Search Results

Search found 2108 results on 85 pages for 'differences'.

Page 16/85 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • EE vs Computer Science: Effect on Developers' Approaches, Styles?

    - by DarenW
    Are there any systematic differences between software developers (sw engineers, architect, whatever job title) with an electronics or other engineering background, compared to those who entered the profession through computer science? By electronics background, I mean an EE degree, or a self-taught electronics tinkerer, other types of engineers and experimental physicists. I'm wondering if coming into the software-making professions from a strong knowledge of flip flops, tristate buffers, clock edge rise times and so forth, usually leads to a distinct approach to problems, mindsets, or superior skills at certain specialties and lack of skills at others, when compared to the computer science types who are full of concepts like abstract data types, object orientation, database normalization, who speak of "closures" in programming languages - things that make little sense to the soldering iron crowd until they learn enough programming. The real world, I'm sure, offers a wild range of individual exceptions, but for the most part, can you say there are overall differences? Would these have hiring implications e.g. (to make up something) "never hire an electron wrangler to do database design"? Could knowing about any differences help job seekers find something appropriate more effectively? Or provide enlightenment or some practical advice for those who find themselves misfits in a particular job role? (Btw, I've never taken any computer science classes; my impression of exactly what they cover is fuzzy. I'm an electronics/physics/art type, myself.)

    Read the article

  • Java vs. C# - Productivity perspective

    - by Edin Dazdarevic
    If you have a number of years experience in working with JAVA and a number of years experience in working with C# and .NET, I would value your opinion on software development productivity differences between these two environments. One of our customers is considering to technically replace their existing software solution. As the replacement will require approx. 10 - 15 man years work, a choice for JAVA or .NET, based on productivity differences between the them, may significantly influence the investment required and time-to-market. Would you be able to provide us, based on your honest and expert opinion, an indication of software development productivity differences between JAVA and C#/.NET? I would prefer to receive an answer as follows: My experience is based on X years experience working with JAVA and X years experience working with C#/.NET. JAVA is X% more productive then C#.NET or C#/.NET is X% more productive than JAVA if you take the the following into account . . . . . . . Thanks

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Getting a Database into Source Control

    - by Grant Fritchey
    For any number of reasons, from simple auditing, to change tracking, to automated deployment, to integration with application development processes, you’re going to want to place your database into source control. Using Red Gate SQL Source Control this process is extremely simple. SQL Source Control works within your SQL Server Management Studio (SSMS) interface.  This means you can work with your databases in any way that you’re used to working with them. If you prefer scripts to using the GUI, not a problem. If you prefer using the GUI to having to learn T-SQL, again, that’s fine. After installing SQL Source Control, this is what you’ll see when you open SSMS:   SQL Source Control is now a direct piece of the SSMS environment. The key point initially is that I currently don’t have a database selected. You can even see that in the SQL Source Control window where it shows, in red, “No database selected – select a database in Object Explorer.” If I expand my Databases list in the Object Explorer, you’ll be able to immediately see which databases have been integrated with source control and which have not. There are visible differences between the databases as you can see here:   To add a database to source control, I first have to select it. For this example, I’m going to add the AdventureWorks2012 database to an instance of the SVN source control software (I’m using uberSVN). When I click on the AdventureWorks2012 database, the SQL Source Control screen changes:   I’m going to need to click on the “Link database to source control” text which will open up a window for connecting this database to the source control system of my choice.  You can pick from the default source control systems on the left, or define one of your own. I also have to provide the connection string for the location within the source control system where I’ll be storing my database code. I set these up in advance. You’ll need two. One for the main set of scripts and one for special scripts called Migrations that deal with different kinds of changes between versions of the code. Migrations help you solve problems like having to create or modify data in columns as part of a structural change. I’ll talk more about them another day. Finally, I have to determine if this is an isolated environment that I’m going to be the only one use, a dedicated database. Or, if I’m sharing the database in a shared environment with other developers, a shared database.  The main difference is, under a dedicated database, I will need to regularly get any changes that other developers have made from source control and integrate it into my database. While, under a shared database, all changes for all developers are made at the same time, which means you could commit other peoples work without proper testing. It all depends on the type of environment you work within. But, when it’s all set, it will look like this: SQL Source Control will compare the results between the empty folders in source control and the database, AdventureWorks2012. You’ll get a report showing exactly the list of differences and you can choose which ones will get checked into source control. Each of the database objects is scripted individually. You’ll be able to modify them later in the same way. Here’s the list of differences for my new database:   You can select/deselect all the objects or each object individually. You also get a report showing the differences between what’s in the database and what’s in source control. If there was already a database in source control, you’d only see changes to database objects rather than every single object. You can see that the database objects can be sorted by name, by type, or other choices. I’m going to add a comment such as “Initial creation of database in source control.” And then click on the Commit button which will put all the objects in my database into the source control system. That’s all it takes to get the objects into source control initially. Now is when things can get fun with breaking changes to code, automated deployments, unit testing and all the rest.

