mention that this is the published code, so all is compiled. Can there be something wrong with my compiler settings?

    Read the article

  • How can I assert from Python C code?

    - by Joe
    I'm writing a Python class in C and I want to put assertions in my debug code. assert.h suits me fine. This only gets put in debug compiles so there's no chance of an assert failure impacting a user of the Python code*. I'm trying to divide my 'library' code (which should be separate to the code linked against Python) so I can use it from other C code. My Python methods are therefore thinnish wrappers around my pure-C code. So I can't do this in my 'library' code: if (black == white) { PyErr_SetString(PyExc_RuntimeError, "Remap failed"); } because this pollutes my pure-C code with Python. It's also far uglier than a simple assert(black != white); I believe that the Distutils compiler always sets NDEBUG, which means I can't use assert.h even in debug builds. Mac OS and Linux. Help! *one argument I've heard against asserting in C code called from Python.

    Read the article

< Previous Page | 139 140 141 142 143 144 145 146 147 148 149 150  | Next Page >