Search Results

Search found 3538 results on 142 pages for 'tcp hijacking'.

Page 15/142 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • C# TCP Hole Punch (NAT Traversal) Library or something?

    - by user293531
    I want to do TCP Hole Punching (NAT Traversal) in C#. It can be done with a rendevouzs server if needed. I found http://sharpstunt.codeplex.com/ but can not get this to work. Ideally i need some method which i give a PortNumber (int) as parameter that after a call to this method is available ("Port Forwarded") at the NAT. It would be also ok if the methode just returns some port number which is then available at the NAT. Has anybody done this in C# ? Can you give me working examples for sharpstunt or something else? Thank you

    Read the article

  • How can I connect to Android with ADB over TCP?

    - by martinjd
    I am attempting to debug an application on a Motorola Droid but I am having some difficulty connecting to the device via USB. My development server is a Windows 7 64bit VM running in HyperV and so I cannot connect directly via USB in the guest or from the host. I installed a couple of different USB over TCP solutions but the connection appears to have issues since the adb monitor reports "devicemonitor failed to start monitoring" repeatedly. I was wondering if there is a way to connect directly from the client on the development machine to the daemon on the device using the network instead of the usb connection or possibly other viable options?

    Read the article

  • When binding a client TCP socket to a specific local port with Winsock, SO_REUSEADDR does not have a

    - by Checkers
    I'm binding a client TCP socket to a specific local port. To handle the situation where the socket remains in TIME_WAIT state for some time, I use setsockopt() with SO_REUSEADDR on a socket. It works on Linux, but does not work on Windows, I get WSAEADDRINUSE on connect() call when the previous connection is still in TIME_WAIT. MSDN is not exactly clear what should happen with client sockets: [...] For server applications that need to bind multiple sockets to the same port number, consider using setsockopt (SO_REUSEADDR). Client applications usually need not call bind at all—connect chooses an unused port automatically. [...] How do I avoid this?

    Read the article

  • What happens with TCP packets between two Socket.BeginReceive calls?

    - by Rodrigo
    I have a doubt about socket programming. I am developing a TCP packet sniffer. I am using Socket.BeginAccept, Socket.BeginReceive to capture every packet, but when a packet is received I have to process something. It is a fast operation, but would take some milliseconds, and then call BeginReceive again. My question is, what would happen if some packets are sent while I am processing, and haven't called BeginReceive? Are packets lost, or are they buffered internally? Is there a limit?

    Read the article

  • What alternative is there to writing a TCP/IP data relay?

    - by LoudNPossiblyRight
    I am about to write a tcp/ip data relay - application that passes a one way stream of data from one host/port to another host/port. Initially it will be generic, but later on i will customize it to the need of a specific business request. I am guessing that something generic already exists out there so my question is: Has anyone used a third party (preferably open source) data relay in a production environment, if so what is, and do you recommend it? Any platform is fine. Thanks.

    Read the article

  • What structure of data use to communicate via tcp/ip in java?

    - by rmaster
    Let's assume I want to send many messages between 2 programs made in java that use TCP sockets. I think the most convienient way is to send objects like: PrintStream ps = new PrintStream(s.getOutputStream()); ObjectOutputStream oos = new ObjectOutputStream(ps); some_kind_of_object_here; oos.writeObject(some_kind_of_object_here); ps.print(oos); I want to send, strings, numbers, HashMaps, boolean values How can I do this using fx 1 object that can store all that properties? I though about ArrayList that is serializable and we can put there everything but is not elegant way. I want to send different types of data because user can choose from a variety of options that server can do for it. Any advices?

    Read the article

  • Why is UDP + a software reliable ordering system faster than TCP?

    - by Ricket
    Some games today use a network system that transmits messages over UDP, and ensures that the messages are reliable and ordered. For example, RakNet is a popular game network engine. It uses only UDP for its connections, and has a whole system to ensure that packets can be reliable and ordered if you so choose. My basic question is, what's up with that? Isn't TCP the same thing as ordered, reliable UDP? What makes it so much slower that people have to basically reinvent the wheel?

    Read the article

  • Library like ENet, but for TCP?

    - by Milo
    I'm not looking to use boost::asio, it is overly complex for my needs. I'm building a game that is cross platform, for desktop, iPhone and Android. I found a library called ENet which is pretty much what I need, but it uses UDP which does not seem to support encryption and a few other things. Given that the game is an event driven card game, TCP seems like the right fit. However, all I have found is WINSOCK / berkley sockets and bost::asio. Here is a sample client server application with ENet: #include <enet/enet.h> #include <stdlib.h> #include <string> #include <iostream> class Host { ENetAddress address; ENetHost * server; ENetHost* client; ENetEvent event; public: Host() :server(NULL) { enet_initialize(); setupServer(); } void setupServer() { if(server) { enet_host_destroy(server); server = NULL; } address.host = ENET_HOST_ANY; /* Bind the server to port 1234. */ address.port = 1721; server = enet_host_create (& address /* the address to bind the server host to */, 32 /* allow up to 32 clients and/or outgoing connections */, 2 /* allow up to 2 channels to be used, 0 and 1 */, 0 /* assume any amount of incoming bandwidth */, 0 /* assume any amount of outgoing bandwidth */); } void daLoop() { while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (server, & event, 5000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_CONNECT: printf ("A new client connected from %x:%u.\n", event.peer -> address.host, event.peer -> address.port); /* Store any relevant client information here. */ event.peer -> data = "Client information"; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("packet", strlen ("packet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("packetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("packet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (server); break; case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; case ENET_EVENT_TYPE_DISCONNECT: printf ("%s disconected.\n", event.peer -> data); /* Reset the peer's client information. */ event.peer -> data = NULL; } } } } ~Host() { if(server) { enet_host_destroy(server); server = NULL; } atexit (enet_deinitialize); } }; class Client { ENetAddress address; ENetEvent event; ENetPeer *peer; ENetHost* client; public: Client() :peer(NULL) { enet_initialize(); setupPeer(); } void setupPeer() { client = enet_host_create (NULL /* create a client host */, 1 /* only allow 1 outgoing connection */, 2 /* allow up 2 channels to be used, 0 and 1 */, 57600 / 8 /* 56K modem with 56 Kbps downstream bandwidth */, 14400 / 8 /* 56K modem with 14 Kbps upstream bandwidth */); if (client == NULL) { fprintf (stderr, "An error occurred while trying to create an ENet client host.\n"); exit (EXIT_FAILURE); } /* Connect to some.server.net:1234. */ enet_address_set_host (& address, "192.168.2.13"); address.port = 1721; /* Initiate the connection, allocating the two channels 0 and 1. */ peer = enet_host_connect (client, & address, 2, 0); if (peer == NULL) { fprintf (stderr, "No available peers for initiating an ENet connection.\n"); exit (EXIT_FAILURE); } /* Wait up to 5 seconds for the connection attempt to succeed. */ if (enet_host_service (client, & event, 20000) > 0 && event.type == ENET_EVENT_TYPE_CONNECT) { std::cout << "Connection to some.server.net:1234 succeeded." << std::endl; } else { /* Either the 5 seconds are up or a disconnect event was */ /* received. Reset the peer in the event the 5 seconds */ /* had run out without any significant event. */ enet_peer_reset (peer); puts ("Connection to some.server.net:1234 failed."); } } void daLoop() { ENetPacket* packet; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("backet", strlen ("backet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("backetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("backet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (client); while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (client, & event, 1000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; } } } } ~Client() { atexit (enet_deinitialize); } }; int main() { std::string a; std::cin >> a; if(a == "host") { Host host; host.daLoop(); } else { Client c; c.daLoop(); } return 0; } I looked at some socket tutorials and they seemed a bit too low level. I just need something that abstracts away the platform (eg, no WINSOCKS) and that has basic ability to keep track of connected clients and send them messages. Thanks

    Read the article

  • Millions of SYN_RECV connections, no DDoS

    - by ThomK
    We have such server structure: reverse proxy (nginx) - worker (uwsgi) - postgresql / memcached. All servers are in local network behind router, with NATed external ip:ports (http/s 80/443 to proxy, and ssh 22 to all servers). Problem is, that sometimes proxy server netstat reports MILLIONS of SYN_RECV connections. From same IP / same ports. Like that: nginx ~ # netstat -n | grep 83.238.153.195 tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV tcp 0 0 192.168.1.1:80 83.238.153.195:3107 SYN_RECV [...] And this is not DDoS, because all IPs affected belongs to our website users. On side note, users says that it's not affecting them. Website is online and working, but... that particular one (from example above) told me that website is down and Firefox can't connect. I've done tcpdump. 19:42:14.826011 IP 83.238.153.195.zephyr-srv > 192.168.1.1.http: Flags [S], seq 1845850583, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:14.826042 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:17.887331 IP 83.238.153.195.zephyr-srv > 192.168.1.1.http: Flags [S], seq 1845850583, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:17.887343 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:19.065497 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:23.918064 IP 83.238.153.195.zephyr-srv > 192.168.1.1.http: Flags [S], seq 1845850583, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:23.918076 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:25.265499 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:37.265501 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:37.758051 IP 83.238.153.195.2107 > 192.168.1.1.http: Flags [S], seq 564208067, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:37.758069 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:40.714360 IP 83.238.153.195.2107 > 192.168.1.1.http: Flags [S], seq 564208067, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:40.714374 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:41.665503 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:46.751073 IP 83.238.153.195.2107 > 192.168.1.1.http: Flags [S], seq 564208067, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:42:46.751087 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:47.665498 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:42:59.865499 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:01.265500 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:13.320382 IP 83.238.153.195.2114 > 192.168.1.1.http: Flags [S], seq 2136055006, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:13.320399 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:16.320556 IP 83.238.153.195.2114 > 192.168.1.1.http: Flags [S], seq 2136055006, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:16.320569 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:17.665498 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:22.250069 IP 83.238.153.195.2114 > 192.168.1.1.http: Flags [S], seq 2136055006, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:22.250080 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:23.665500 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:23.865501 IP 192.168.1.1.http > 83.238.153.195.2107: Flags [S.], seq 3188568660, ack 564208068, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:35.665498 IP 192.168.1.1.http > 83.238.153.195.2114: Flags [S.], seq 3754336171, ack 2136055007, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:37.903038 IP 83.238.153.195.2213 > 192.168.1.1.http: Flags [S], seq 2918118729, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:37.903054 IP 192.168.1.1.http > 83.238.153.195.2213: Flags [S.], seq 4145523337, ack 2918118730, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:40.772899 IP 83.238.153.195.2213 > 192.168.1.1.http: Flags [S], seq 2918118729, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:40.772912 IP 192.168.1.1.http > 83.238.153.195.2213: Flags [S.], seq 4145523337, ack 2918118730, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:41.865500 IP 192.168.1.1.http > 83.238.153.195.2213: Flags [S.], seq 4145523337, ack 2918118730, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:46.793057 IP 83.238.153.195.2213 > 192.168.1.1.http: Flags [S], seq 2918118729, win 65535, options [mss 1412,nop,wscale 0,nop,nop,sackOK], length 0 19:43:46.793069 IP 192.168.1.1.http > 83.238.153.195.2213: Flags [S.], seq 4145523337, ack 2918118730, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:47.865500 IP 192.168.1.1.http > 83.238.153.195.2213: Flags [S.], seq 4145523337, ack 2918118730, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 19:43:49.465503 IP 192.168.1.1.http > 83.238.153.195.zephyr-srv: Flags [S.], seq 2835837547, ack 1845850584, win 5840, options [mss 1460,nop,nop,sackOK,nop,wscale 7], length 0 Anyone have some thoughts on that?