    Read the article

  • Diff/Merge functionality for objects (not files!)

    - by gehho
    I have a collection of objects of the same type, let's call it DataItem. The user can view and edit these items in an editor. It should also be possible to compare and merge different items, i.e. some sort of diff/merge for DataItem instances. The DIFF functionality should compare all (relevant) properties/fields of the items and detect possible differences. The MERGE functionality should then be able to merge two instances by applying selected differences to one of the items. For example (pseudo objects): DataItem1 { DataItem2 { Prop1 = 10 Prop1 = 10 Prop2 = 25 Prop2 = 13 Prop3 = 0 Prop3 = 5 Coll = { 7, 4, 8 } Coll = { 7, 4, 8, 12 } } } Now, the user should be provided with a list of differences (i.e. Prop2, Prop3, and Coll) and he should be able to select which differences he wants to eliminate by assigning the value from one item to the other. He should also be able to choose if he wants to assign the value from DataItem1 to DataItem2 or vice versa. Are there common practices which should be used to implement this functionality? Since the same editor should also provide undo/redo functionality (using the Command pattern), I was thinking about reusing the ICommand implementations because both scenarios basically handle with property assignments, collection changes, and so on... My idea was to create Difference objects with ICommand properties which can be used to perform a merge operation for this specific Difference. Btw: The programming language will be C# with .NET 3.5SP1/4.0. However, I think this is more of a language-independent question. Any design pattern/idea/whatsoever is welcome!

    Read the article

  • Answers to Your Common Oracle Database Lifecycle Management Questions

    - by Scott McNeil
    We recently ran a live webcast on Strategies for Managing Oracle Database's Lifecycle. There were tons of questions from our audience that we simply could not get to during the hour long presentation. Below are some of those questions along with their answers. Enjoy! Question: In the webcast the presenter talked about “gold” configuration standards, for those who want to use this technique, could you recommend a best practice to consider or follow? How do I get started? Answer:Gold configuration standardization is a quick and easy way to improve availability through consistency. Start by choosing a reference database and saving the configuration to the Oracle Enterprise Manager repository using the Save Configuration feature. Next create a comparison template using the Oracle provided template as a starting point and modify the ignored properties to eliminate expected differences in your environment. Finally create a comparison specification using the comparison template you created plus your saved gold configuration and schedule it to run on a regular basis. Don’t forget to fill in the email addresses of those you want to notify upon drift detection. Watch the database configuration management demo to learn more. Question: Can Oracle Lifecycle Management Pack for Database help with patching an Oracle Real Application Cluster (RAC) environment? Answer: Yes, Oracle Enterprise Manager supports both parallel and rolling patch application of Oracle Real Application Clusters. The use of rolling patching is recommended as there is no downtime involved. For more details watch this demo. Question: What are some of the things administrators can do to control configuration drift? Why is it important? Answer:Configuration drift is one of the main causes of instability and downtime of applications. Oracle Enterprise Manager makes it easy to manage and control drift using scheduled configuration comparisons combined with comparison templates. Question: Does Oracle Enterprise Manager 12c Release 2 offer an incremental update feature for "gold" images? For instance, if the source binary has a higher PSU level, what is the best approach to update the existing "gold" image in the software library? Do you have to create a new image or can you just update the original one? Answer:Provisioning Profiles (Gold images) can contain the installation files and database configuration templates. Although it is possible to make some changes to the profile after creation (mainly to configuration), it is normally recommended to simply create a new profile after applying a patch to your reference database. Question: The webcast talked about enforcing in-house standards, does Oracle Enterprise Manager 12c offer verification of your databases and systems to those standards? For example, the initial "gold" image has been massively deployed over time, and there may be some changes to it. How can you do regular checks from Enterprise Manager to ensure the in-house standards are being enforced? Answer:There are really two methods to validate conformity to standards. The first method is to use gold standards which you compare other databases to report unwanted differences. This method uses a new comparison template technology which allows users to ignore known differences (i.e. SID, Start time, etc) which results in a report only showing important or non-conformant differences. This method is quick to setup and configure and recommended for those who want to get started validating compliance quickly. The second method leverages the new compliance framework which allows the creation of specific and robust validations. These compliance rules are grouped into standards which can be assigned to databases quickly and easily. Compliance rules allow for targeted and more sophisticated validation beyond the basic equals operation available in the comparison method. The compliance framework can be used to implement just about any internal or industry standard. The compliance results will track current and historic compliance scores at the overall and individual database targets. When the issue is resolved, the score is automatically affected. Compliance framework is the recommended long term solution for validating compliance using Oracle Enterprise Manager 12c. Check out this demo on database compliance to learn more. Question: If you are using the integration between Oracle Enterprise Manager and My Oracle Support in an "offline" mode, how do you know if you have the latest My Oracle Support metadata? Answer:In Oracle Enterprise Manager 12c Release 2, you now only need to download one zip file containing all of the metadata xmls files. There is no indication that the metadata has changed but you could run a checksum on the file and compare it to the previously downloaded version to see if it has changed. Question: What happens if a patch fails while administrators are applying it to a database or system? Answer:A large portion of Oracle Enterprise Manager's patch automation is the pre-requisite checks that happen to ensure the highest level of confidence the patch will successfully apply. It is recommended you test the patch in a non-production environment and save the patch plan as a template once successful so you can create new plans using the saved template. If you are using the recommended ‘out of place’ patching methodology, there is no urgency because the database is still running as the cloned Oracle home is being patched. Users can address the issue and restart the patch procedure at the point it left off. If you are using 'in place' method, you can address the issue and continue where the procedure left off. Question: Can Oracle Enterprise Manager 12c R2 compare configurations between more than one target at the same time? Answer:Oracle Enterprise Manager 12c can compare any number of target configurations at one time. This is the basis of many important use cases including Configuration Drift Management. These comparisons can also be scheduled on a regular basis and emails notification sent should any differences appear. To learn more about configuration search and compare watch this demo. Question: How is data comparison done since changes are taking place in a live production system? Answer:There are many things to keep in mind when using the data comparison feature (as part of the Change Management ability to compare table data). It was primarily intended to be used for maintaining consistency of important but relatively static data. For example, application seed data and application setup configuration. This data does not change often but is critical when testing an application to ensure results are consistent with production. It is not recommended to use data comparison on highly dynamic data like transactional tables or very large tables. Question: Which versions of Oracle Database can be monitored through Oracle Enterprise Manager 12c? Answer:Oracle Database versions: 9.2.0.8, 10.1.0.5, 10.2.0.4, 10.2.0.5, 11.1.0.7, 11.2.0.1, 11.2.0.2, 11.2.0.3. Watch the On-Demand Webcast Stay Connected: Twitter | Facebook | YouTube | Linkedin | NewsletterDownload the Oracle Enterprise Manager Cloud Control12c Mobile app

    Read the article

  • internet service providers

    - by gautam kumar
    I am unclear about the differences between international, national, regional and local ISPs. Please explain the differences and their importance, with examples. I am new to this site, so please forgive me if my question is not up to your expectations.

    Read the article

  • Which to install: Apache Worker or Prefork? What are the (dis-)advantages of each?

    - by Aron Rotteveel
    Based on the descriptions for both the Prefork and Worker MPM, it seems the prefork type is somewhat outdated, but I can't really find a proper comparison of the two types. What i'd like to know: What are the differences between the two versions? What are the (dis-)advantages of each server type? Are there any basic guidelines on which type to choose based on the conditions? Are there any big performance differences between the two?

    Read the article

  • Server Vs Service / Physical Vs Virtual

    - by user559142
    When reading definitions for a server service (e.g. iis) you will often find that there are several cross references to a virtual server but none seem to definitively refer to the two as the same..... Can somebody help me to understand the differences - I cannot get my head around what the difference between each is? Ideally I would like to know the differences between the following/or indeed if any refer to the same... 1) Logical Server 2) Virtual Host 3) Logical Partition 4) Physical Server Vs Virtual Server 5) Server Service Vs Virtual Host

    Read the article

  • Best way to compare contents of two tables in Teradata?

    - by Cade Roux
    When you need to compare two tables to see what the differences are, are there any tools or shortcuts you use, or do you handcode the SQL to compare the two tables? Background: In my SQL Server environment, I created a stored procedure which inspects the metadata of the two tables/views, creates a query (as dynamic sql) which joins the two tables on the specified key columns, and compares data in the compare columns, reporting key differences and data differences. The query can either be printed and modified/copied or just excecuted as is. We are not allowed to create stored procedures in our Teradata environment, unfortunately.

    Read the article

  • Difference between 'scope' and 'namespace'?

    - by katriel
    What is the difference, in general, between the concepts of namespaces and scope? To my understanding, both describe the parts of a program in which a variable/object/method/function will be accessible. I understand that 'scope' tends to be a property of the variable (e.g., "This variable has global scope"), while a 'namespace' is a property of the program (e.g., "A Python function creates a local namespace"). Are there other differences? Global scope vs global namespace addresses a slightly narrower question: global namespaces in C++. http://www.alan-g.me.uk/tutor/tutname.htm states, There are a few very subtle differences between the terms but only a Computer Scientist pedant would argue with you, and for our purposes namespace and scope are identical. What are those subtle differences? Under what circumstances or with which kinds of languages do people use each concept?

    Read the article

  • JavaScript based diff utility

    - by poke
    I'm looking for a diff equivalent written in JavaScript that only returns/prints relevant lines. I don't want both full text displayed next to each other with the differences highlighted, but just want the actual differences (plus some buffer lines to know where the difference is), similar to the output from the linux diff utility. Does anybody know a javascript function that does this? All differences should be recognized (even changed whitespace). Thanks. edit I have seen jsdifflib but in the example it always shows the full source, so unless there is a way to change the output somehow, it doesn't fully meet my requirements.

    Read the article

  • Knowing the fundamentals of Java what is the right approach to learn Groovy?

    - by Liuh
    As my question already implies I want to learn a new language and have read several articles about groovy and its more pragmatic syntax. SO I have choosen Groovy as the language of my choice. What is a good way to learn a new language like Groovy when I already know the fundamentals of Java. When I understand correctly Groovy will be running in the Java Virtual Machine and allows me to always rely on what I know from Java when I don't know how to solve the problem in Groovy. I am looking for hints on how to organize a learning track to learn this language. I found that page explaining the differences: http://groovy.codehaus.org/Differences+from+Java But what I am looking for is more a tutorial where I can get through and get introduced to the differences.

    Read the article

  • AWK: how to reuse a result NR-times without removing END?

    - by HH
    How can I get all differences, not just one? I want to use the calculated result for each item in the third column. The dilemma is that if I remove END I can print $3 but cannot have ave. If I leave END I have ave but not all differences. awk '{sum+=$3} END {ave=sum/NR} END {print $3-ave}' coriolis_data -0.00964 // I want to see the rest differences, how? coriolis_data .105 0.005 0.9766 0.0001 0.595 0.005 .095 0.005 0.9963 0.0001 0.595 0.005 .115 0.005 0.9687 0.0001 0.595 0.005 .105 0.005 0.9693 0.0001 0.595 0.005 .095 0.005 0.9798 0.0001 0.595 0.005 .105 0.005 0.9798 0.0001 0.595 0.005 .095 0.005 0.9711 0.0001 0.595 0.005 .110 0.005 0.9640 0.0001 0.595 0.005 .105 0.005 0.9704 0.0001 0.595 0.005 .090 0.005 0.9644 0.0001 0.595 0.005

    Read the article

  • How Windows 8's Backup System Differs From Windows 7's

    - by Chris Hoffman
    Windows 8 contains a completely revamped backup system. Windows 8’s File History replaces Windows 7’s Windows Backup – if you use Windows Backup and update to Windows 8, you’ll find quite a few differences. Microsoft redesigned Windows’ backup features because less than 5% of PCs used Windows Backup. The new File History system is designed to be simple to set up and work automatically in the background. This post will focus on the differences between File History and the Windows Backup feature you may be familiar with from Windows 7 – check out our full walkthrough of File History for more information. HTG Explains: What The Windows Event Viewer Is and How You Can Use It HTG Explains: How Windows Uses The Task Scheduler for System Tasks HTG Explains: Why Do Hard Drives Show the Wrong Capacity in Windows?

    Read the article

  • Fast programmatic compare of "timetable" data

    - by Brendan Green
    Consider train timetable data, where each service (or "run") has a data structure as such: public class TimeTable { public int Id {get;set;} public List<Run> Runs {get;set;} } public class Run { public List<Stop> Stops {get;set;} public int RunId {get;set;} } public class Stop { public int StationId {get;set;} public TimeSpan? StopTime {get;set;} public bool IsStop {get;set;} } We have a list of runs that operate against a particular line (the TimeTable class). Further, whilst we have a set collection of stations that are on a line, not all runs stop at all stations (that is, IsStop would be false, and StopTime would be null). Now, imagine that we have received the initial timetable, processed it, and loaded it into the above data structure. Once the initial load is complete, it is persisted into a database - the data structure is used only to load the timetable from its source and to persist it to the database. We are now receiving an updated timetable. The updated timetable may or may not have any changes to it - we don't know and are not told whether any changes are present. What I would like to do is perform a compare for each run in an efficient manner. I don't want to simply replace each run. Instead, I want to have a background task that runs periodically that downloads the updated timetable dataset, and then compares it to the current timetable. If differences are found, some action (not relevant to the question) will take place. I was initially thinking of some sort of checksum process, where I could, for example, load both runs (that is, the one from the new timetable received and the one that has been persisted to the database) into the data structure and then add up all the hour components of the StopTime, and all the minute components of the StopTime and compare the results (i.e. both the sum of Hours and sum of Minutes would be the same, and differences introduced if a stop time is changed, a stop deleted or a new stop added). Would that be a valid way to check for differences, or is there a better way to approach this problem? I can see a problem that, for example, one stop is changed to be 2 minutes earlier, and another changed to be 2 minutes later would have a net zero change. Or am I over thinking this, and would it just be simpler to brute check all stops to ensure that The updated run stops at the same stations; and Each stop is at the same time

    Read the article

  • Any valid reason to Nest Master Pages in ASP.Net rather than Inherit?

    - by James P. Wright
    Currently in a debate at work and I cannot fathom why someone would intentionally avoid Inheritance with Master Pages. For reference here is the project setup: BaseProject MainMasterPage SomeEvent SiteProject SiteMasterPage nested MainMasterPage OtherSiteProject MainMasterPage (from BaseProject) The debate came up because some code in BaseProject needs to know about "SomeEvent". With the setup above, the code in BaseProject needs to call this.Master.Master. That same code in BaseProject also applies to OtherSiteProject which is just accessed as this.Master. SiteMasterPage has no code differences, only HTML differences. If SiteMasterPage Inherits MainMasterPage rather than Nests it, then all code is valid as this.Master. Can anyone think of a reason why to use a Nested Master Page here instead of an Inherited one?

    Read the article

  • Is Perforce as good as merging as DVCSs?

    - by dukeofgaming
    I've heard that Perforce is very good at merging, I'm guessing this has to do with that it tracks changes in the form of changelists where you can add differences across several files in a single blow. I think this implies Perforce gathers more metadata and therefore has more information to do smarter merging (at least smarter than Subversion, being Perforce centralized). Since this is similar to how Mercurial and Git handle changes (I know DVCSs track content rather than files), I was wondering if somebody knew what were the subtle differences that makes Perforce better or worse than a DVCS like Mercurial or Git.

    Read the article

  • Should NPC dialog be stored in XML or in a script?

    - by Andrea Tucci
    I'm developing an action RPG with some friends. I would like to know the differences and pros/cons of making NPC's dialogue using a file in XMLformat instead of using a script. I see that script method is often used by game developers for NPC text, but is it better then a XML file? We've thought that a XML file with tags like <FirstText>[text1]<SecondText>[text2] et cetera is perfect for NPC text and also for possible quests to give the player. So what are the differences between this two methods? Is a script suitable for this aim?

    Read the article

  • HTG Explains: Why Does Photo Paper Improve Print Quality?

    - by Eric Z Goodnight
    So you’ve shelled out the money for a fancy inkjet photo printer, only you’re not impressed with the images you’re getting out of your standard office paper. Have you ever wondered why that photo paper works so much better? Surely, paper is paper, right? What can be so special about it? In this article, we’ll explore the differences between regular typing paper, why these differences are good for printing, and how to take advantage of them for superior photographic printing Latest Features How-To Geek ETC The 50 Best Registry Hacks that Make Windows Better The How-To Geek Holiday Gift Guide (Geeky Stuff We Like) LCD? LED? Plasma? The How-To Geek Guide to HDTV Technology The How-To Geek Guide to Learning Photoshop, Part 8: Filters Improve Digital Photography by Calibrating Your Monitor Our Favorite Tech: What We’re Thankful For at How-To Geek Settle into Orbit with the Voyage Theme for Chrome and Iron Awesome Safari Compass Icons Set Escape from the Exploding Planet Wallpaper Move Your Tumblr Blog to WordPress Pytask is an Easy to Use To-Do List Manager for Your Ubuntu System Snowy Christmas House Personas Theme for Firefox

    Read the article

  • COM INTEROP Support - which is better? C# or VB

    - by dot
    I keep hearing that c# is "better" than vb... but as far as I can see, aside from syntactical differences, both compile down to the same IL. I've found some good articles by googling that explain what the differences are between the two and so I feel comfortable in "diffusing" conversations between developers arguing over vb / c#. =) But I did read an article that said vb.net 2005 had better support for com interop stuff. But i'm wondering if this is still the case? This is of interest to me because we are in the middle of redesigning an old vb6 app that communicates with some older COM components. Does anyone have recent experience with .NET and COM interop? Thanks.

    Read the article

  • Gnome 3 - Old fashioned buttons and menus

    - by vigs1990
    I've upgraded to Gnome 3 and the problem I'm facing is that when I restart, sometimes the menus and buttons look old-fashioned like this: whereas sometimes, it looks modern and neat like this: Notice the differences between the two: here are a few differences: The menu bar (notice the difference in fonts, dark grey color of Snapshot1 vs the light grey color in Snapshot2 in the background) The file navigation bar bellow the menu bar (notice the 'Home' button there and also the left arrow button) The left-hand side navigation bar (font, background color and color of selected folder) The old style look effects the GTK aspects of the interface, such as the menu, buttons, mouse pointer etc. Another observation is that changing the GTK themes does using gnome-tweak-tool when the old style look is loaded does NOT work. However, this works when the regular look is loaded. How can I ensure that the old-fashioned look does not load on boot?

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >