Search Results

Search found 19441 results on 778 pages for 'static libraries'.

Page 143/778 | < Previous Page | 139 140 141 142 143 144 145 146 147 148 149 150  | Next Page >

  • Generating CMakeLists.txt

    - by vanna
    I got a bunch of C++ sources files and headers. They may use external libraries such as Boost e.g. I am interested in the process of building binaries for Windows and *nix. Makefiles (*nix) and .vcproj (Windows) call compilers with some specifications such as the order of compilation, compilation options and stuff. CMakeLists.txt can be used by CMake to build either makefiles or .vcproj and use very helpful commands such as recursive search of files, automatic linkage with known libraries, installers, variables that can be used in source files... Is there any existing tool that would generate a CMakeLists.txt from specified options ? Options could be like : scan this folder and make a library out of it, then scan this other folder and make an executable and automatically link both with Boost as well along with a user friendly installer with generated INSTALL.txt and README.txt. Something very powerful like that.

    Read the article

  • Django template CSS/IMG is "off" in the URL

    - by erimar77
    I have /path/to/my/theme/static/css/frontend.css which is called by base.html <link rel="stylesheet" type="text/css" href="{{ STATIC_URL }}css/frontend.css" media="all" /> In which I've got a background for the header: #header-wrapper min-width: 960px; height: 150px; background: transparent url(img/header-bg.png) repeat-x center bottom; } The file is /path/to/my/theme/static/img I've run manage.py collectstatic to gather the files and almost everything looks correct except the link generated looks like: http://example.com/static/css/img/header-bg.png In which the image does not show, because the correct URL is: http://example.com/static/img/header-bg.png Where am I going wrong??

    Read the article

  • JUnit Theories: Why can't I use Lists (instead of arrays) as DataPoints?

    - by MatrixFrog
    I've started using the new(ish) JUnit Theories feature for parameterizing tests. If your Theory is set up to take, for example, an Integer argument, the Theories test runner picks up any Integers marked with @DataPoint: @DataPoint public static Integer number = 0; as well as any Integers in arrays: @DataPoints public static Integer[] numbers = {1, 2, 3}; or even methods that return arrays like: @DataPoints public static Integer[] moreNumbers() { return new Integer[] {4, 5, 6};}; but not in Lists. The following does not work: @DataPoints public static List<Integer> numberList = Arrays.asList(7, 8, 9); Am I doing something wrong, or do Lists really not work? Was it a conscious design choice not to allow the use Lists as data points, or is that just a feature that hasn't been implemented yet? Are there plans to implement it in a future version of JUnit?

    Read the article

  • Magic squares, recursive

    - by user310827
    Hi, my problem is, I'm trying to permute all posibilities for a 3x3 square and check if the combination is magic. I've added a tweak with (n%3==0) if statement that if the sum of numbers in row differs from 15 it breaks the creation of other two lines... but it doesn't work. Any suggestions? I call the function with Permute(1). public static class Global { //int[] j = new int[6]; public static int[] a= {0,0,0,0,0,0,0,0,0}; public static int[] b= {0,0,0,0,0,0,0,0,0}; public static int count = 0; } public static void Permute(int n) { int tmp=n-1; for (int i=0;i<9;i++){ if (Global.b[i]==0 ) { Global.b[i]=1; Global.a[n-1]=i+1; if ((n % 3) == 0) { if (Global.a[0+tmp]+Global.a[1+tmp]+Global.a[2+tmp] == 15) { if (n<9) { Permute(n+1); } else { isMagic(Global.a); } } else break; } else { Permute(n+1); } Global.b[i]=0; } } }

    Read the article

  • Where to declare variable? C#

    - by user1303781
    I am trying to make an average function... 'Total' adds them, then 'Total' is divided by n, the number of entries... No matter where I put 'double Total;', I get an error message. In this example I get... Use of unassigned local variable 'Total' If I put it before the comment, both references show up as error... I'm sure it's something simple..... namespace frmAssignment3 { class StatisticalFunctions { public static class Statistics { //public static double Average(List<MachineData.MachineRecord> argMachineDataList) public static double Average(List<double> argMachineDataList) { double Total; int n; for (n = 1; n <= argMachineDataList.Count; n++) { Total = argMachineDataList[n]; } return Total / n; } public static double StDevSample(List<MachineData.MachineRecord> argMachineDataList) { return -1; } } } }

    Read the article

  • junit test error - ClassCastException

    - by Josepth Vodary
    When trying to run a junit test I get the following error - java.lang.ClassCastException: business.Factory cannot be cast to services.itemservice.IItemsService at business.ItemManager.get(ItemManager.java:56) at business.ItemMgrTest.testGet(ItemMgrTest.java:49) The specific test that is causing the problem is @Test public void testGet() { Assert.assertTrue(itemmgr.get(items)); } The code it is testing is... public boolean get(Items item) { boolean gotItems = false; Factory factory = Factory.getInstance(); @SuppressWarnings("static-access") IItemsService getItem = (IItemsService)factory.getInstance(); try { getItem.getItems("pens", 15, "red", "gel"); gotItems = true; } catch (ItemNotFoundException e) { // catch e.printStackTrace(); System.out.println("Error - Item Not Found"); } return gotItems; } The test to store items, which is nearly identical, works just fine... The factory class is.. public class Factory { private Factory() {} private static Factory Factory = new Factory(); public static Factory getInstance() {return Factory;} public static IService getService(String serviceName) throws ServiceLoadException { try { Class<?> c = Class.forName(getImplName(serviceName)); return (IService)c.newInstance(); } catch (Exception e) { throw new ServiceLoadException(serviceName + "not loaded"); } } private static String getImplName (String serviceName) throws Exception { java.util.Properties props = new java.util.Properties(); java.io.FileInputStream fis = new java.io.FileInputStream("config\\application.properties"); props.load(fis); fis.close(); return props.getProperty(serviceName); } }

    Read the article

  • When I add elements to a dictionary, the elements are also added to another dictionary (C# + XNA)

    - by sFuller
    I have some code that looks like this: public static class Control { public static Dictionary<PlayerIndex, GamePadState> gamePadState = new Dictionary<PlayerIndex,GamePadState>(); public static Dictionary<PlayerIndex, GamePadState> oldGamePadState = new Dictionary<PlayerIndex, GamePadState>(); public static void UpdateControlls() { gamePadState.Clear(); foreach (PlayerIndex pIndex in pIndexArray) { gamePadState.Add(pIndex,GamePad.GetState(pIndex)); } } } As I looked through the code in Debug, when I called gamePadState.Add(...);, It also added to oldGamePadState, even though I never called oldGamePadState.Add(...); This is verry strange. Thanks everybody!

    Read the article

  • Avoiding instanceof in Java

    - by Mark Lutton
    Having a chain of "instanceof" operations is considered a "code smell". The standard answer is "use polymorphism". How would I do it in this case? There are a number of subclasses of a base class; none of them are under my control. An analogous situation would be with the Java classes Integer, Double, BigDecimal etc. if (obj instanceof Integer) {NumberStuff.handle((Integer)obj);} else if (obj instanceof BigDecimal) {BigDecimalStuff.handle((BigDecimal)obj);} else if (obj instanceof Double) {DoubleStuff.handle((Double)obj);} I do have control over NumberStuff and so on. I don't want to use many lines of code where a few lines would do. (Sometimes I make a HashMap mapping Integer.class to an instance of IntegerStuff, BigDecimal.class to an instance of BigDecimalStuff etc. But today I want something simpler.) I'd like something as simple as this: public static handle(Integer num) { ... } public static handle(BigDecimal num) { ... } But Java just doesn't work that way. I'd like to use static methods when formatting. The things I'm formatting are composite, where a Thing1 can contain an array Thing2s and a Thing2 can contain an array of Thing1s. I had a problem when I implemented my formatters like this: class Thing1Formatter { private static Thing2Formatter thing2Formatter = new Thing2Formatter(); public format(Thing thing) { thing2Formatter.format(thing.innerThing2); } } class Thing2Formatter { private static Thing1Formatter thing1Formatter = new Thing1Formatter(); public format(Thing2 thing) { thing1Formatter.format(thing.innerThing1); } } Yes, I know the HashMap and a bit more code can fix that too. But the "instanceof" seems so readable and maintainable by comparison. Is there anything simple but not smelly?

    Read the article

  • Reference and Value confusion

    - by rgamber
    Hi I read this question on Stack overflow, and tried to do an example. I had the below code: public static void main(String[] args){ int i = 5; Integer I = new Integer(5); increasePrimitive(i); increaseObject(I); System.out.println(i); //Prints 5 - correct System.out.println(I); //Still prints 5 System.out.println(increaseObject2(I)); //Still prints 5 } public static void increasePrimitive(int n){ n++; } public static void increaseObject(Integer n){ n++; } public static int increaseObject2(Integer n){ return n++; } Does the increaseObject print 5 because the value of reference is changing inside that function? Am I right? I am confused why the increasedObject2 prints 5 and not 6. Can anyone please explain?

    Read the article

  • Using addMouseListener() and paintComponent() for JPanel

    - by Alex
    This is a follow-up to my previous question. I've simplified things as much as I could, and it still doesn't work! Although the good thing I got around using getGraphics(). A detailed explanation on what goes wrong here is massively appreciated. My suspicion is that something's wrong with the the way I used addMouseListener() method here. import java.awt.Color; import java.awt.Graphics; import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import javax.swing.JFrame; import javax.swing.JPanel; public class MainClass1{ private static PaintClass22 inst2 = new PaintClass22(); public static void main(String args[]){ JFrame frame1 = new JFrame(); frame1.add(inst2); frame1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame1.setTitle("NewPaintToolbox"); frame1.setSize(200, 200); frame1.setLocationRelativeTo(null); frame1.setVisible(true); } } class PaintClass11 extends MouseAdapter{ int xvar; int yvar; static PaintClass22 inst1 = new PaintClass22(); public PaintClass11(){ inst1.addMouseListener(this); inst1.addMouseMotionListener(this); } @Override public void mouseClicked(MouseEvent arg0) { // TODO Auto-generated method stub xvar = arg0.getX(); yvar = arg0.getY(); inst1.return_paint(xvar, yvar); } } class PaintClass22 extends JPanel{ private static int varx; private static int vary; public void return_paint(int input1, int input2){ varx = input1; vary = input2; repaint(varx,vary,10,10); } public void paintComponent(Graphics g){ super.paintComponents(g); g.setColor(Color.RED); g.fillRect(varx, vary, 10, 10); } }

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Accidentally deleted symlink libc.so.6 in CentOS 6.4. How to get sudo privilege to re-create it?

    - by Eric
    I accidentally deleted the symbol link /lib64/libc.so.6 - /lib64/libc-2.12.so with $ sudo rm libc.so.6 Then I can not use anything including ls command. The error appears for any command I type ls: error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory I've tried $ export LD_PRELOAD=/lib64/libc-2.12.so After this I can use ls and ln ..., but still can not use sudo ln ..., sudo -E ln ..., sudo su or even su. I always get this err sudo: error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory or su: error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory It seems LD_PRELOAD works only for the current shell session of my account, but not for a new account like root or a new session. It's a remote server so I can not use a live CD. I now have a ssh bash session alive but can not establish new ones. I have sudo privilege, but don't have root password. So currently my problem is I need to run sudo sln -s libc-2.12.so libc.so.6 to re-create the symlink libc.so.6, but I can not run sudo without libc.so.6. How can I fix it? Thanks~

    Read the article

  • QT Creator 64-bit Snow Leopard

    - by quadelirus
    I have a bunch of libraries that I need to link against that I installed via macports. They are 64-bit libraries. I'm working on an application written with QT Creator and the .pro is set up. I downloaded the QT SDK for Mac OS X, but it is 32-bit and so the compiled code won't link against the 64-bit binaries that I got from macports. Ok. So I downloaded the QT SDK source and built from source using -arch x86_64. Now I have a 64-bit version of the SDK (I think) but it didn't build a QT Creator app. So. I need to know one of 4 things: Either, 1.) I'm guessing that a simple make command will convince the QT SDK to build the creator for me. If this is true, then what is the command (make creator?). barring that, I need to know 2.) The easiest way to get MacPorts to redownload the libraries that I installed with a 32-bit version (I keep seeing a "+universal" mentioned, but I haven't seen it on a line, and simply calling ports +universal install XYZ doesn't seem to work--perhaps I need to uninstall and reinstall the package?). Also, is this a stupid idea? or 3.) Someone who actually has a prebuilt 64-bit QT SDK installer so I don't have to mess with this. It is ridiculous that QT doesn't already have this available, in my opinion--SL has been out since, what, last August? 4--and this would take the cake.) I don't understand why I can't simply put a "compile-for-64-bit stupid" command directly into the QT pro file and have it build. There isn't really a reason why a compiler compiled in 32-bits couldn't compile to 64-bits is there? Thanks.

    Read the article

  • Getting custom web.config sections and their contents in Powershell

    - by Rob
    I have a web application installed in c:\inetpub\wwwroot_Site1\AppName which has a custom section group and section as follows: <configSections> <sectionGroup name="Libraries"> <section name="Custom.Section.Name" type="System.Configuration.NameValueSectionHandler,system, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, Custom=null"/> <section name="Custom.Section.Name2" type="System.Configuration.NameValueSectionHandler,system, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, Custom=null"/> </sectionGroup> </configSections> I've written the following snippet of Powershell: Import-Module WebAdministration Get-WebConfiguration //Libraries IIS:\Sites\Site1\AppName Which correctly returns: Name         Sections                           Groups ====          ========                        =========== Libraries    Custom.Section.Name                   Custom.Section.Name2 What I can't fathom is how to, either via Get-WebConfiguration or Get-WebConfigurationProperty obtain access to the <add key="x" value="y" /> elements that are direct children of CustomSectionName in the actual "body" of the configuration file.

    Read the article

  • My yum repository able to search packages, but not able to install it in RHEL?

    - by mandy
    I set up yum from dvd. Following is the containts of my .repo file: [dvd] name=Red Hat Enterprise Linux Installation DVD baseurl=file:///media/dvd enabled=0. I'm able to search packages. However while installation I'm getting below error: [root@localhost dvd]# yum install libstdc++.x86_64 Loaded plugins: rhnplugin, security This system is not registered with RHN. RHN support will be disabled. Setting up Install Process Nothing to do My Yum Search output: [root@localhost dvd]# yum search gcc Loaded plugins: rhnplugin, security This system is not registered with RHN. RHN support will be disabled. ============================================================================= Matched: gcc ============================================================================= compat-libgcc-296.i386 : Compatibility 2.96-RH libgcc library compat-libstdc++-296.i386 : Compatibility 2.96-RH standard C++ libraries compat-libstdc++-33.i386 : Compatibility standard C++ libraries compat-libstdc++-33.x86_64 : Compatibility standard C++ libraries cpp.x86_64 : The C Preprocessor. libgcc.i386 : GCC version 4.1 shared support library libgcc.x86_64 : GCC version 4.1 shared support library libgcj.i386 : Java runtime library for gcc libgcj.x86_64 : Java runtime library for gcc libstdc++.i386 : GNU Standard C++ Library libstdc++.x86_64 : GNU Standard C++ Library libtermcap.i386 : A basic system library for accessing the termcap database. libtermcap.x86_64 : A basic system library for accessing the termcap database. Please guide me on this, I want to install gcc on my RHEL.

    Read the article

  • Apache memory allocation error message

    - by la_f0ka
    I'm trying to set up a medium sized Drupal 7 website on my miniserver but I keep getting a 500 error message. This is what I found in Apache's error log: [Wed Sep 12 15:02:04 2012] [notice] SSL FIPS mode disabled [Wed Sep 12 15:02:04 2012] [warn] No JkShmFile defined in httpd.conf. Using default /usr/local/apache/logs/jk-runtime-status [Wed Sep 12 15:02:04 2012] [notice] Apache/2.2.22 (Unix) mod_ssl/2.2.22 OpenSSL/1.0.0-fips mod_auth_passthrough/2.1 mod_bwlimited/1.4 FrontPage/5.0.2.2635 mod_jk/1.2.35 configured -- resuming normal operations [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] /usr/bin/php: error while loading shared libraries: libkrb5support.so.0: failed to map segment from shared object: Cannot allocate memory [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] Premature end of script headers: index.php [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] /usr/bin/php: error while loading shared libraries: libkrb5support.so.0: failed to map segment from shared object: Cannot allocate memory [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] Premature end of script headers: index.php [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] File does not exist: /home/brighton/public_html/favicon.ico [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] /usr/bin/php: error while loading shared libraries: libkrb5support.so.0: failed to map segment from shared object: Cannot allocate memory [Wed Sep 12 15:02:07 2012] [error] [client 89.16.136.28] Premature end of script headers: index.php I contacted support and they just told me I should just upgrade my package (right not I have a 512Mb account), but I am not sure if I'm buying it... even if I'm trying to access a file which only contains phpinfo(); I still get the 500. Any help would be much appreciated, and if there's need of any other information please let me know and I'll update the question. I compiled apache with tomcat because I intend to use Solr... not sure if this is relevant or not.

    Read the article

  • What needs to be considered when setting up for Linux Development? [closed]

    - by user123586
    I want to set up a box for Linux development. I have a working linux install with the usual toolchain and an IDE. I'm looking for advice on how to approach structuring accounts and folders for development. As the Perl folks say "There's always more than one way to do it." Left to my own devices, I'll come up with several unproductive ways of doing it before figuring out what an experienced Linux programmer would think obvious. I'm not looking for instructions to follow for a specific set of tools or a specific software package. Instead, I'm looking for insight into what decisions need to be made and how to make them, with understanding of the advantages and disadvantages of each individual choice. These are some of the questions that come up: Where to put sources Where to put built object files and libraries where to install what to set in environment variables what compiler flags matter and how do you manage them across several types of builds what configuration entries to make in an IDE how to manage libraries to support multiple environments how to handle different build versions such as debug vs release, or cross platform builds If you are an experienced Linux developer, the answers to these questions may seem trivial and obvious. I'd like to learn to make decisions about these questions that result in as little manual configuration as possible, given some existing sources, a particular IDE, or no IDE at all, a paticular set of development libraries etc. At this point you're probably thinking: Can you be more specific? Sure. But remember that I'm trying to learn how to think about this stuff, not just follow a recipie for a specific set of results. Example: Setup a project that uses CMake for some of its components, autogen.sh followed by configure for others and just configure for a few more: debug builds without an IDE debug builds in NetBeans debug builds in Eclipse debug build in Visual Studio all of the above with release builds for Linux, Mac and Windows. So... **What are your thoughts on an approach that works for all four? Do you have any advice on what to read?**

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • GZip/Deflate Compression in ASP.NET MVC

    - by Rick Strahl
    A long while back I wrote about GZip compression in ASP.NET. In that article I describe two generic helper methods that I've used in all sorts of ASP.NET application from WebForms apps to HttpModules and HttpHandlers that require gzip or deflate compression. The same static methods also work in ASP.NET MVC. Here are the two routines:/// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } The first method checks whether the client sending the request includes the accept-encoding for either gzip or deflate, and if if it does it returns true. The second function uses IsGzipSupported() to decide whether it should encode content and uses an Response Filter to do its job. Basically response filters look at the Response output stream as it's written and convert the data flowing through it. Filters are a bit tricky to work with but the two .NET filter streams for GZip and Deflate Compression make this a snap to implement. In my old code and even now in MVC I can always do:public ActionResult List(string keyword=null, int category=0) { WebUtils.GZipEncodePage(); …} to encode my content. And that works just fine. The proper way: Create an ActionFilterAttribute However in MVC this sort of thing is typically better handled by an ActionFilter which can be applied with an attribute. So to be all prim and proper I created an CompressContentAttribute ActionFilter that incorporates those two helper methods and which looks like this:/// <summary> /// Attribute that can be added to controller methods to force content /// to be GZip encoded if the client supports it /// </summary> public class CompressContentAttribute : ActionFilterAttribute { /// <summary> /// Override to compress the content that is generated by /// an action method. /// </summary> /// <param name="filterContext"></param> public override void OnActionExecuting(ActionExecutingContext filterContext) { GZipEncodePage(); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } } It's basically the same code wrapped into an ActionFilter attribute, which intercepts requests MVC requests to Controller methods and lets you hook up logic before and after the methods have executed. Here I want to override OnActionExecuting() which fires before the Controller action is fired. With the CompressContentAttribute created, it can now be applied to either the controller as a whole:[CompressContent] public class ClassifiedsController : ClassifiedsBaseController { … } or to one of the Action methods:[CompressContent] public ActionResult List(string keyword=null, int category=0) { … } The former applies compression to every action method, while the latter is selective and only applies it to the individual action method. Is the attribute better than the static utility function? Not really, but it is the standard MVC way to hook up 'filter' content and that's where others are likely to expect to set options like this. In fact,  you have a bit more control with the utility function because you can conditionally apply it in code, but this is actually much less likely in MVC applications than old WebForms apps since controller methods tend to be more focused. Compression Caveats Http compression is very cool and pretty easy to implement in ASP.NET but you have to be careful with it - especially if your content might get transformed or redirected inside of ASP.NET. A good example, is if an error occurs and a compression filter is applied. ASP.NET errors don't clear the filter, but clear the Response headers which results in some nasty garbage because the compressed content now no longer matches the headers. Another issue is Caching, which has to account for all possible ways of compression and non-compression that the content is served. Basically compressed content and caching don't mix well. I wrote about several of these issues in an old blog post and I recommend you take a quick peek before diving into making every bit of output Gzip encoded. None of these are show stoppers, but you have to be aware of the issues. Related Posts GZip Compression with ASP.NET Content ASP.NET GZip Encoding Caveats© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • CDN on Hosted Service in Windows Azure

    - by Shaun
    Yesterday I told Wang Tao, an annoying colleague sitting beside me, about how to make the static content enable the CDN in his website which had just been published on Windows Azure. The approach would be Move the static content, the images, CSS files, etc. into the blob storage. Enable the CDN on his storage account. Change the URL of those static files to the CDN URL. I think these are the very common steps when using CDN. But this morning I found that the new Windows Azure SDK 1.4 and new Windows Azure Developer Portal had just been published announced at the Windows Azure Blog. One of the new features in this release is about the CDN, which means we can enabled the CDN not only for a storage account, but a hosted service as well. Within this new feature the steps I mentioned above would be turned simpler a lot.   Enable CDN for Hosted Service To enable the CDN for a hosted service we just need to log on the Windows Azure Developer Portal. Under the “Hosted Services, Storage Accounts & CDN” item we will find a new menu on the left hand side said “CDN”, where we can manage the CDN for storage account and hosted service. As we can see the hosted services and storage accounts are all listed in my subscriptions. To enable a CDN for a hosted service is veru simple, just select a hosted service and click the New Endpoint button on top. In this dialog we can select the subscription and the storage account, or the hosted service we want the CDN to be enabled. If we selected the hosted service, like I did in the image above, the “Source URL for the CDN endpoint” will be shown automatically. This means the windows azure platform will make all contents under the “/cdn” folder as CDN enabled. But we cannot change the value at the moment. The following 3 checkboxes next to the URL are: Enable CDN: Enable or disable the CDN. HTTPS: If we need to use HTTPS connections check it. Query String: If we are caching content from a hosted service and we are using query strings to specify the content to be retrieved, check it. Just click the “Create” button to let the windows azure create the CDN for our hosted service. The CDN would be available within 60 minutes as Microsoft mentioned. My experience is that about 15 minutes the CDN could be used and we can find the CDN URL in the portal as well.   Put the Content in CDN in Hosted Service Let’s create a simple windows azure project in Visual Studio with a MVC 2 Web Role. When we created the CDN mentioned above the source URL of CDN endpoint would be under the “/cdn” folder. So in the Visual Studio we create a folder under the website named “cdn” and put some static files there. Then all these files would be cached by CDN if we use the CDN endpoint. The CDN of the hosted service can cache some kind of “dynamic” result with the Query String feature enabled. We create a controller named CdnController and a GetNumber action in it. The routed URL of this controller would be /Cdn/GetNumber which can be CDN-ed as well since the URL said it’s under the “/cdn” folder. In the GetNumber action we just put a number value which specified by parameter into the view model, then the URL could be like /Cdn/GetNumber?number=2. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6:  7: namespace MvcWebRole1.Controllers 8: { 9: public class CdnController : Controller 10: { 11: // 12: // GET: /Cdn/ 13:  14: public ActionResult GetNumber(int number) 15: { 16: return View(number); 17: } 18:  19: } 20: } And we add a view to display the number which is super simple. 1: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<int>" %> 2:  3: <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> 4: GetNumber 5: </asp:Content> 6:  7: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> 8:  9: <h2>The number is: <% 1: : Model.ToString() %></h2> 10:  11: </asp:Content> Since this action is under the CdnController the URL would be under the “/cdn” folder which means it can be CDN-ed. And since we checked the “Query String” the content of this dynamic page will be cached by its query string. So if I use the CDN URL, http://az25311.vo.msecnd.net/GetNumber?number=2, the CDN will firstly check if there’s any content cached with the key “GetNumber?number=2”. If yes then the CDN will return the content directly; otherwise it will connect to the hosted service, http://aurora-sys.cloudapp.net/Cdn/GetNumber?number=2, and then send the result back to the browser and cached in CDN. But to be notice that the query string are treated as string when used by the key of CDN element. This means the URLs below would be cached in 2 elements in CDN: http://az25311.vo.msecnd.net/GetNumber?number=2&page=1 http://az25311.vo.msecnd.net/GetNumber?page=1&number=2 The final step is to upload the project onto azure. Test the Hosted Service CDN After published the project on azure, we can use the CDN in the website. The CDN endpoint we had created is az25311.vo.msecnd.net so all files under the “/cdn” folder can be requested with it. Let’s have a try on the sample.htm and c_great_wall.jpg static files. Also we can request the dynamic page GetNumber with the query string with the CDN endpoint. And if we refresh this page it will be shown very quickly since the content comes from the CDN without MCV server side process. We style of this page was missing. This is because the CSS file was not includes in the “/cdn” folder so the page cannot retrieve the CSS file from the CDN URL.   Summary In this post I introduced the new feature in Windows Azure CDN with the release of Windows Azure SDK 1.4 and new Developer Portal. With the CDN of the Hosted Service we can just put the static resources under a “/cdn” folder so that the CDN can cache them automatically and no need to put then into the blob storage. Also it support caching the dynamic content with the Query String feature. So that we can cache some parts of the web page by using the UserController and CDN. For example we can cache the log on user control in the master page so that the log on part will be loaded super-fast. There are some other new features within this release you can find here. And for more detailed information about the Windows Azure CDN please have a look here as well.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • TFS 2010 SDK: Smart Merge - Programmatically Create your own Merge Tool

    - by Tarun Arora
    Technorati Tags: Team Foundation Server 2010,TFS SDK,TFS API,TFS Merge Programmatically,TFS Work Items Programmatically,TFS Administration Console,ALM   The information available in the Merge window in Team Foundation Server 2010 is very important in the decision making during the merging process. However, at present the merge window shows very limited information, more that often you are interested to know the work item, files modified, code reviewer notes, policies overridden, etc associated with the change set. Our friends at Microsoft are working hard to change the game again with vNext, but because at present the merge window is a model window you have to cancel the merge process and go back one after the other to check the additional information you need. If you can relate to what i am saying, you will enjoy this blog post! I will show you how to programmatically create your own merging window using the TFS 2010 API. A few screen shots of the WPF TFS 2010 API – Custom Merging Application that we will be creating programmatically, Excited??? Let’s start coding… 1. Get All Team Project Collections for the TFS Server You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetAllTeamProjectCollections() 2: { 3: TfsConfigurationServer configurationServer = 4: TfsConfigurationServerFactory. 5: GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 6: 7: CatalogNode catalogNode = configurationServer.CatalogNode; 8: return catalogNode.QueryChildren(new Guid[] 9: { CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: } 2. Get All Team Projects for the selected Team Project Collection You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetTeamProjects(string instanceId) 2: { 3: ReadOnlyCollection<CatalogNode> teamProjects = null; 4: 5: TfsConfigurationServer configurationServer = 6: TfsConfigurationServerFactory.GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 7: 8: CatalogNode catalogNode = configurationServer.CatalogNode; 9: var teamProjectCollections = catalogNode.QueryChildren(new Guid[] {CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: 12: foreach (var teamProjectCollection in teamProjectCollections) 13: { 14: if (string.Compare(teamProjectCollection.Resource.Properties["InstanceId"], instanceId, true) == 0) 15: { 16: teamProjects = teamProjectCollection.QueryChildren(new Guid[] { CatalogResourceTypes.TeamProject }, false, 17: CatalogQueryOptions.None); 18: } 19: } 20: 21: return teamProjects; 22: } 3. Get All Branches with in a Team Project programmatically I will be passing the name of the Team Project for which i want to retrieve all the branches. When consuming the ‘Version Control Service’ you have the method QueryRootBranchObjects, you need to pass the recursion type => none, one, full. Full implies you are interested in all branches under that root branch. 1: public static List<BranchObject> GetParentBranch(string projectName) 2: { 3: var branches = new List<BranchObject>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<teamProjectName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var allBranches = versionControl.QueryRootBranchObjects(RecursionType.Full); 9: 10: foreach (var branchObject in allBranches) 11: { 12: if (branchObject.Properties.RootItem.Item.ToUpper().Contains(projectName.ToUpper())) 13: { 14: branches.Add(branchObject); 15: } 16: } 17: 18: return branches; 19: } 4. Get All Branches associated to the Parent Branch Programmatically Now that we have the parent branch, it is important to retrieve all child branches of that parent branch. Lets see how we can achieve this using the TFS API. 1: public static List<ItemIdentifier> GetChildBranch(string parentBranch) 2: { 3: var branches = new List<ItemIdentifier>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var i = new ItemIdentifier(parentBranch); 9: var allBranches = 10: versionControl.QueryBranchObjects(i, RecursionType.None); 11: 12: foreach (var branchObject in allBranches) 13: { 14: foreach (var childBranche in branchObject.ChildBranches) 15: { 16: branches.Add(childBranche); 17: } 18: } 19: 20: return branches; 21: } 5. Get Merge candidates between two branches Programmatically Now that we have the parent and the child branch that we are interested to perform a merge between we will use the method ‘GetMergeCandidates’ in the namespace ‘Microsoft.TeamFoundation.VersionControl.Client’ => http://msdn.microsoft.com/en-us/library/bb138934(v=VS.100).aspx 1: public static MergeCandidate[] GetMergeCandidates(string fromBranch, string toBranch) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetMergeCandidates(fromBranch, toBranch, RecursionType.Full); 7: } 6. Get changeset details Programatically Now that we have the changeset id that we are interested in, we can get details of the changeset. The Changeset object contains the properties => http://msdn.microsoft.com/en-us/library/microsoft.teamfoundation.versioncontrol.client.changeset.aspx - Changes: Gets or sets an array of Change objects that comprise this changeset. - CheckinNote: Gets or sets the check-in note of the changeset. - Comment: Gets or sets the comment of the changeset. - PolicyOverride: Gets or sets the policy override information of this changeset. - WorkItems: Gets an array of work items that are associated with this changeset. 1: public static Changeset GetChangeSetDetails(int changeSetId) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetChangeset(changeSetId); 7: } 7. Possibilities In future posts i will try and extend this idea to explore further possibilities, but few features that i am sure will further help during the merge decision making process would be, - View changed files - Compare modified file with current/previous version - Merge Preview - Last Merge date Any other features that you can think of?

    Read the article

  • How to create a simple adf dashboard application with EJB 3.0

    - by Rodrigues, Raphael
    In this month's Oracle Magazine, Frank Nimphius wrote a very good article about an Oracle ADF Faces dashboard application to support persistent user personalization. You can read this entire article clicking here. The idea in this article is to extend the dashboard application. My idea here is to create a similar dashboard application, but instead ADF BC model layer, I'm intending to use EJB3.0. There are just a one small trick here and I'll show you. I'm using the HR usual oracle schema. The steps are: 1. Create a ADF Fusion Application with EJB as a layer model 2. Generate the entities from table (I'm using Department and Employees only) 3. Create a new Session Bean. I called it: HRSessionEJB 4. Create a new method like that: public List getAllDepartmentsHavingEmployees(){ JpaEntityManager jpaEntityManager = (JpaEntityManager)em.getDelegate(); Query query = jpaEntityManager.createNamedQuery("Departments.allDepartmentsHavingEmployees"); JavaBeanResult.setQueryResultClass(query, AggregatedDepartment.class); return query.getResultList(); } 5. In the Departments entity, create a new native query annotation: @Entity @NamedQueries( { @NamedQuery(name = "Departments.findAll", query = "select o from Departments o") }) @NamedNativeQueries({ @NamedNativeQuery(name="Departments.allDepartmentsHavingEmployees", query = "select e.department_id, d.department_name , sum(e.salary), avg(e.salary) , max(e.salary), min(e.salary) from departments d , employees e where d.department_id = e.department_id group by e.department_id, d.department_name")}) public class Departments implements Serializable {...} 6. Create a new POJO called AggregatedDepartment: package oramag.sample.dashboard.model; import java.io.Serializable; import java.math.BigDecimal; public class AggregatedDepartment implements Serializable{ @SuppressWarnings("compatibility:5167698678781240729") private static final long serialVersionUID = 1L; private BigDecimal departmentId; private String departmentName; private BigDecimal sum; private BigDecimal avg; private BigDecimal max; private BigDecimal min; public AggregatedDepartment() { super(); } public AggregatedDepartment(BigDecimal departmentId, String departmentName, BigDecimal sum, BigDecimal avg, BigDecimal max, BigDecimal min) { super(); this.departmentId = departmentId; this.departmentName = departmentName; this.sum = sum; this.avg = avg; this.max = max; this.min = min; } public void setDepartmentId(BigDecimal departmentId) { this.departmentId = departmentId; } public BigDecimal getDepartmentId() { return departmentId; } public void setDepartmentName(String departmentName) { this.departmentName = departmentName; } public String getDepartmentName() { return departmentName; } public void setSum(BigDecimal sum) { this.sum = sum; } public BigDecimal getSum() { return sum; } public void setAvg(BigDecimal avg) { this.avg = avg; } public BigDecimal getAvg() { return avg; } public void setMax(BigDecimal max) { this.max = max; } public BigDecimal getMax() { return max; } public void setMin(BigDecimal min) { this.min = min; } public BigDecimal getMin() { return min; } } 7. Create the util java class called JavaBeanResult. The function of this class is to configure a native SQL query to return POJOs in a single line of code using the utility class. Credits: http://onpersistence.blogspot.com.br/2010/07/eclipselink-jpa-native-constructor.html package oramag.sample.dashboard.model.util; /******************************************************************************* * Copyright (c) 2010 Oracle. All rights reserved. * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 and Eclipse Distribution License v. 1.0 * which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * @author shsmith ******************************************************************************/ import java.lang.reflect.Constructor; import java.lang.reflect.InvocationTargetException; import java.util.ArrayList; import java.util.List; import javax.persistence.Query; import org.eclipse.persistence.exceptions.ConversionException; import org.eclipse.persistence.internal.helper.ConversionManager; import org.eclipse.persistence.internal.sessions.AbstractRecord; import org.eclipse.persistence.internal.sessions.AbstractSession; import org.eclipse.persistence.jpa.JpaHelper; import org.eclipse.persistence.queries.DatabaseQuery; import org.eclipse.persistence.queries.QueryRedirector; import org.eclipse.persistence.sessions.Record; import org.eclipse.persistence.sessions.Session; /*** * This class is a simple query redirector that intercepts the result of a * native query and builds an instance of the specified JavaBean class from each * result row. The order of the selected columns musts match the JavaBean class * constructor arguments order. * * To configure a JavaBeanResult on a native SQL query use: * JavaBeanResult.setQueryResultClass(query, SomeBeanClass.class); * where query is either a JPA SQL Query or native EclipseLink DatabaseQuery. * * @author shsmith * */ public final class JavaBeanResult implements QueryRedirector { private static final long serialVersionUID = 3025874987115503731L; protected Class resultClass; public static void setQueryResultClass(Query query, Class resultClass) { JavaBeanResult javaBeanResult = new JavaBeanResult(resultClass); DatabaseQuery databaseQuery = JpaHelper.getDatabaseQuery(query); databaseQuery.setRedirector(javaBeanResult); } public static void setQueryResultClass(DatabaseQuery query, Class resultClass) { JavaBeanResult javaBeanResult = new JavaBeanResult(resultClass); query.setRedirector(javaBeanResult); } protected JavaBeanResult(Class resultClass) { this.resultClass = resultClass; } @SuppressWarnings("unchecked") public Object invokeQuery(DatabaseQuery query, Record arguments, Session session) { List results = new ArrayList(); try { Constructor[] constructors = resultClass.getDeclaredConstructors(); Constructor javaBeanClassConstructor = null; // (Constructor) resultClass.getDeclaredConstructors()[0]; Class[] constructorParameterTypes = null; // javaBeanClassConstructor.getParameterTypes(); List rows = (List) query.execute( (AbstractSession) session, (AbstractRecord) arguments); for (Object[] columns : rows) { boolean found = false; for (Constructor constructor : constructors) { javaBeanClassConstructor = constructor; constructorParameterTypes = javaBeanClassConstructor.getParameterTypes(); if (columns.length == constructorParameterTypes.length) { found = true; break; } // if (columns.length != constructorParameterTypes.length) { // throw new ColumnParameterNumberMismatchException( // resultClass); // } } if (!found) throw new ColumnParameterNumberMismatchException( resultClass); Object[] constructorArgs = new Object[constructorParameterTypes.length]; for (int j = 0; j < columns.length; j++) { Object columnValue = columns[j]; Class parameterType = constructorParameterTypes[j]; // convert the column value to the correct type--if possible constructorArgs[j] = ConversionManager.getDefaultManager() .convertObject(columnValue, parameterType); } results.add(javaBeanClassConstructor.newInstance(constructorArgs)); } } catch (ConversionException e) { throw new ColumnParameterMismatchException(e); } catch (IllegalArgumentException e) { throw new ColumnParameterMismatchException(e); } catch (InstantiationException e) { throw new ColumnParameterMismatchException(e); } catch (IllegalAccessException e) { throw new ColumnParameterMismatchException(e); } catch (InvocationTargetException e) { throw new ColumnParameterMismatchException(e); } return results; } public final class ColumnParameterMismatchException extends RuntimeException { private static final long serialVersionUID = 4752000720859502868L; public ColumnParameterMismatchException(Throwable t) { super( "Exception while processing query results-ensure column order matches constructor parameter order", t); } } public final class ColumnParameterNumberMismatchException extends RuntimeException { private static final long serialVersionUID = 1776794744797667755L; public ColumnParameterNumberMismatchException(Class clazz) { super( "Number of selected columns does not match number of constructor arguments for: " + clazz.getName()); } } } 8. Create the DataControl and a jsf or jspx page 9. Drag allDepartmentsHavingEmployees from DataControl and drop in your page 10. Choose Graph > Type: Bar (Normal) > any layout 11. In the wizard screen, Bars label, adds: sum, avg, max, min. In the X Axis label, adds: departmentName, and click in OK button 12. Run the page, the result is showed below: You can download the workspace here . It was using the latest jdeveloper version 11.1.2.2.

    Read the article

< Previous Page | 139 140 141 142 143 144 145 146 147 148 149 150  | Next Page >