    Read the article

  • Why is a non-blocking TCP connect() occasionally so slow on Linux?

    - by pts
    I was trying to measure the speed of a TCP server I'm writing, and I've noticed that there might be a fundamental problem of measuring the speed of the connect() calls: if I connect in a non-blocking way, connect() operations become very slow after a few seconds. Here is the example code in Python: #! /usr/bin/python2.4 import errno import os import select import socket import sys def NonBlockingConnect(sock, addr): while True: try: return sock.connect(addr) except socket.error, e: if e.args[0] not in (errno.EINPROGRESS, errno.EALREADY): raise os.write(2, '^') if not select.select((), (sock,), (), 0.5)[1]: os.write(2, 'P') def InfiniteClient(addr): while True: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) sock.setblocking(0) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # sock.connect(addr) NonBlockingConnect(sock, addr) sock.close() os.write(2, '.') def InfiniteServer(server_socket): while True: sock, addr = server_socket.accept() sock.close() server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind(('127.0.0.1', 45454)) server_socket.listen(128) if os.fork(): # Parent. InfiniteServer(server_socket) else: addr = server_socket.getsockname() server_socket.close() InfiniteClient(addr) With NonBlockingConnect, most connect() operations are fast, but in every few seconds there happens to be one connect() operation which takes at least 2 seconds (as indicated by 5 consecutive P letters on the output). By using sock.connect instead of NonBlockingConnect all connect operations seem to be fast. How is it possible to get rid of these slow connect()s? I'm running Ubuntu Karmic desktop with the standard PAE kernel: Linux narancs 2.6.31-20-generic-pae #57-Ubuntu SMP Mon Feb 8 10:23:59 UTC 2010 i686 GNU/Linux

    Read the article

  • TCP/IP RST being sent differently in different browsers.

    - by Brian
    On Mac OS X (10.6), if I start a YouTube video download and pull the Ethernet cable for 5 or so seconds, then plug it back in, I get varying results depending on the browser. With Opera and Chrome, after I plug the cable back in the video continues to load. But with Safari and Firefox, it never does. Using Wireshark to look at the traffic, I found that Opera and Chrome simply ACK the first packet from YouTube after the cable has been plugged back in, but Safari and Firefox set the RST flag (0x4) in the TCP header and no more traffic follows. I can put a HUB in between the machine and the internet connection, the problem goes away and all four browsers continue loading the video when the cable is plugged back into the HUB. Again, looking at the Wireshark logs, it's evident that the machine doesn't see the Mulitcast connection close and there is simply a delay in the packets flowing through. So it seems that if Safari and Firefox sees a Multicast connection close, and then later see data on that same connection, they will send a RST. My question is why? What is the correct course of action, and why are 2/4 browsers doing it one way, while the other 2/4 are doing it another way? Is there somewhere in the code that I can see where this is happening in Firefox, for instance? Thank you very much.

    Read the article

  • How to get Acknowlegement in TCP communication in Java

    - by Sunil Kumar Sahoo
    I have written a socket program in Java. Both server and client can sent/receive data to each other. But I found that if client sends data to server using TCP then internally TCP sends acknowledgement to the client once the data is received by the server. I want to detect or handle that acknowledgement. How can I read or write data in TCP so that I can handle TCP acknowledgement. Thanks Sunil Kumar Sahoo

    Read the article

  • Need for explanation: NetBIOS over TCP/IP on VMware network adapter disturbs access to network share

    - by gyrolf
    Some time ago nearly all workstations in our team (Windows XP SP2) exhibited intermittend but frequent delays when accessing shares on the network. Typically the first access to a share which hadn't been accessed for some time resulted in a nearly frozen workstation for up to 30 seconds. Then everything started working fine again. Using TCPView from Sysinternals I saw that during this delays there was a connection to the netbios-ssn port on the file server which was in state SYN_SENT. First try: Disable NetBIOS over TCP/IP for the intranet network adapter. Problem solved, but I didn't like to manipulate our centrally managed network configuration for the intranet. Second try: Disable NetBIOS over TCP/IP only for the VMWare network adapter (VMNet1 used for host only communications). Problem solved again! My questions: Why does NetBIOS over TCP/IP on one network adapter disturb NetBIOS over TCP/IP on another network adapter? Is this problem specific to VMWare network adapters? Has anybody else seen this phenomen? Additional information: VMWare Workstation version 6.0.3 At the time I started seriously analysing the problem it was no more possible to find out what had been changed to our systems at the time the problems started.

    Read the article

  • Change the default route without affecting existing TCP connections

    - by Patrick Horn
    Let's say I have two public network addresses on my server: one NAT through an ISP (192.168.99.0/24), and a VPN through a different ISP (192.168.1.0/24), already configured with a per-host route to the VPN server through my ISP. Here is my initial routing table. I am currently routing through my ISP on subnet 192.168.99.0/24. $ route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.99.1 0.0.0.0 UG 0 0 0 eth1 55.66.77.88 192.168.99.1 255.255.255.255 UGH 0 0 0 eth1 192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 tap0 Now, I want new TCP connections to switch to my 192.168.1.0/24 so I type the following: $ route add -net 0.0.0.0 gw 192.168.1.1 dev tap0 When I do this, it causes some long-standing TCP connections to hang. Is there a way to I safely change the default interface for new connections, while allowing existing TCP connections to use the old route (i.e. do I need enable some sort of stateful routing table)? I am okay with a solution that only works with established TCP connections, and I don't care how hacky it is. For example, if there is a way to add temporary iptables rules for existing connections to force them over the old route. But there has to be some way to do this. EDIT: Just a note about a simple "route add -host ... " for existing connections: this solution would work if I am fine with leaving a subset of IPs on the old interface. However, in my application, this actually doesn't solve my problem because I want to allow new connections to come on the new interface even if they have the same source IP. I'm now looking at using the "ip route" command to set source-based routing rules.

    Read the article

  • Debugging "clogged" TCP connections

    - by Nikratio
    I'm having trouble with an internet connection that seems to randomly "freeze" arbitrary tcp connections. The connections stay established, but no data is coming through. When this happens, netstat still shows the connection status as ESTABLISHED on both the local computer: Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name Timer tcp 0 53 192.168.0.10:41129 173.255.235.238:143 ESTABLISHED 8219/gnutls-cli on (79.31/13/0) ..and the remote server: Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name Timer tcp 0 0 173.255.235.238:143 68.5.174.98:41129 ESTABLISHED 5303/imapd off (0.00/0/0) However, it seems that no data at all is transferred. If I run strace on the local and remote process, both just show a repeating sequence of select calls (with different fds of course), e.g. select(6, [0 5], NULL, NULL, {0, 50000}) = 0 (Timeout) select(6, [0 5], NULL, NULL, {0, 50000}) = 0 (Timeout) select(6, [0 5], NULL, NULL, {0, 50000}) = 0 (Timeout) The internet connection overall does not seem affected, I can still establish new connections to the same service on the same server without any problems. However, the affected local applications seem to be unaware of the problem and just hang. When I look at a packet capture of this connection on the client side, the last thing that happens is that the client transmits some data, then nothing happens for about 1100 seconds, and then several TCP Retransmission requests go out, with intervals increasing from 4 seconds to 130 seconds. No activity is captured after that. After about 10 minutes, the connection on the remote end disappears from the netstat (I wasn't able to catch any intermediate state), but still stays ESTABLISHED on the local end. Finally, after some more minutes, the local application aborts with a timeout and disappears from the local netstat output as well. Does anyone have a suggestion of how I could debug this further to find out where the problem lies and how to fix it? Additionaly and/or as a temporary workaround: is is there some way to globally reduce the timeout on client and/or server to reduce the time before the local application aborts?

    Read the article

  • Need for explanation: NetBIOS over TCP/IP on VMware network adapter disturbs access to network share

    - by gyrolf
    (Moved here from StackOverflow) Some time ago nearly all workstations in our team (Windows XP SP2) exhibited intermittend but frequent delays when accessing shares on the network. Typically the first access to a share which hadn't been accessed for some time resulted in a nearly frozen workstation for up to 30 seconds. Then everything started working fine again. Using TCPView from Sysinternals I saw that during this delays there was a connection to the netbios-ssn port on the file server which was in state SYN_SENT. First try: Disable NetBIOS over TCP/IP for the intranet network adapter. Problem solved, but I didn't like to manipulate our centrally managed network configuration for the intranet. Second try: Disable NetBIOS over TCP/IP only for the VMWare network adapter (VMNet1 used for host only communications). Problem solved again! My questions: Why does NetBIOS over TCP/IP on one network adapter disturb NetBIOS over TCP/IP on another network adapter? Is this problem specific to VMWare network adapters? Has anybody else seen this phenomen? Additional information: VMWare Workstation version 6.0.3 At the time I started seriously analysing the problem it was no more possible to find out what had been changed to our systems at the time the problems started.

    Read the article

  • Why i disconnect every few seconds? using USB wireless adapter

    - by Rev3rse
    i know it's for ubuntu questions..but mint and ubuntu are very similiar and i had the same problem with linux ubuntu too..so i think this is the right place for my question anyway i don't have experience with drivers and other things,after installing Linux on my machine( i did dist-upgrade btw) everything seem to be great because i didn't have to install any driver, after a while i realized that my connection stop after few minutes(actually it shows that I'm connected but it's not) so i have to reconnect and after few minutes it disconnect again. I'm using Alfa USB wireless adapter AWS036H, and my Linux version is 11 i think the driver i'm using is Realtek i searched in the Internet and i found nothing. these are some outputs of few things people usually ask for: Note: I'm NOT using a laptop. dmsg: [19445.604448] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.174.220.77 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=104 ID=10466 DF PROTO=TCP SPT=55150 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19448.164050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=41982 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=7566 DF PROTO=TCP INCOMPLETE [8 bytes] ] [19465.079565] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.128.216.31 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=5100 DF PROTO=TCP SPT=50169 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19486.270328] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.130.13.122 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=22207 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19497.480522] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [19497.593276] cfg80211: All devices are disconnected, going to restore regulatory settings [19497.593282] cfg80211: Restoring regulatory settings [19497.593346] cfg80211: Calling CRDA to update world regulatory domain [19497.638740] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [19497.638745] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638749] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [19497.638753] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638756] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [19497.638760] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638763] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [19497.638766] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638770] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [19497.638773] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638776] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [19497.638780] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638783] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [19497.638787] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638790] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [19497.638794] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638797] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [19497.638801] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638804] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [19497.638807] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638811] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [19497.638814] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638817] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [19497.638821] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638824] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [19497.638828] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638831] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [19497.638835] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638838] cfg80211: World regulatory domain updated: [19497.638841] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [19497.638845] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638848] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638852] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638855] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638859] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19513.145150] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [19513.146910] wlan0: authenticated [19513.252775] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [19513.255149] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [19513.255154] wlan0: associated [19515.675091] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=42720 DF PROTO=TCP SPT=1945 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19525.684312] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=49890 DF PROTO=TCP SPT=53401 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19551.856766] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=85.228.39.93 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=103 ID=1162 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19564.623005] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.202.21.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=17881 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19584.855364] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.49.151.87 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=117 ID=31716 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19604.688647] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.225.124.155 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=6656 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19626.362529] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.184.50.41 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=23241 DF PROTO=TCP SPT=1416 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19645.040906] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=92.250.245.244 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=51 ID=0 DF PROTO=TCP SPT=50061 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19665.212659] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.183.3.18 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=111 ID=1689 DF PROTO=TCP SPT=62817 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19685.036415] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=50638 DF PROTO=TCP SPT=49624 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19705.487915] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.122.17.82 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=112 ID=19070 DF PROTO=TCP SPT=54795 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19726.779185] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.88.116.239 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=32168 DF PROTO=TCP SPT=57330 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19744.755673] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.124.5.43 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=2288 DF PROTO=TCP SPT=6475 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19764.449183] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.216.35.19 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4281 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19784.456189] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.82.25.149 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=1866 DF PROTO=TCP SPT=59507 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19804.836687] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.56.199.3 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=14749 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19824.812685] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=186.28.7.159 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=44686 PROTO=UDP SPT=23418 DPT=6881 LEN=28 [19847.683314] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=63046 DF PROTO=TCP SPT=52192 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19884.711455] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=27914 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19884.983589] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.107.130.61 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=7742 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19905.681078] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=95.21.11.121 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=31775 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19926.035707] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.76.132.55 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=28140 DF PROTO=TCP SPT=51905 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19945.668326] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=188.92.0.197 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=7865 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19967.200339] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.102.172 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=105 ID=28408 DF PROTO=TCP SPT=63505 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19999.752732] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.166.171.200 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=36405 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20007.928719] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.235.59.16 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=46415 DF PROTO=TCP SPT=4537 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [20026.181726] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.182.169.36 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=106 ID=25126 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20048.845358] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.66.118.104 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=111 ID=18068 DF PROTO=TCP SPT=49928 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20064.341857] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=77.2.63.153 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=7242 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20090.093490] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=93.16.17.210 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=894 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20104.443995] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=89.83.235.99 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=17295 DF PROTO=TCP SPT=58979 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20128.625374] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.62.91.79 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=21793 DF PROTO=TCP SPT=51446 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20151.055506] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.135.217.213 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=112 ID=32452 DF PROTO=TCP SPT=55136 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20164.618874] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=47784 DF PROTO=TCP SPT=2422 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20184.337745] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.212.71 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=14544 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20205.007512] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.62.158.247 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=21562 DF PROTO=TCP SPT=3933 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20225.204018] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=113 ID=15045 DF PROTO=TCP SPT=49630 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20244.842290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=82.82.190.168 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=23741 DF PROTO=TCP SPT=50766 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20266.701649] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=88.153.108.124 DST=192.168.1.6 LEN=48 TOS=0x02 PREC=0x00 TTL=111 ID=206 DF PROTO=TCP SPT=2451 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20286.305414] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.240.86.73 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=107 ID=325 DF PROTO=TCP SPT=65184 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20294.293989] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43133 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56899 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297015] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43134 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12080 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297242] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43135 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25195 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20295.478338] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [20295.552735] cfg80211: All devices are disconnected, going to restore regulatory settings [20295.552742] cfg80211: Restoring regulatory settings [20295.552748] cfg80211: Calling CRDA to update world regulatory domain [20295.680635] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [20295.680641] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680644] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [20295.680648] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680652] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [20295.680655] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680658] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [20295.680662] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680665] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [20295.680669] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680672] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [20295.680676] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680679] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [20295.680683] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680687] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [20295.680690] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680693] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [20295.680697] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680700] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [20295.680704] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680708] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [20295.680711] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680715] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [20295.680718] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680722] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [20295.680725] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680728] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [20295.680732] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680736] cfg80211: World regulatory domain updated: [20295.680738] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [20295.680742] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680745] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680749] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680752] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680756] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20306.009341] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [20306.011225] wlan0: authenticated [20306.118095] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [20306.120963] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [20306.120967] wlan0: associated [20307.364427] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.91.101.130 DST=192.168.1.6 LEN=64 TOS=0x00 PREC=0x00 TTL=49 ID=36839 DF PROTO=TCP SPT=62492 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20310.914290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43180 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56900 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.936634] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43181 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12081 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.939017] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43182 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25196 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20325.941050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.118.78.99 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4407 PROTO=UDP SPT=2970 DPT=6881 LEN=28 [20328.801724] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43196 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56901 DF PROTO=TCP INCOMPLETE [8 bytes] ] ... inxi -N Network: Card-1 Realtek RTL8101E/RTL8102E PCI Express Fast Ethernet controller driver r8169 Card-2 Realtek RTL-8139/8139C/8139C+ driver 8139too /usr/lib/linuxmint/mintWifi/mintWifi.py ------------------------- * I. scanning WIFI PCI devices... ------------------------- * II. querying ndiswrapper... ------------------------- * III. querying iwconfig... lo no wireless extensions. eth0 no wireless extensions. eth1 no wireless extensions. wlan0 IEEE 802.11bg ESSID:"Home" Mode:Managed Frequency:2.437 GHz Access Point: 00:24:C8:4B:46:E0 Bit Rate=54 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=68/70 Signal level=-42 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:1132 Missed beacon:0 ------------------------- * IV. querying ifconfig... eth0 Link encap:Ethernet HWaddr 00:1f:d0:c9:b8:8e UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:43 Base address:0x4000 eth1 Link encap:Ethernet HWaddr 00:0e:2e:77:88:16 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0xd000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:10696 errors:0 dropped:0 overruns:0 frame:0 TX packets:10696 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:3823011 (3.8 MB) TX bytes:3823011 (3.8 MB) wlan0 Link encap:Ethernet HWaddr 00:c0:ca:44:62:d1 inet addr:192.168.1.6 Bcast:255.255.255.255 Mask:255.255.255.0 inet6 addr: fe80::2c0:caff:fe44:62d1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:90424 errors:0 dropped:0 overruns:0 frame:0 TX packets:65201 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:98024465 (98.0 MB) TX bytes:10345450 (10.3 MB) ------------------------- * V. querying DHCP... lspci 00:00.0 Host bridge: Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller (rev 10) 00:01.0 PCI bridge: Intel Corporation 82G33/G31/P35/P31 Express PCI Express Root Port (rev 10) 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01) 00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01) 00:1d.0 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 (rev 01) 00:1d.1 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 (rev 01) 00:1d.2 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 (rev 01) 00:1d.3 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 (rev 01) 00:1d.7 USB Controller: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller (rev 01) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1) 00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01) 00:1f.2 IDE interface: Intel Corporation N10/ICH7 Family SATA IDE Controller (rev 01) 00:1f.3 SMBus: Intel Corporation N10/ICH 7 Family SMBus Controller (rev 01) 01:00.0 VGA compatible controller: nVidia Corporation G96 [GeForce 9400 GT] (rev a1) 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 02) 04:01.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) lsmod Module Size Used by ipt_REJECT 12512 1 ipt_LOG 12784 5 xt_limit 12541 7 xt_tcpudp 12531 8 ipt_addrtype 12535 4 xt_state 12514 7 ip6table_filter 12711 1 ip6_tables 22545 1 ip6table_filter nf_nat_irc 12542 0 nf_conntrack_irc 13138 1 nf_nat_irc nf_nat_ftp 12548 0 nf_nat 24827 2 nf_nat_irc,nf_nat_ftp nf_conntrack_ipv4 19024 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13106 1 nf_nat_ftp nf_conntrack 69744 7 xt_state,nf_nat_irc,nf_conntrack_irc,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18125 1 iptable_filter x_tables 21907 10 ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,ipt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables nls_utf8 12493 10 udf 83795 1 crc_itu_t 12627 1 udf usb_storage 43946 1 uas 17676 0 snd_seq_dummy 12686 0 cryptd 19801 0 aes_i586 16956 1 aes_generic 38023 1 aes_i586 binfmt_misc 13213 1 dm_crypt 22463 0 vesafb 13449 1 nvidia 9766978 44 arc4 12473 2 rtl8187 56206 0 mac80211 257001 1 rtl8187 cfg80211 156212 2 rtl8187,mac80211 ppdev 12849 0 snd_hda_codec_realtek 255882 1 parport_pc 32111 1 psmouse 73312 0 eeprom_93cx6 12653 1 rtl8187 snd_hda_intel 24113 5 snd_hda_codec 90901 2 snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13274 1 snd_hda_codec snd_pcm 80042 3 snd_hda_intel,snd_hda_codec snd_seq_midi 13132 0 snd_rawmidi 25269 1 snd_seq_midi snd_seq_midi_event 14475 1 snd_seq_midi snd_seq 51291 3 snd_seq_dummy,snd_seq_midi,snd_seq_midi_event snd_timer 28659 2 snd_pcm,snd_seq snd_seq_device 14110 4 snd_seq_dummy,snd_seq_midi,snd_rawmidi,snd_seq joydev 17322 0 snd 55295 18 snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device serio_raw 12990 0 soundcore 12600 1 snd snd_page_alloc 14073 2 snd_hda_intel,snd_pcm lp 13349 0 parport 36746 3 ppdev,parport_pc,lp usbhid 41704 0 hid 77084 1 usbhid dm_raid45 88410 0 xor 21860 1 dm_raid45 btrfs 527388 0 zlib_deflate 26594 1 btrfs libcrc32c 12543 1 btrfs 8139too 23208 0 8139cp 22497 0 r8169 42534 0 floppy 60032 0

    Read the article

  • Nginx + php-fpm "504 Gateway Time-out" error with almost zero load (on a test-server)

    - by rahul286
    After debugging for 6-hours - I am giving this up :| We have a nginx+php-fpm+mysql in LAN with almost 100 wordpress (created and used by different designers/developers all working on test wordpres setup) We are using nginx without any issues from long. Today, all of a sudden - nginx started returning "504 Gateway Time-out" out of the blue... I checked nginx error log for a virtual host... 2010/09/06 21:24:24 [error] 12909#0: *349 upstream timed out (110: Connection timed out) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 21:25:11 [error] 12909#0: *349 recv() failed (104: Connection reset by peer) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 21:25:11 [error] 12909#0: *443 recv() failed (104: Connection reset by peer) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /info.php HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 21:25:12 [error] 12909#0: *443 connect() failed (111: Connection refused) while connecting to upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:08:32 [error] 12909#0: *1025 upstream timed out (110: Connection timed out) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET / HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:09:33 [error] 12909#0: *1025 upstream timed out (110: Connection timed out) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:09:40 [error] 12909#0: *1064 recv() failed (104: Connection reset by peer) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /info.php HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:09:40 [error] 12909#0: *1064 connect() failed (111: Connection refused) while connecting to upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:24:44 [error] 12909#0: *1313 upstream timed out (110: Connection timed out) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET / HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" 2010/09/06 22:24:53 [error] 12909#0: *1313 recv() failed (104: Connection reset by peer) while reading response header from upstream, client: 192.168.0.1, server: rahul286.rtcamp.info, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "rahul286.rtcamp.info" As I run php-fpm on port 9000 via TCP mode, I ran "netstat | grep 9000" and noticed something unusual... (Pasting partial output here for ease of read) tcp 9 0 localhost:9000 localhost:36094 CLOSE_WAIT 14269/php5-fpm tcp 0 0 localhost:46664 localhost:9000 FIN_WAIT2 - tcp 1257 0 localhost:9000 localhost:36135 CLOSE_WAIT - tcp 1257 0 localhost:9000 localhost:36125 CLOSE_WAIT - tcp 9 0 localhost:9000 localhost:36102 CLOSE_WAIT 14268/php5-fpm tcp 0 0 localhost:46662 localhost:9000 FIN_WAIT2 - tcp 745 0 localhost:9000 localhost:46644 CLOSE_WAIT - tcp 0 0 localhost:46658 localhost:9000 FIN_WAIT2 - tcp 1265 0 localhost:9000 localhost:46607 CLOSE_WAIT - tcp 0 0 localhost:46672 localhost:9000 ESTABLISHED 12909/nginx: worker tcp 1257 0 localhost:9000 localhost:36119 CLOSE_WAIT - tcp 1265 0 localhost:9000 localhost:46613 CLOSE_WAIT - tcp 0 0 localhost:46646 localhost:9000 FIN_WAIT2 - tcp 1257 0 localhost:9000 localhost:36137 CLOSE_WAIT - tcp 0 0 localhost:46670 localhost:9000 ESTABLISHED 12909/nginx: worker tcp 1265 0 localhost:9000 localhost:46619 CLOSE_WAIT - tcp 1336 0 localhost:9000 localhost:46668 ESTABLISHED - tcp 0 0 localhost:46648 localhost:9000 FIN_WAIT2 - tcp 1336 0 localhost:9000 localhost:46670 ESTABLISHED - tcp 9 0 localhost:9000 localhost:36108 CLOSE_WAIT 14274/php5-fpm tcp 1336 0 localhost:9000 localhost:46684 ESTABLISHED - tcp 0 0 localhost:46674 localhost:9000 ESTABLISHED 12909/nginx: worker tcp 1336 0 localhost:9000 localhost:46666 ESTABLISHED - tcp 1257 0 localhost:9000 localhost:46648 CLOSE_WAIT - tcp 1336 0 localhost:9000 localhost:46678 ESTABLISHED - tcp 0 0 localhost:46668 localhost:9000 ESTABLISHED 12909/nginx: wo There are plenty of "CLOSE_WAIT" & "FIN_WAIT2" pairs as highlighted below (in above output): tcp 1337 0 localhost:9000 localhost:46680 CLOSE_WAIT - tcp 0 0 localhost:46680 localhost:9000 FIN_WAIT2 - Please note port 46680 in above. I enabled mysql slow queries error log, but it didn't work. As of now restarting php5-fpm every minute via a cronjob (see command below) keeping everything running "smoothly" but I hate patchwork and want to solve this... 1 * * * * service php5-fpm restart > /dev/null I searched extensively on Google - got no help. As mentioned, this a test-server in LAN, CPU load is never crossed 0.10 and memory usage is also below 25% (System has 2GB RAM and ubuntu-server installed) So if you find its time-confusing to help me out, please atleast drop a hint. Thanks in advance for help. -Rahul (note - this is reposting of - http://forum.nginx.org/read.php?11,127694) Update: I found answer, which is posted below.

    Read the article

  • Trying to packetize TCP with non-blocking IO is hard! Am I doing something wrong?

    - by Ricket
    Oh how I wish TCP was packet-based like UDP is! But alas, that's not the case, so I'm trying to implement my own packet layer. Here's the chain of events so far (ignoring writing packets) Oh, and my Packets are very simply structured: two unsigned bytes for length, and then byte[length] data. (I can't imagine if they were any more complex, I'd be up to my ears in if statements!) Server is in an infinite loop, accepting connections and adding them to a list of Connections. PacketGatherer (another thread) uses a Selector to figure out which Connection.SocketChannels are ready for reading. It loops over the results and tells each Connection to read(). Each Connection has a partial IncomingPacket and a list of Packets which have been fully read and are waiting to be processed. On read(): Tell the partial IncomingPacket to read more data. (IncomingPacket.readData below) If it's done reading (IncomingPacket.complete()), make a Packet from it and stick the Packet into the list waiting to be processed and then replace it with a new IncomingPacket. There are a couple problems with this. First, only one packet is being read at a time. If the IncomingPacket needs only one more byte, then only one byte is read this pass. This can of course be fixed with a loop but it starts to get sorta complicated and I wonder if there is a better overall way. Second, the logic in IncomingPacket is a little bit crazy, to be able to read the two bytes for the length and then read the actual data. Here is the code, boiled down for quick & easy reading: int readBytes; // number of total bytes read so far byte length1, length2; // each byte in an unsigned short int (see getLength()) public int getLength() { // will be inaccurate if readBytes < 2 return (int)(length1 << 8 | length2); } public void readData(SocketChannel c) { if (readBytes < 2) { // we don't yet know the length of the actual data ByteBuffer lengthBuffer = ByteBuffer.allocate(2 - readBytes); numBytesRead = c.read(lengthBuffer); if(readBytes == 0) { if(numBytesRead >= 1) length1 = lengthBuffer.get(); if(numBytesRead == 2) length2 = lengthBuffer.get(); } else if(readBytes == 1) { if(numBytesRead == 1) length2 = lengthBuffer.get(); } readBytes += numBytesRead; } if(readBytes >= 2) { // then we know we have the entire length variable // lazily-instantiate data buffers based on getLength() // read into data buffers, increment readBytes // (does not read more than the amount of this packet, so it does not // need to handle overflow into the next packet's data) } } public boolean complete() { return (readBytes > 2 && readBytes == getLength()+2); } Basically I need feedback on my code. Please suggest any improvements. Even overhauling my entire system would be okay, if you have suggestions for how better to implement the whole thing. Book recommendations are welcome too; I love books. I just get the feeling that something isn't quite right.

    Read the article

  • Socksify TCP connections reaching a gateway IP -- preferably without iptables

    - by Alexandra Neagu
    I have Virtualbox installed on Debian with a few virtual machines. I can't install anything in the guests, and I use host only networking, vboxnet0. The host IP in the host network is 192.168.56.1, and the guests have static IPs in 192.168.56.0/24. I access Internet with a SOCKS proxy (without authentication) and I would like the Virtualbox guests TCP connections to be sent through the SOCKS proxy. This would also be useful for socksifying external TCP reaching a gateway network card or wireless access point. I looked at transocks, tun2socks, with dante-client, etc., but I don't know how can I achieve this without enabling IP forwarding in the host and using iptables. Maybe to attach somehow the Virtualbox vboxnet0 network to the tunnel tun0 used by tun2socks? Or maybe there is a way to do NAT to tun0 in Virtualbox? I only need TCP traffic and I don't need UDP, not even for DNS.

    Read the article

  • Linux/bsd tcp load balancing with 10 gigabit ethernet

    - by user37899
    Okay, I've been looking at layer 4 load balancing solutions for 10 gigabit links. I need the following properties Works at 10Gig ethernet speeds. Can support long live tcp connections. up to 1mil live tcp connections. Balancer not involved in the return path. Fault tolerant with tcp session fail over. low latency and good through put. can be scripted. Either a software or hardware solution. Can it be done? Anyone doing this?

    Read the article

  • Maximizing TCP connections on HAProxy load balancer

    - by imaginative
    I am currently using HAProxy in order to load balance tcp connections from clients to my Erlang app server. The connection is persistent, which means I'm limited to roughly 64K clients on an optimized server (I'm currently running HAProxy on an m1.large EC2 instance). My app server is designed to horizontally scale based on the number of TCP connections. What's worrying me though is I'll need an equal number of HAProxy servers as app servers since it's a 1:1 connection. Is there currently a way to "proxy" the tcp connection to the app server so that once HAProxy sends the client off to my Erlang server, it can free up the connection, ready to serve another client? Are there any papers, existing solutions out there I can read so that I only have to worry about the 64K limit on my app servers, and not on the load balancing servers themselves?

    Read the article

  • Solaris TCP/IP performance tuning

    - by Andy Faibishenko
    I am trying to tune a high message traffic system running on Solaris. The architecture is a large number (600) of clients which connect via TCP to a big Solaris server and then send/receive relatively small messages (.5 to 1K payload) at high rates. The goal is to minimize the latency of each message processed. I suspect that the TCP stack of the server is getting overwhelmed by all the traffic. What are some commands/metrics that I can use to confirm this, and in case this is true, what is the best way to alleviate this bottleneck? PS I posted this on StackOverflow originally. One person suggested snoop and dtrace. dtrace seems pretty general - are there any additional pointers on how to use it to diagnose TCP issues?

    Read the article

  • TCP > COM1 for receiving messages and displaying on POS display pole

    - by JakeTheSnake
    I currently have a Java Applet running on my web page that communicates to a display pole via COM1. However since the Java update I can no longer run self-signed Java Applets and I figure it would just be easier to send an AJAX request back to the server and have the server send a response to a TCP port on the computer...the computer would need a TCP COM virtual adapter. How do I install a virtual adapter to go from a TCP port to COM1? I've looked into com0com and that is just confusing as hell to me, and I don't see how to connect any ports to COM1. I've tried tcp2com but it doesn't seem to install the service in Windows 7 x64. I've tried com2tcp and the interface seems like it WOULD work (I haven't tested), but I don't want an app running on the desktop...it needs to be a service that runs in the background. So to summarize how it would work: Web page on comp1 sends AJAX request to server Server sends text response to comp1 on port 999 comp1 has virtual COM port listening on port 999, sends data to COM1 pole displays data

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >