Search Results

Search found 18865 results on 755 pages for 'distinct values'.

Page 151/755 | < Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >

  • Incremental Statistics Maintenance – what statistics will be gathered after DML occurs on the table?

    - by Maria Colgan
    Incremental statistics maintenance was introduced in Oracle Database 11g to improve the performance of gathering statistics on large partitioned table. When incremental statistics maintenance is enabled for a partitioned table, oracle accurately generated global level  statistics by aggregating partition level statistics. As more people begin to adopt this functionality we have gotten more questions around how they expected incremental statistics to behave in a given scenario. For example, last week we got a question around what partitions should have statistics gathered on them after DML has occurred on the table? The person who asked the question assumed that statistics would only be gathered on partitions that had stale statistics (10% of the rows in the partition had changed). However, what they actually saw when they did a DBMS_STATS.GATHER_TABLE_STATS was all of the partitions that had been affected by the DML had statistics re-gathered on them. This is the expected behavior, incremental statistics maintenance is suppose to yield the same statistics as gathering table statistics from scratch, just faster. This means incremental statistics maintenance needs to gather statistics on any partition that will change the global or table level statistics. For instance, the min or max value for a column could change after just one row is inserted or updated in the table. It might easier to demonstrate this using an example. Let’s take the ORDERS2 table, which is partitioned by month on order_date.  We will begin by enabling incremental statistics for the table and gathering statistics on the table. After the statistics gather the last_analyzed date for the table and all of the partitions now show 13-Mar-12. And we now have the following column statistics for the ORDERS2 table. We can also confirm that we really did use incremental statistics by querying the dictionary table sys.HIST_HEAD$, which should have an entry for each column in the ORDERS2 table. So, now that we have established a good baseline, let’s move on to the DML. Information is loaded into the latest partition of the ORDERS2 table once a month. Existing orders maybe also be update to reflect changes in their status. Let’s assume the following transactions take place on the ORDERS2 table this month. After these transactions have occurred we need to re-gather statistic since the partition ORDERS_MAR_2012 now has rows in it and the number of distinct values and the maximum value for the STATUS column have also changed. Now if we look at the last_analyzed date for the table and the partitions, we will see that the global statistics and the statistics on the partitions where rows have changed due to the update (ORDERS_FEB_2012) and the data load (ORDERS_MAR_2012) have been updated. The column statistics also reflect the changes with the number of distinct values in the status column increase to reflect the update. So, incremental statistics maintenance will gather statistics on any partition, whose data has changed and that change will impact the global level statistics.

    Read the article

  • XNA Per-Polygon Collision Check

    - by user22985
    I'm working on a project in XNA for WP7 with a low-poly environment, my problem is I need to setup a working per-polygon collision check between 2 or more 3d meshes. I've checked tons of tutorials but all of them use bounding-boxes, bounding-spheres,rays etc., but what I really need is a VERY precise way of checking if the polygons of two distinct models have intersected or not. If you could redirect me to an example or at least give me some pointers I would be grateful.

    Read the article

  • How to create a text file from column and FTP that text file to server

    - by addi
    I have workbook with 2 sheets (Sheet1 and sheet2). On sheet1 user will enter the data which will be populated in the column B and then column C will hold the values from Col A and B on sheet2. I need to create a text file from the values in coloumn C on a click of a button and then upload(FTP) that file to a server. So the sheet1 will have 2 buttons. Button1 will save the excel file and create the text file in windows temp directory. e.g text.xls text.prop (text file whoch has all the values in column C on sheet2) Button2 will upload (FTP) the text file (.prop) to a server. Can anyone please send me the steps and VB code to achieve the above tasks? Thanks in Advance Addi

    Read the article

  • perl sorting an array of hashes

    - by srk
    use strict; my @arr; $arr[0][0]{5} = 16; $arr[0][1]{6} = 11; $arr[0][2]{7} = 25; $arr[0][3]{8} = 31; $arr[0][4]{9} = 16; $arr[0][5]{10} = 17; sort the array based on hash values so this should change to $arr[0][0]{6} = 11; $arr[0][1]{9} = 16; $arr[0][2]{5} = 16; $arr[0][3]{10} = 17; $arr[0][4]{7} = 25; $arr[0][5]{8} = 31; first sort on values in the hash.. when the values are same reverse sort based on keys... Please tell me how to do this.. Thank you

    Read the article

  • Why some consider static analysis a testing and some do not?

    - by user970696
    Preparing myself also to ISTQB certification, I found they call static analysis actually as a static testing, while some engineering book distinct between static analysis and testing, which is the dynamic activity. I tent to think that static analysis is not a testing in the true sense as it does not test, it checks/verifies. But sure I would love to hear opinion of the true experts here. Thank you

    Read the article

  • Change Data Capture

    - by Ricardo Peres
    There's an hidden gem in SQL Server 2008: Change Data Capture (CDC). Using CDC we get full audit capabilities with absolutely no implementation code: we can see all changes made to a specific table, including the old and new values! You can only use CDC in SQL Server 2008 Standard or Enterprise, Express edition is not supported. Here are the steps you need to take, just remember SQL Agent must be running: use SomeDatabase; -- first create a table CREATE TABLE Author ( ID INT NOT NULL PRIMARY KEY IDENTITY(1, 1), Name NVARCHAR(20) NOT NULL, EMail NVARCHAR(50) NOT NULL, Birthday DATE NOT NULL ) -- enable CDC at the DB level EXEC sys.sp_cdc_enable_db -- check CDC is enabled for the current DB SELECT name, is_cdc_enabled FROM sys.databases WHERE name = 'SomeDatabase' -- enable CDC for table Author, all columns exec sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'Author', @role_name = null -- insert values into table Author insert into Author (Name, EMail, Birthday, Username) values ('Bla', 'bla@bla', 1990-10-10, 'bla') -- check CDC data for table Author -- __$operation: 1 = DELETE, 2 = INSERT, 3 = BEFORE UPDATE 4 = AFTER UPDATE -- __$start_lsn: operation timestamp select * from cdc.dbo_author_CT -- update table Author update Author set EMail = '[email protected]' where Name = 'Bla' -- check CDC data for table Author select * from cdc.dbo_author_CT -- delete from table Author delete from Author -- check CDC data for table Author select * from cdc.dbo_author_CT -- disable CDC for table Author -- this removes all CDC data, so be carefull exec sys.sp_cdc_disable_table @source_schema = 'dbo', @source_name = 'Author', @capture_instance = 'dbo_Author' -- disable CDC for the entire DB -- this removes all CDC data, so be carefull exec sys.sp_cdc_disable_db SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.all();

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Color schemes generation - theory and algorithms

    - by daniel.sedlacek
    Hi I will be generating charts and diagrams and I am looking for some theory on color schemes and algorithm examples. Example questions: How to generate complementary or analogous colors? How to generate pastel, cold and warm colors? How to generate any number of random but distinct colors? How to translate all that to the hex triplet (web color)? My implementation will be in AS3 but any examples in metacode are welcome.

    Read the article

  • How should I work out VAT (UK tax) in my eCommerce site?

    - by Leonard Challis
    We have an ecommerce system in place. The sales actually go through Sage, so we have an export script from our system that uses a third-party Sage Importer program. With a new version of this importer, values are checked more thoroughly. We are getting 1 pence discrepancies because of the way rounding works - our system has always held prices and worked to 4 decimal places. In the checkout the totals would be worked out first, then the rounding to 2 decimal places. The importer does rounding first, though. So, for instance: Our way: Product 1: £13.4561 Qty: 2 Total inc VAT = £32.29 (to 2dp) Importer way: Our way: Product 1: £13.4561 Qty: 2 Total inc VAT = £32.30 (to 2dp) Management are reluctant to lose the 4dp but the developers of the Sage importer have said that this is correct and makes sense -- you woudn't sell a product for £13.4561 in a shop, nor would you charge someone tax at 4 decimal places. I contacted the HMRC and the operator didn't really give me much to go on, telling me a technician would phone back, to which they haven't and I'm still waiting after almost a week and numerous follow-up calls. I did find a PDF on the HMRC's web site, but this did about us much to confuse me as it did to answer my questions. I see that they're happy for people to round up or down, as long it is consistent, but I can't tell whether it should be done on a line by line basis or on the end total of the order. We are now in the position where we need to decide whether it's worth us doing one of the following, or something completely different. Please advise with any experience or information I can read. Change all products on the site to use 2dp Keep 4dp but round each line in the order to 2dp before working out tax Keep it as it is and "fudge" the values at the export script (i.e. make that values correct by adding or subtracting 1p and changing the shipping cost to make the totals still work out) Any thoughts?

    Read the article

  • quick look at: dm_db_index_physical_stats

    - by fatherjack
    A quick look at the key data from this dmv that can help a DBA keep databases performing well and systems online as the users need them. When the dynamic management views relating to index statistics became available in SQL Server 2005 there was much hype about how they can help a DBA keep their servers running in better health than ever before. This particular view gives an insight into the physical health of the indexes present in a database. Whether they are use or unused, complete or missing some columns is irrelevant, this is simply the physical stats of all indexes; disabled indexes are ignored however. In it’s simplest form this dmv can be executed as:   The results from executing this contain a record for every index in every database but some of the columns will be NULL. The first parameter is there so that you can specify which database you want to gather index details on, rather than scan every database. Simply specifying DB_ID() in place of the first NULL achieves this. In order to avoid the NULLS, or more accurately, in order to choose when to have the NULLS you need to specify a value for the last parameter. It takes one of 4 values – DEFAULT, ‘SAMPLED’, ‘LIMITED’ or ‘DETAILED’. If you execute the dmv with each of these values you can see some interesting details in the times taken to complete each step. DECLARE @Start DATETIME DECLARE @First DATETIME DECLARE @Second DATETIME DECLARE @Third DATETIME DECLARE @Finish DATETIME SET @Start = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, DEFAULT) AS ddips SET @First = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'SAMPLED') AS ddips SET @Second = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'LIMITED') AS ddips SET @Third = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'DETAILED') AS ddips SET @Finish = GETDATE() SELECT DATEDIFF(ms, @Start, @First) AS [DEFAULT] , DATEDIFF(ms, @First, @Second) AS [SAMPLED] , DATEDIFF(ms, @Second, @Third) AS [LIMITED] , DATEDIFF(ms, @Third, @Finish) AS [DETAILED] Running this code will give you 4 result sets; DEFAULT will have 12 columns full of data and then NULLS in the remainder. SAMPLED will have 21 columns full of data. LIMITED will have 12 columns of data and the NULLS in the remainder. DETAILED will have 21 columns full of data. So, from this we can deduce that the DEFAULT value (the same one that is also applied when you query the view using a NULL parameter) is the same as using LIMITED. Viewing the final result set has some details that are worth noting: Running queries against this view takes significantly longer when using the SAMPLED and DETAILED values in the last parameter. The duration of the query is directly related to the size of the database you are working in so be careful running this on big databases unless you have tried it on a test server first. Let’s look at the data we get back with the DEFAULT value first of all and then progress to the extra information later. We know that the first parameter that we supply has to be a database id and for the purposes of this blog we will be providing that value with the DB_ID function. We could just as easily put a fixed value in there or a function such as DB_ID (‘AnyDatabaseName’). The first columns we get back are database_id and object_id. These are pretty explanatory and we can wrap those in some code to make things a little easier to read: SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName] … FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips  gives us   SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName], [i].[name] AS [IndexName] , ….. FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips INNER JOIN [sys].[indexes] AS i ON [ddips].[index_id] = [i].[index_id] AND [ddips].[object_id] = [i].[object_id]     These handily tie in with the next parameters in the query on the dmv. If you specify an object_id and an index_id in these then you get results limited to either the table or the specific index. Once again we can place a  function in here to make it easier to work with a specific table. eg. SELECT * FROM [sys].[dm_db_index_physical_stats] (DB_ID(), OBJECT_ID(‘AdventureWorks2008.Person.Address’) , 1, NULL, NULL) AS ddips   Note: Despite me showing that functions can be placed directly in the parameters for this dmv, best practice recommends that functions are not used directly in the function as it is possible that they will fail to return a valid object ID. To be certain of not passing invalid values to this function, and therefore setting an automated process off on the wrong path, declare variables for the OBJECT_IDs and once they have been validated, use them in the function: DECLARE @db_id SMALLINT; DECLARE @object_id INT; SET @db_id = DB_ID(N’AdventureWorks_2008′); SET @object_id = OBJECT_ID(N’AdventureWorks_2008.Person.Address’); IF @db_id IS NULL BEGINPRINT N’Invalid database’; ENDELSE IF @object_id IS NULL BEGINPRINT N’Invalid object’; ENDELSE BEGINSELECT * FROM sys.dm_db_index_physical_stats (@db_id, @object_id, NULL, NULL , ‘LIMITED’); END; GO In cases where the results of querying this dmv don’t have any effect on other processes (i.e. simply viewing the results in the SSMS results area)  then it will be noticed when the results are not consistent with the expected results and in the case of this blog this is the method I have used. So, now we can relate the values in these columns to something that we recognise in the database lets see what those other values in the dmv are all about. The next columns are: We’ll skip partition_number, index_type_desc, alloc_unit_type_desc, index_depth and index_level  as this is a quick look at the dmv and they are pretty self explanatory. The final columns revealed by querying this view in the DEFAULT mode are avg_fragmentation_in_percent. This is the amount that the index is logically fragmented. It will show NULL when the dmv is queried in SAMPLED mode. fragment_count. The number of pieces that the index is broken into. It will show NULL when the dmv is queried in SAMPLED mode. avg_fragment_size_in_pages. The average size, in pages, of a single fragment in the leaf level of the IN_ROW_DATA allocation unit. It will show NULL when the dmv is queried in SAMPLED mode. page_count. Total number of index or data pages in use. OK, so what does this give us? Well, there is an obvious correlation between fragment_count, page_count and avg_fragment_size-in_pages. We see that an index that takes up 27 pages and is in 3 fragments has an average fragment size of 9 pages (27/3=9). This means that for this index there are 3 separate places on the hard disk that SQL Server needs to locate and access to gather the data when it is requested by a DML query. If this index was bigger than 72KB then having it’s data in 3 pieces might not be too big an issue as each piece would have a significant piece of data to read and the speed of access would not be too poor. If the number of fragments increases then obviously the amount of data in each piece decreases and that means the amount of work for the disks to do in order to retrieve the data to satisfy the query increases and this would start to decrease performance. This information can be useful to keep in mind when considering the value in the avg_fragmentation_in_percent column. This is arrived at by an internal algorithm that gives a value to the logical fragmentation of the index taking into account the multiple files, type of allocation unit and the previously mentioned characteristics if index size (page_count) and fragment_count. Seeing an index with a high avg_fragmentation_in_percent value will be a call to action for a DBA that is investigating performance issues. It is possible that tables will have indexes that suffer from rapid increases in fragmentation as part of normal daily business and that regular defragmentation work will be needed to keep it in good order. In other cases indexes will rarely become fragmented and therefore not need rebuilding from one end of the year to another. Keeping this in mind DBAs need to use an ‘intelligent’ process that assesses key characteristics of an index and decides on the best, if any, defragmentation method to apply should be used. There is a simple example of this in the sample code found in the Books OnLine content for this dmv, in example D. There are also a couple of very popular solutions created by SQL Server MVPs Michelle Ufford and Ola Hallengren which I would wholly recommend that you review for much further detail on how to care for your SQL Server indexes. Right, let’s get back on track then. Querying the dmv with the fifth parameter value as ‘DETAILED’ takes longer because it goes through the index and refreshes all data from every level of the index. As this blog is only a quick look a we are going to skate right past ghost_record_count and version_ghost_record_count and discuss avg_page_space_used_in_percent, record_count, min_record_size_in_bytes, max_record_size_in_bytes and avg_record_size_in_bytes. We can see from the details below that there is a correlation between the columns marked. Column 1 (Page_Count) is the number of 8KB pages used by the index, column 2 is how full each page is (how much of the 8KB has actual data written on it), column 3 is how many records are recorded in the index and column 4 is the average size of each record. This approximates to: ((Col1*8) * 1024*(Col2/100))/Col3 = Col4*. avg_page_space_used_in_percent is an important column to review as this indicates how much of the disk that has been given over to the storage of the index actually has data on it. This value is affected by the value given for the FILL_FACTOR parameter when creating an index. avg_record_size_in_bytes is important as you can use it to get an idea of how many records are in each page and therefore in each fragment, thus reinforcing how important it is to keep fragmentation under control. min_record_size_in_bytes and max_record_size_in_bytes are exactly as their names set them out to be. A detail of the smallest and largest records in the index. Purely offered as a guide to the DBA to better understand the storage practices taking place. So, keeping an eye on avg_fragmentation_in_percent will ensure that your indexes are helping data access processes take place as efficiently as possible. Where fragmentation recurs frequently then potentially the DBA should consider; the fill_factor of the index in order to leave space at the leaf level so that new records can be inserted without causing fragmentation so rapidly. the columns used in the index should be analysed to avoid new records needing to be inserted in the middle of the index but rather always be added to the end. * – it’s approximate as there are many factors associated with things like the type of data and other database settings that affect this slightly.  Another great resource for working with SQL Server DMVs is Performance Tuning with SQL Server Dynamic Management Views by Louis Davidson and Tim Ford – a free ebook or paperback from Simple Talk. Disclaimer – Jonathan is a Friend of Red Gate and as such, whenever they are discussed, will have a generally positive disposition towards Red Gate tools. Other tools are often available and you should always try others before you come back and buy the Red Gate ones. All code in this blog is provided “as is” and no guarantee, warranty or accuracy is applicable or inferred, run the code on a test server and be sure to understand it before you run it on a server that means a lot to you or your manager.

    Read the article

  • Multitouch script (using xinput) no longer working

    - by Pitto
    #!/bin/bash # # list of synaptics device properties http://www.x.org/archive/X11R7.5/doc/man/man4/synaptics.4.html#sect4 # list current synaptics device properties: xinput list-props '"SynPS/2 Synaptics TouchPad"' # sleep 5 #added delay... xinput set-int-prop "SynPS/2 Synaptics TouchPad" "Device Enabled" 8 1 xinput --set-prop --type=int --format=32 "SynPS/2 Synaptics TouchPad" "Synaptics Two-Finger Pressure" 4 xinput --set-prop --type=int --format=32 "SynPS/2 Synaptics TouchPad" "Synaptics Two-Finger Width" 9 # Below width 1 finger touch, above width simulate 2 finger touch. - value=pad-pixels xinput --set-prop --type=int --format=8 "SynPS/2 Synaptics TouchPad" "Synaptics Edge Scrolling" 1 1 0 # vertical, horizontal, corner - values: 0=disable 1=enable xinput --set-prop --type=int --format=32 "SynPS/2 Synaptics TouchPad" "Synaptics Jumpy Cursor Threshold" 250 # stabilize 2 finger actions - value=pad-pixels #xinput --set-prop --type=int --format=8 "SynPS/2 Synaptics TouchPad" "Synaptics Tap Action" 0 0 0 0 1 2 3 # pad corners rt rb lt lb tap fingers 1 2 3 (can't simulate more then 2 tap fingers AFAIK) - values: 0=disable 1=left 2=middle 3=right etc. (in FF 8=back 9=forward) xinput --set-prop --type=int --format=8 "SynPS/2 Synaptics TouchPad" "Synaptics Two-Finger Scrolling" 1 0 # vertical scrolling, horizontal scrolling - values: 0=disable 1=enable #xinput --set-prop --type=int --format=8 "SynPS/2 Synaptics TouchPad" "Synaptics Circular Scrolling" 1 #xinput --set-prop --type=int --format=8 "SynPS/2 Synaptics TouchPad" "Synaptics Circular Scrolling Trigger" 3 Hello everybody... The above script allowed me to use happily multitouch for a month... Now if I do a two fingers scrolling the mouse cursor just runs on the screen like possessed... Any hints?

    Read the article

  • Update to 13.10: blank screen and repeated suspend on wake from suspend

    - by user208026
    After updating from 13.04 to 13.10, intermittently when awaking from suspend, my screen will blink to black screen a few times, offer a login screen, and then go back to suspend unexpectedly. This will repeat each time I subsequently awake it from suspend. Only a restart will escape the suspend loop. This issue arose in tandem with the already raised issue regarding networking not restarting on wake from suspend, though appears to be distinct from that issue.

    Read the article

  • The role of the Infrastructure DBA

    - by GavinPayneUK
    Do you have someone performing an Infrastructure DBA role within your organisation? Do you realise why today you now might need one? When I first started working with SQL Server there were three distinct roles in the SQL Server virtual team: developer , DBA and sysadmin . In my simple terms, the developer looked after the “code”: the schema, stored procedures, and any ETL to get data in, out or updated within the database. They could talk in business entity terms about Customer numbers, Product codes...(read more)

    Read the article

  • XNA Required information to represent 2D Sprite graphically

    - by Fire-Dragon-DoL
    I was thinking about dividing my game engine into 2 threads: render thread and update thread (I can't come up on how to divide update thread from physic thread at the moment). That said, I have to duplicate all Sprite informations, what do I really need to represents a 2D Sprite graphically? Here are my ideas (I'll mark with ? things that I'm not sure): Vector2 Position float Rotation ? Vector2 Pivot ? Rectangle TextureRectangle Texture2D Texture Vector2 ImageOrigin ? (is it tracked somewhere else?) If you have any suggestion about using different types for datas, it's appreciated Last part of the question: isn't this a lot of data to copy in a buffer?what should I really copy in the buffer?I'm following this tutorial: http://www.sgtconker.com/2009/11/article-multi-threading-your-xna/3/ Thanks UPDATE 1: Newer values at the moment: Vector2 Position float Rotation Vector2 Pivot Rectangle TextureRectangle Texture2D Texture Color Color byte Facing (can be left or right, I'll do it with an enum) I re-read the tutorial, what I was doing wrong is not that I need to pass all those values, I need to pass only changed values as messages. UPDATE 2: Vector2 Position float Rotation Vector2 Pivot Rectangle TextureRectangle Texture2D Texture Color Color bool Flip uint DrawOrder Vector2 Scale bool Visible ? Mhhh, should Visibile be included?

    Read the article

  • Oracle ERP Cloud Solution Defines Revenue Recognition Software Market

    - by Steve Dalton
    Normal 0 false false false EN-US X-NONE X-NONE Revenue is a fundamental yardstick of a company's performance, and one of the most important metrics for investors in the capital markets. So it’s no surprise that the accounting standard boards have devoted significant resources to this topic, with a key goal of ensuring that companies use a consistent method of recognizing revenue. Due to the myriad of revenue-generating transactions, and the divergent ways organizations recognize revenue today, the IFRS and FASB have been working for 12 years on a common set of accounting standards that apply to all industries in virtually all countries. Through their joint efforts on May 28, 2014 the FASB and IFRS released the IFRS 15 / ASU 2014-9 (Revenue from Contracts with Customers) converged accounting standard. This standard applies to revenue in all public companies, but heavily impacts organizations in any industry that might have complex sales contracts with multiple distinct deliverables (obligations). For example, an auto dealer who bundles free service with the sale of a car can only recognize the service revenue once the owner of the car brings it in for work. Similarly, high-tech companies that bundle software licenses, consulting, and support services on a sales contract will recognize bundled service revenue once the services are delivered. Now all companies need to review their revenue for hidden bundling and implicit obligations. Numerous time-consuming and judgmental activities must be performed to properly recognize revenue for complex sales contracts. To illustrate, after the contract is identified, organizations must identify and examine the distinct deliverables, determine the estimated selling price (ESP) for each deliverable, then allocate the total contract price to each deliverable based on the ESPs. In terms of accounting, organizations must determine whether the goods or services have been delivered or performed to the customer’s satisfaction, then either book revenue in the current period or record a liability for the obligation if revenue will be recognized in a future accounting period. Oracle Revenue Management Cloud was architected and developed so organizations can simplify and streamline revenue recognition. Among other capabilities, the solution uses business rules to efficiently identify and examine contracts, intelligently calculate and allocate deliverable prices based on prescribed inputs, and accurately recognize revenue for each deliverable based on customer satisfaction. "Oracle works very closely with our customers, the Big 4 accounting firms, and the accounting standard boards to deliver an adaptive, comprehensive, new generation revenue recognition solution,” said Rondy Ng, Senior Vice President, Applications Development. “With the recently announced IFRS 15 / ASU 2014-9, Oracle is ready to support customer adoption of the new standard with our Revenue Management Cloud,” said Rondy. Oracle Revenue Management Cloud, an integral part of Oracle Financials Cloud, helps organizations comply with accounting standards, provides them with confidence that reported revenue is materially accurate, and simplifies the accounting process for revenue recognition. Stay tuned to this blog for regular updates on Oracle Revenue Management Cloud. We also invite you to review our new oracle.com ERP pages @ oracle.com/erp. We will be updating these pages very soon with more information about Oracle Revenue Management Cloud.

    Read the article

  • Meta tags again. Good or bad to use them as page content?

    - by Guandalino
    From a SEO point of view, is it wise to use exactly the same page title value and keyword/description meta tag values not only as meta information, but also as page content? An example illustrates what I mean. Thanks for any answer, best regards. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>Meta tags again. Good or bad to use them as page content?</title> <meta name="DESCRIPTION" content="Why it is wise to use (or not) page title, meta tags description and keyword values as page content."> <meta name="KEYWORDS" content="seo,meta,tags,cms,content"> </head> <body> <h1>Meta tags again. Good or bad to use them as page content?</h1> <h2>Why it is wise to use (or not) page title, meta tags description and keyword values as page content.</h2> <ul> <li><a href="http://webmasters.stackexchange.com/questions/tagged/seo">seo</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/meta">meta</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/tags">tags</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/cms">cms</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/content">content</a> </ul> <p>Read the discussion on <a href="#">webmasters.stackexchange.com</a>. </body> </html>

    Read the article

  • How to fix a Silverlight download progress indicator that jumps from 0% to 100%

    - by JaydPage
    Originally posted on: http://geekswithblogs.net/JaydPage/archive/2013/10/29/fixing-a-broken-silverlight-xap-file-download-progress-indicator-that.aspxAfter moving our silverlight application to a new server I came across an problem whereby the download progress indicator on the splash screen was stuck on 0% until the file had completely downloaded.After about an hour of searching for the answer I realised that there is a distinct lack of help out there for this problem.It is a simple fix:1) On the server that is hosting your website, go into IIS and click on the website.2) Click on the compression section3) Un-check the option that says "Dynamic Content Compression"4) Save changes

    Read the article

  • Oracle University: Database 11g Certification News(Week 39)

    - by rituchhibber
    The following exam has recently become available for beta testing: Exam Title (and code) Certification Track Oracle Database 11g Release 2: SQL Tuning  (1Z1-117) Oracle Certified Expert, Oracle Database 11g Release 2 SQL Tuning Full preparation details are available on the exam page, including prerequisites for this certification, exam topics and pricing. Remember: Your OPN discount is applied to the standard pricing shown on the website.A beta exam offers you two distinct advantages: you will be one of the first to get certified you pay a lower price. Beta exams can be taken at any Pearson VUE Testing Center.

    Read the article

  • Meta tags again. Good or bad to use them as page content?

    - by Guandalino
    From a SEO point of view, is it wise to use exactly the same page title value and keyword/description meta tag values not only as meta information, but also as page content? An example illustrates what I mean. Thanks for any answer, best regards. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>Meta tags again. Good or bad to use them as page content?</title> <meta name="DESCRIPTION" content="Why it is wise to use (or not) page title, meta tags description and keyword values as page content."> <meta name="KEYWORDS" content="seo,meta,tags,cms,content"> </head> <body> <h1>Meta tags again. Good or bad to use them as page content?</h1> <h2>Why it is wise to use (or not) page title, meta tags description and keyword values as page content.</h2> <ul> <li><a href="http://webmasters.stackexchange.com/questions/tagged/seo">seo</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/meta">meta</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/tags">tags</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/cms">cms</a> <li><a href="http://webmasters.stackexchange.com/questions/tagged/content">content</a> </ul> <p>Read the discussion on <a href="#">webmasters.stackexchange.com</a>. </body> </html>

    Read the article

  • libgdx ActorGestureListener.pan() parameters not moving actor in smooth line

    - by Roar Skullestad
    I override the pan method in ActorGestureListener to implement dragging actors in libgdx (scene2d). When I move individual pieces on a board they move smoothly, but when moving the whole board, the x and y coordinates that is sent to pan is "jumping", and in an increasingly amount the longer it is dragged. These are an example of the deltaY coordinates sent to pan when dragging smoothly downwards: 1.1156368 -0.13125038 -1.0500145 0.98439217 -1.0500202 0.91877174 -0.984396 0.9187679 -0.98439026 0.9187641 -0.13125038 This is how I move the camera: public void pan (InputEvent event, float x, float y, float deltaX, float deltaY) { cam.translate(-deltaX, -deltaY); I have been using both the delta values sent to pan and the real position values, but similar results. And since it is the coordinates that are wrong, it doesn't matter whether I move the board itself or the camera. What could the cause be for this and what is the solution? When I move camera only half the delta-values, it moves smoothly but only at half the speed of the mouse pointer: cam.translate(-deltaX / 2, -deltaY / 2); It seems like the moving of camera or board affects the mouse input coordinates. How can I drag at "mouse speed" and still get smooth movements? (This question was also posted on stackoverflow: http://stackoverflow.com/questions/20693020/libgdx-actorgesturelistener-pan-parameters-not-moving-actor-in-smooth-line)

    Read the article

  • Get entities ids from two similar collections using one method

    - by Patryk Roszczyniala
    I've got two lists: List<Integer, ZooEntity> zoos; List<Integer, List<ZooEntity>> groupOfZoos; These operations will return collections of values: Collection<ZooEntity> cz = zoos.values(); Collection<List<ZooEntity>> czList = groupOfZoos.values(); What I want to achieve is to get list of all zoo ids. List<Integer> zooIds = cz ids + czList ids; Of course I can create two methods to do what I want: public List<Integer> getIdsFromFlatList(Collection<ZooEntity> list) { List<Integer> ids = new ArrayList<Integer>(); for (ZooEntity z : list) { ids.add(z.getId()); } return ids; } public List<Integer> getIdsFromNestedList(Collection<List<ZooEntity>> list) { List<Integer> ids = new ArrayList<Integer>(); for (List<ZooEntity> zList : list) { for (ZooEntity z : zList) { ids.add(z.getId()); } } return ids; } As you can see those two methods are very similar and here is my question: Is it good to create one method (for example using generics) which will get ids from those two lists (zoos and groupOfZoos). If yes how it should look like? If no what is the best solution? BTW. This is only the example. I've got very similar problem at job and I want to do it in preety way (I can't change enities, I can change only getIds...() methods).

    Read the article

  • Is NAN suitable for communicating that an invalid parameter was involved in a calculation?

    - by Arman
    I am currently working on a numerical processing system that will be deployed in a performance-critical environment. It takes inputs in the form of numerical arrays (these use the eigen library, but for the purpose of this question that's perhaps immaterial), and performs some range of numerical computations (matrix products, concatenations, etc.) to produce outputs. All arrays are allocated statically and their sizes are known at compile time. However, some of the inputs may be invalid. In these exceptional cases, we still want the code to be computed and we still want outputs not "polluted" by invalid values to be used. To give an example, let's take the following trivial example (this is pseudo-code): Matrix a = {1, 2, NAN, 4}; // this is the "input" matrix Scalar b = 2; Matrix output = b * a; // this results in {2, 4, NAN, 8} The idea here is that 2, 4 and 8 are usable values, but the NAN should signal to the receipient of the data that that entry was involved in an operation that involved an invalid value, and should be discarded (this will be detected via a std::isfinite(value) check before the value is used). Is this a sound way of communicating and propagating unusable values, given that performance is critical and heap allocation is not an option (and neither are other resource-consuming constructs such as boost::optional or pointers)? Are there better ways of doing this? At this point I'm quite happy with the current setup but I was hoping to get some fresh ideas or productive criticism of the current implementation.

    Read the article

  • Is it possible to efficiently store all possible phone numbers in memory?

    - by Spencer K
    Given the standard North American phone number format: (Area Code) Exchange - Subscriber, the set of possible numbers is about 6 billion. However, efficiently breaking down the nodes into the sections listed above would yield less than 12000 distinct nodes that can be arranged in groupings to get all the possible numbers. This seems like a problem already solved. Would it done via a graph or tree?

    Read the article

  • Stay Connected To Friends With Free SMS

    Online SMSs have received mass acceptance today. Though it is distinct in many ways from a mobile phone, it has its own advantages. In today?s fast paced life, people are left with really less time... [Author: Pooja Singh - Computers and Internet - March 29, 2010]

    Read the article

  • Syntax logic suggestions

    - by Anna
    This syntax will be used inside HTML attributes. Here are a few examples of what I have so far: <input name="a" conditions="!b, c" /> <input name="b" /> <input name="c" /> This will make input "a" do something if b is not checked and c is checked (b and c are assumed to be checkboxes if they don't have a :value defined) <input name="a" conditions="!b:foo|bar, c:foo" /> <input name="b" /> <input name="c" /> This will make input "a" do something if bdoesn't have foo or bar values, and if c has the foo value. <input name="a" conditions="!b:EMPTY" /> <input name="b" /> Makes input "a" do something if b has a value assigned. So, essentially , acts as logical AND, : as equals (=), ! as NOT, and | as OR. The | (OR) is only needed between values (at least I think so), and AND is not needed between values for obvious reasons :) EMPTY means empty value, like <input value="" /> Do you have any suggestions on improving this syntax, like making it more human friendly? For example I think the "EMPTY" keyword is not really appropriate and should be replaced with a character, but I don't know which one to choose.

    Read the article

< Previous Page | 147 148 149 150 151 152 153 154 155 156 157 158  | Next Page >