Search Results

Search found 12872 results on 515 pages for 'memory alignment'.

Page 159/515 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • Flash ActiveX: How to Load Movie from memory or resource or stream?

    - by yuku
    I'm embedding a Flash ActiveX control in my C++ app (Flash.ocx, Flash10a.ocx, etc depending on your Flash version). I can load an SWF file by calling LoadMovie(0, filename), but the file needs to physically reside in the disk. How to load the SWF from memory (or resource, or stream)? I'm sure there must be a way, because commercial solutions like f-in-box's feature Load flash movies from memory directly also uses Flash ActiveX control.

    Read the article

  • How does loop address alignment affect the speed on Intel x86_64?

    - by Alexander Gololobov
    I'm seeing 15% performance degradation of the same C++ code compiled to exactly same machine instructions but located on differently aligned addresses. When my tiny main loop starts at 0x415220 it's faster then when it is at 0x415250. I'm running this on Intel Core2 Duo. I use gcc 4.4.5 on x86_64 Ubuntu. Can anybody explain the cause of slowdown and how I can force gcc to optimally align the loop? Here is the disassembly for both cases with profiler annotation: 415220 576 12.56% |XXXXXXXXXXXXXX 48 c1 eb 08 shr $0x8,%rbx 415224 110 2.40% |XX 0f b6 c3 movzbl %bl,%eax 415227 0.00% | 41 0f b6 04 00 movzbl (%r8,%rax,1),%eax 41522c 40 0.87% | 48 8b 04 c1 mov (%rcx,%rax,8),%rax 415230 806 17.58% |XXXXXXXXXXXXXXXXXXX 4c 63 f8 movslq %eax,%r15 415233 186 4.06% |XXXX 48 c1 e8 20 shr $0x20,%rax 415237 102 2.22% |XX 4c 01 f9 add %r15,%rcx 41523a 414 9.03% |XXXXXXXXXX a8 0f test $0xf,%al 41523c 680 14.83% |XXXXXXXXXXXXXXXX 74 45 je 415283 ::Run(char const*, char const*)+0x4b3 41523e 0.00% | 41 89 c7 mov %eax,%r15d 415241 0.00% | 41 83 e7 01 and $0x1,%r15d 415245 0.00% | 41 83 ff 01 cmp $0x1,%r15d 415249 0.00% | 41 89 c7 mov %eax,%r15d 415250 679 13.05% |XXXXXXXXXXXXXXXX 48 c1 eb 08 shr $0x8,%rbx 415254 124 2.38% |XX 0f b6 c3 movzbl %bl,%eax 415257 0.00% | 41 0f b6 04 00 movzbl (%r8,%rax,1),%eax 41525c 43 0.83% |X 48 8b 04 c1 mov (%rcx,%rax,8),%rax 415260 828 15.91% |XXXXXXXXXXXXXXXXXXX 4c 63 f8 movslq %eax,%r15 415263 388 7.46% |XXXXXXXXX 48 c1 e8 20 shr $0x20,%rax 415267 141 2.71% |XXX 4c 01 f9 add %r15,%rcx 41526a 634 12.18% |XXXXXXXXXXXXXXX a8 0f test $0xf,%al 41526c 749 14.39% |XXXXXXXXXXXXXXXXXX 74 45 je 4152b3 ::Run(char const*, char const*)+0x4c3 41526e 0.00% | 41 89 c7 mov %eax,%r15d 415271 0.00% | 41 83 e7 01 and $0x1,%r15d 415275 0.00% | 41 83 ff 01 cmp $0x1,%r15d 415279 0.00% | 41 89 c7 mov %eax,%r15d

    Read the article

  • iPhone Debugger Message -- Weird

    - by Bill Shiff
    Hello, I have an iPhone app that I've been working on and have recently upgraded my version of XCode. Since the upgrade, I can build and debug in the iPhone Simulator just fine, but when I try to debug on an attached device I get the following messages: From Xcode4: GNU gdb 6.3.50-20050815 (Apple version gdb-1510) (Fri Oct 22 04:12:10 UTC 2010) Copyright 2004 Free Software Foundation, Inc. GDB is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Type "show copying" to see the conditions. There is absolutely no warranty for GDB. Type "show warranty" for details. This GDB was configured as "--host=i386-apple-darwin --target=arm-apple-darwin".tty /dev/ttys001 sharedlibrary apply-load-rules all warning: Unable to read symbols from "dyld" (prefix __dyld_) (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/MessageUI.framework/MessageUI (file not found). warning: Unable to read symbols from "MessageUI" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/MapKit.framework/MapKit (file not found). warning: Unable to read symbols from "MapKit" (not yet mapped into memory). warning: Unable to read symbols from "Foundation" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/UIKit.framework/UIKit (file not found). warning: Unable to read symbols from "UIKit" (not yet mapped into memory). warning: Unable to read symbols for (null)/Library/Frameworks/CoreGraphics.framework/CoreGraphics (file not found). warning: Unable to read symbols from "CoreGraphics" (not yet mapped into memory). warning: Unable to read symbols from "CoreData" (not yet mapped into memory). warning: Unable to read symbols from "QuartzCore" (not yet mapped into memory). warning: Unable to read symbols from "libgcc_s.1.dylib" (not yet mapped into memory). warning: Unable to read symbols from "libSystem.B.dylib" (not yet mapped into memory). warning: Unable to read symbols from "libobjc.A.dylib" (not yet mapped into memory). warning: Unable to read symbols from "CoreFoundation" (not yet mapped into memory). target remote-mobile /tmp/.XcodeGDBRemote-3836-28 Switching to remote-macosx protocol mem 0x1000 0x3fffffff cache mem 0x40000000 0xffffffff none mem 0x00000000 0x0fff none [Switching to thread 11523] [Switching to thread 11523] gdb stack crawl at point of internal error: 0 gdb-arm-apple-darwin 0x0013216e internal_vproblem + 316

    Read the article

  • Does "opening a file" mean loading it completely into memory?

    - by mystify
    There's an AudioFileOpenURL function which opens an file. With AudioFileReadPackets that file is accessed to read packets. But one thing that stucks in my brain is: Does AudioFileOpenURL actually load the whole monster into memory? Or is that a lightweight operation? So is it possible to read data from a file, only a specific portion, without having the whole terabytes of stuff in memory?

    Read the article

  • Is there any memory leak in the normal routine of sqlite3_*()?

    - by reer
    A normal routine of sqlite3_prepare_v2() + sqlite3_step() + sqlite3_finalize() could contain leak. It sound ridiculous. But the test code seems to say it. Or I used the sqlite3_*() wrongly. Appreciate for any reply. __code________________________ include include // for usleep() include int multi_write (int j); sqlite3 *db = NULL; int main (void) { int ret = -1; ret = sqlite3_open("test.db", &db); ret = sqlite3_exec(db,"CREATE TABLE data_his (id INTEGER PRIMARY KEY, d1 CHAR(16))", NULL,NULL,NULL); usleep (100000); int j=0; while (1) { multi_write (j++); usleep (2000000); printf (" ----------- %d\n", j); } ret = sqlite3_close (db); return 0; } int multi_write (int j) { int ret = -1; char *sql_f = "INSERT OR REPLACE INTO data_his VALUES (%d, %Q)"; char *sql = NULL; sqlite3_stmt *p_stmt = NULL; ret = sqlite3_prepare_v2 (db, "BEGIN TRANSACTION", -1, &p_stmt, NULL); ret = sqlite3_step ( p_stmt ); ret = sqlite3_finalize ( p_stmt ); int i=0; for (i=0; i<100; i++) { sql = sqlite3_mprintf ( sql_f, j*100000 + i, "00000000000068FD"); ret = sqlite3_prepare_v2 (db, sql, -1, &p_stmt, NULL ); sqlite3_free ( sql ); //printf ("sqlite3_prepare_v2(): %d, %s\n", ret, sqlite3_errmsg (db)); ret = sqlite3_step ( p_stmt ); //printf ("sqlite3_step(): %d, %s\n", ret, sqlite3_errmsg (db)); ret = sqlite3_finalize ( p_stmt ); //printf ("sqlite3_finalize(): %d, %s\n\n", ret, sqlite3_errmsg (db)); } ret = sqlite3_prepare_v2 (db, "COMMIT TRANSACTION", -1, &p_stmt, NULL ); ret = sqlite3_step ( p_stmt ); ret = sqlite3_finalize ( p_stmt ); return 0; } __result________________________ And I watch the the process's run by top. At first, the memory statistics is: PID PPID USER STAT VSZ %MEM %CPU COMMAND 17731 15488 root S 1104 5% 7% ./sqlite3multiwrite When the printf() in while(1){} of main() prints the 150, the memory statistics is: PID PPID USER STAT VSZ %MEM %CPU COMMAND 17731 15488 root S 1552 5% 7% ./sqlite3multiwrite It sounds that after 150 for-cycles, the memory used by sqlite3multiwrite increase from 1104KB to 1552KB. What does it mean? memory leak or other thing?

    Read the article

  • I always get stuck here... Divs not behaving properly (alignment issues)

    - by user345501
    Hi, I don't know why, after encountering this problem dozens of times, the answer always seems different and I can't seem to work my way through the problem-solving process, but here I am again with misaligned divs. I've got 3rows encasing columns. each row is to have (at least) 3 columns (and probably some nested divs down the line, but I'm not even there yet). I'm trying to make a fluid chunk in the center ultimately, with pretty corners. However, my top row is already showing signs of misbehaving. .O Please help with my silly questions! Cheers and thanks in advance! <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Untitled Document</title> </head> <style type="text/css"> #wrap { margin:auto; width:80%; height:75%; border: solid #066 1px;} #row1 { width:100%; height:10%; background:#F20; } #r1c1 { float:left; width:05%;} #r1c2 { float:left; width:80%} #r1c3 { clear:both; width:05%; } #row2 { float:none; width:100%; background:#0C6; } #r2c1 {} #r2c2 {} #r2c3 {} #row3 { width:100%; height:15%; background:#00F; clear:both; } #r3c1 {} #r3c2 {} #r3c3 {} </style> <body> <div id="wrap"> <div id="row1"> <div id="r1c1">LEFT</div> <div id="r1c2">CENT</div> <div id="r1c3">RIGHT</div> </div> <div id="row2"> MIDDLE </div> <div id="row3"> BOTTOM </div> </div> </body> </html>

    Read the article

  • How to get stream to "in-memory" database created via H2DB?

    - by Reynevan
    I have to create such a mechanism: Create in-memory (H2DB) database; Create tables and fill them using some data; Get stream to that database; Send that stream via WebDAV or something else; I know everything except that "How to get stream to "in-memory" database created via H2DB"? And some explanations: I can't create file because of some server restrictions; I need that stream to create a file;

    Read the article

  • What happens in memory when calling a function with literal values?

    - by Drise
    Suppose I have an arbitrary function: void someFunc(int, double, char); and I call someFunc(8, 2.4, 'a');, what actually happens? How does 8, 2.4, and 'a' get memory, moved into that memory, and passed into the function? What type of optimizations does the compiler have for situations like these? What if I mix and match parameters, such like someFunc(myIntVar, 2.4, someChar);? What happens if the function is declared as inline?

    Read the article

  • Properly obsoleting old members in an XML Serializable class in C# VB .NET

    - by George
    Hi! Some time ago I defined a class that was serialized using XML. That class contained a serializable propertyA of integer type. Now I have extended and updated this class, whereby a new propertyB was added, whose type is another class that also has several serializable properties. The new propertyB is now supposed to play the role of propertyA, that is since type of propertyB is another class, one of its members would contain the value that previously propertyA contained, thus making peroptyA obsolete. What I am trying to figure out is how do I make sure that when I desireliaze the OLD version of this class (without propertyB in it), I make sure that the desreializer would take the value of propertyA from the old calss and set it as a value of one of the members of propertyB in a new class? Private WithEvents _Position As Position = New Position(Alignment.MiddleMiddle, 0, True, 0, True) Public Property Position() As Position 'NEW composite property that holds the value of the obsolted property, i.e. Alignment Get Return _Position End Get Set(ByVal value As Position) _Position = value End Set End Property Private _Alignment As Alignment = Alignment.MiddleMiddle <Xml.Serialization.XmlIgnore(), Obsolete("Use Position property instead.")> _ Public Property Alignment() As Alignment'The old, obsoleted property that I guess must be left for compliance with deserializing the old version of this class Get Return _Alignment End Get Set(ByVal value As Alignment) _Alignment = value End Set End Property Can you help me, please?

    Read the article

  • How do I generate an Array string from an array in memory (php).

    - by Itay Moav
    I need to create a big array in my code, I have the values in several tables (for easy management). I select it and now I have all the values in an array, in memory in the way I want. My problem, I need to write this array down, into the code. Is there a way to take an array which sits in the memory and translate it into a string "array('g'='h','b'='d'....)" which I can then echo and just copy-paste into my code?

    Read the article

  • What is the best way to measure the memory usage of a C# function ?

    - by Duaa
    Hi all: I'm looking for an accurate way to measure memory usage of a C# program under Windows operating system. I'm using Visual Studio for programming my code and I want to know its time consuming for performance. Really, I tried to use the Task Manager, but I do not get an accurate measurment. Please, if any one know an accurate way to measure the memory consumption, please help me and thanks alot

    Read the article

  • Gnome 3 freezes on logon on samsung RV 509

    - by Noufal
    I have a Samsung NP-RV509 A0FIN and I tried to install GNU/Linux with gnome 3.2 on it. I tried Fedora 16, Ubuntu 11.10 and Linux Mint 12 RC, but with no success. All of these freezes upon login into gnome shell. I think it is the problem with graphics driver, so I tried xorg-edgers ppa on my last installation, ie., Linux Mint. I also tried various intel graphics packages listed on Synaptic package manager, but no success again. My device configuration is as follows(obtained from windows 7): More details about my computer Component Details Subscore Base score Processor Intel(R) Pentium(R) CPU P6200 @ 2.13GHz 5.6 4.6 Memory (RAM) 4.00 GB 7.2 Graphics Intel(R) HD Graphics 4.6 Gaming graphics 1562 MB Total available graphics memory 5.2 Primary hard disk 12GB Free (50GB Total) 5.9 Windows 7 Ultimate System -------------------------------------------------------------------------------- Manufacturer SAMSUNG ELECTRONICS CO., LTD. Model RV409/RV509/RV709 Total amount of system memory 4.00 GB RAM System type 32-bit operating system Number of processor cores 2 64-bit capable Yes Storage -------------------------------------------------------------------------------- Total size of hard disk(s) 418 GB Disk partition (C:) 12 GB Free (50 GB Total) Media drive (D:) CD/DVD Disk partition (E:) 526 MB Free (191 GB Total) Disk partition (F:) 101 GB Free (177 GB Total) Graphics -------------------------------------------------------------------------------- Display adapter type Intel(R) HD Graphics Total available graphics memory 1562 MB Dedicated graphics memory 64 MB Dedicated system memory 0 MB Shared system memory 1498 MB Display adapter driver version 8.15.10.2202 Primary monitor resolution 1366x768 DirectX version DirectX 10 Network -------------------------------------------------------------------------------- Network Adapter Realtek PCIe GBE Family Controller Network Adapter Broadcom 802.11n Network Adapter Network Adapter Microsoft Virtual WiFi Miniport Adapter Notes -------------------------------------------------------------------------------- The gaming graphics score is based on the primary graphics adapter. If this system has linked or multiple graphics adapters, some software applications may see additional performance benefits. Any help is appreciated, and thanks in advance.

    Read the article

  • The C++ Standard Template Library as a BDB Database (part 1)

    - by Gregory Burd
    If you've used C++ you undoubtedly have used the Standard Template Libraries. Designed for in-memory management of data and collections of data this is a core aspect of all C++ programs. Berkeley DB is a database library with a variety of APIs designed to ease development, one of those APIs extends and makes use of the STL for persistent, transactional data storage. dbstl is an STL standard compatible API for Berkeley DB. You can make use of Berkeley DB via this API as if you are using C++ STL classes, and still make full use of Berkeley DB features. Being an STL library backed by a database, there are some important and useful features that dbstl can provide, while the C++ STL library can't. The following are a few typical use cases to use the dbstl extensions to the C++ STL for data storage. When data exceeds available physical memory.Berkeley DB dbstl can vastly improve performance when managing a dataset which is larger than available memory. Performance suffers when the data can't reside in memory because the OS is forced to use virtual memory and swap pages of memory to disk. Switching to BDB's dbstl improves performance while allowing you to keep using STL containers. When you need concurrent access to C++ STL containers.Few existing C++ STL implementations support concurrent access (create/read/update/delete) within a container, at best you'll find support for accessing different containers of the same type concurrently. With the Berkeley DB dbstl implementation you can concurrently access your data from multiple threads or processes with confidence in the outcome. When your objects are your database.You want to have object persistence in your application, and store objects in a database, and use the objects across different runs of your application without having to translate them to/from SQL. The dbstl is capable of storing complicated objects, even those not located on a continous chunk of memory space, directly to disk without any unnecessary overhead. These are a few reasons why you should consider using Berkeley DB's C++ STL support for your embedded database application. In the next few blog posts I'll show you a few examples of this approach, it's easy to use and easy to learn.

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • More Denali Execution Plan Warning Goodies

    - by Dave Ballantyne
    In my last blog, I showed how the execution plan in denali has been enhanced by 2 new warnings ,conversion affecting cardinality and conversion affecting seek, which are shown when a data type conversion has happened either implicitly or explicitly. That is not all though, there is more .  Also added are two warnings when performance has been affected due to memory issues. Memory spills to tempdb are a costly operation and happen when SqlServer is under memory pressure and needs to free some up. For a long time you have been able to see these as warnings in a profiler trace as a sort or hash warning event,  but now they are included right in the execution plan.  Not only that but also you can see which operator caused the spill , not just which statement.  Pretty damn handy. Another cause of performance problems relating to memory are memory grant waits.  Here is an informative write up on them,  but simply speaking , SQLServer has to allocate a certain amount of memory for each statement. If it is unable to you get a “memory grant wait”.  Once again there are other methods of analyzing these,  but the plan now shows these too. Don't worry that’s not real production code There is one other new warning that is of interest to me, “Unmatched Indexes”.  Once I find out the conditions under which that fires ill blog about it.

    Read the article

  • Series On Embedded Development (Part 1)

    - by user12612705
    This is the first in a series of entries on developing applications for the embedded environment. Most of this information is relevant to any type of embedded development (and even for desktop and server too), not just Java. This information is based on a talk Hinkmond Wong and I gave at JavaOne 2012 entitled Reducing Dynamic Memory in Java Embedded Applications. One thing to remember when developing embeddded applications is that memory matters. Yes, memory matters in desktop and server environments as well, but there's just plain less of it in embedded devices. So I'm going to be talking about saving this precious resource as well as another precious resource, CPU cycles...and a bit about power too. CPU matters too, and again, in embedded devices, there's just plain less of it. What you'll find, no surprise, is that there's a trade-off between performance and memory. To get better performance, you need to use more memory, and to save more memory, you need to need to use more CPU cycles. I'll be discussing three Memory Reduction Categories: - Optionality, both build-time and runtime. Optionality is about providing options so you can get rid of the stuff you don't need and include the stuff you do need. - Tunability, which is about providing options so you can tune your application by trading performance for size, and vice-versa. - Efficiency, which is about balancing size savings with performance.

    Read the article

  • How do I stop icons appearing on the desktop in a particular area?

    - by Seamus
    When I download something to my desktop, or insert a CD or flash drive, the icon appears on my desktop. When I have conky running, the icon sometimes appears in the top right corner, underneath conky; where I can't see it. How do I stop this happening? My .conkyrc is pasted below. I didn't write it all myself, so I'm not entirely sure what I need to change, or what parts are relevant for this particular question... # UBUNTU-CONKY # A comprehensive conky script, configured for use on # Ubuntu / Debian Gnome, without the need for any external scripts. # # Based on conky-jc and the default .conkyrc. # INCLUDES: # - tail of /var/log/messages # - netstat shows number of connections from your computer and application/PID making it. Kill spyware! # # -- Pengo # # Create own window instead of using desktop (required in nautilus) own_window yes own_window_type override own_window_transparent yes own_window_hints undecorated,below,sticky,skip_taskbar,skip_pager # Use double buffering (reduces flicker, may not work for everyone) double_buffer yes # fiddle with window use_spacer right # Use Xft? use_xft yes xftfont DejaVu Sans:size=8 xftalpha 0.8 text_buffer_size 2048 # Update interval in seconds update_interval 3.0 # Minimum size of text area # minimum_size 250 5 # Draw shades? draw_shades no # Text stuff draw_outline no # amplifies text if yes draw_borders no uppercase no # set to yes if you want all text to be in uppercase # Stippled borders? stippled_borders 3 # border margins border_margin 9 # border width border_width 10 # Default colors and also border colors, grey90 == #e5e5e5 default_color grey own_window_colour brown own_window_transparent yes # Text alignment, other possible values are commented #alignment top_left alignment top_right #alignment bottom_left #alignment bottom_right # Gap between borders of screen and text gap_x 10 gap_y 20 # stuff after 'TEXT' will be formatted on screen TEXT $color ${color orange}SYSTEM ${hr 2}$color $nodename $sysname $kernel on $machine ${color orange}CPU ${hr 2}$color ${freq}MHz Load: ${loadavg} Temp: ${acpitemp} $cpubar ${cpugraph 000000 ffffff} NAME ${goto 150}PID ${goto 200}CPU% ${goto 250}MEM% ${top name 1} ${goto 150}${top pid 1} ${goto 200}${top cpu 1} ${goto 250}${top mem 1} ${top name 2} ${goto 150}${top pid 2} ${goto 200}${top cpu 2} ${goto 250}${top mem 2} ${top name 3} ${goto 150}${top pid 3} ${goto 200}${top cpu 3} ${goto 250}${top mem 3} ${top name 4} ${goto 150}${top pid 4} ${goto 200}${top cpu 4} ${goto 250}${top mem 4} ${color orange}MEMORY / DISK ${hr 2}$color RAM: $memperc% ${membar 6}$color Swap: $swapperc% ${swapbar 6}$color Home: ${fs_free_perc /home}% ${fs_bar 6 /}$color Free Space: ${fs_free /home} ${color orange}NETWORK (${addr eth0}) ${hr 2}$color Down: $color${downspeed eth0} k/s ${alignr}Up: ${upspeed eth0} k/s ${downspeedgraph eth0 25,140 000000 ff0000} ${alignr}${upspeedgraph eth0 25,140 000000 00ff00}$color Total: ${totaldown eth0} ${alignr}Total: ${totalup eth0} ${execi 30 netstat -ept | grep ESTAB | awk '{print $9}' | cut -d: -f1 | sort | uniq -c | sort -nr} ${color orange}WIRELESS (${addr wlan0}) ${hr 2}$color Down: $color${downspeed wlan0} k/s ${alignr}Up: ${upspeed wlan0} k/s ${downspeedgraph wlan0 25,140 000000 ff0000} ${alignr}${upspeedgraph wlan0 25,140 000000 00ff00}$color Total: ${totaldown wlan0} ${alignr}Total: ${totalup wlan0} ${execi 30 netstat -ept | grep ESTAB | awk '{print $9}' | cut -d: -f1 | sort | uniq -c | sort -nr} Conky solutions have been offered, but perhaps these aren't the best way of approaching it. What I really want is to stop icons even appearing in that part of the desktop window: that is, I want to make part of the desktop real estate "off-limits" to new icons appearing on the desktop.

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >