Search Results

Search found 73253 results on 2931 pages for 'enterprise data quality solutions and news'.

Page 16/2931 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • New Big Data Appliance Security Features

    - by mgubar
    The Oracle Big Data Appliance (BDA) is an engineered system for big data processing.  It greatly simplifies the deployment of an optimized Hadoop Cluster – whether that cluster is used for batch or real-time processing.  The vast majority of BDA customers are integrating the appliance with their Oracle Databases and they have certain expectations – especially around security.  Oracle Database customers have benefited from a rich set of security features:  encryption, redaction, data masking, database firewall, label based access control – and much, much more.  They want similar capabilities with their Hadoop cluster.    Unfortunately, Hadoop wasn’t developed with security in mind.  By default, a Hadoop cluster is insecure – the antithesis of an Oracle Database.  Some critical security features have been implemented – but even those capabilities are arduous to setup and configure.  Oracle believes that a key element of an optimized appliance is that its data should be secure.  Therefore, by default the BDA delivers the “AAA of security”: authentication, authorization and auditing. Security Starts at Authentication A successful security strategy is predicated on strong authentication – for both users and software services.  Consider the default configuration for a newly installed Oracle Database; it’s been a long time since you had a legitimate chance at accessing the database using the credentials “system/manager” or “scott/tiger”.  The default Oracle Database policy is to lock accounts thereby restricting access; administrators must consciously grant access to users. Default Authentication in Hadoop By default, a Hadoop cluster fails the authentication test. For example, it is easy for a malicious user to masquerade as any other user on the system.  Consider the following scenario that illustrates how a user can access any data on a Hadoop cluster by masquerading as a more privileged user.  In our scenario, the Hadoop cluster contains sensitive salary information in the file /user/hrdata/salaries.txt.  When logged in as the hr user, you can see the following files.  Notice, we’re using the Hadoop command line utilities for accessing the data: $ hadoop fs -ls /user/hrdataFound 1 items-rw-r--r--   1 oracle supergroup         70 2013-10-31 10:38 /user/hrdata/salaries.txt$ hadoop fs -cat /user/hrdata/salaries.txtTom Brady,11000000Tom Hanks,5000000Bob Smith,250000Oprah,300000000 User DrEvil has access to the cluster – and can see that there is an interesting folder called “hrdata”.  $ hadoop fs -ls /user Found 1 items drwx------   - hr supergroup          0 2013-10-31 10:38 /user/hrdata However, DrEvil cannot view the contents of the folder due to lack of access privileges: $ hadoop fs -ls /user/hrdata ls: Permission denied: user=drevil, access=READ_EXECUTE, inode="/user/hrdata":oracle:supergroup:drwx------ Accessing this data will not be a problem for DrEvil. He knows that the hr user owns the data by looking at the folder’s ACLs. To overcome this challenge, he will simply masquerade as the hr user. On his local machine, he adds the hr user, assigns that user a password, and then accesses the data on the Hadoop cluster: $ sudo useradd hr $ sudo passwd $ su hr $ hadoop fs -cat /user/hrdata/salaries.txt Tom Brady,11000000 Tom Hanks,5000000 Bob Smith,250000 Oprah,300000000 Hadoop has not authenticated the user; it trusts that the identity that has been presented is indeed the hr user. Therefore, sensitive data has been easily compromised. Clearly, the default security policy is inappropriate and dangerous to many organizations storing critical data in HDFS. Big Data Appliance Provides Secure Authentication The BDA provides secure authentication to the Hadoop cluster by default – preventing the type of masquerading described above. It accomplishes this thru Kerberos integration. Figure 1: Kerberos Integration The Key Distribution Center (KDC) is a server that has two components: an authentication server and a ticket granting service. The authentication server validates the identity of the user and service. Once authenticated, a client must request a ticket from the ticket granting service – allowing it to access the BDA’s NameNode, JobTracker, etc. At installation, you simply point the BDA to an external KDC or automatically install a highly available KDC on the BDA itself. Kerberos will then provide strong authentication for not just the end user – but also for important Hadoop services running on the appliance. You can now guarantee that users are who they claim to be – and rogue services (like fake data nodes) are not added to the system. It is common for organizations to want to leverage existing LDAP servers for common user and group management. Kerberos integrates with LDAP servers – allowing the principals and encryption keys to be stored in the common repository. This simplifies the deployment and administration of the secure environment. Authorize Access to Sensitive Data Kerberos-based authentication ensures secure access to the system and the establishment of a trusted identity – a prerequisite for any authorization scheme. Once this identity is established, you need to authorize access to the data. HDFS will authorize access to files using ACLs with the authorization specification applied using classic Linux-style commands like chmod and chown (e.g. hadoop fs -chown oracle:oracle /user/hrdata changes the ownership of the /user/hrdata folder to oracle). Authorization is applied at the user or group level – utilizing group membership found in the Linux environment (i.e. /etc/group) or in the LDAP server. For SQL-based data stores – like Hive and Impala – finer grained access control is required. Access to databases, tables, columns, etc. must be controlled. And, you want to leverage roles to facilitate administration. Apache Sentry is a new project that delivers fine grained access control; both Cloudera and Oracle are the project’s founding members. Sentry satisfies the following three authorization requirements: Secure Authorization:  the ability to control access to data and/or privileges on data for authenticated users. Fine-Grained Authorization:  the ability to give users access to a subset of the data (e.g. column) in a database Role-Based Authorization:  the ability to create/apply template-based privileges based on functional roles. With Sentry, “all”, “select” or “insert” privileges are granted to an object. The descendants of that object automatically inherit that privilege. A collection of privileges across many objects may be aggregated into a role – and users/groups are then assigned that role. This leads to simplified administration of security across the system. Figure 2: Object Hierarchy – granting a privilege on the database object will be inherited by its tables and views. Sentry is currently used by both Hive and Impala – but it is a framework that other data sources can leverage when offering fine-grained authorization. For example, one can expect Sentry to deliver authorization capabilities to Cloudera Search in the near future. Audit Hadoop Cluster Activity Auditing is a critical component to a secure system and is oftentimes required for SOX, PCI and other regulations. The BDA integrates with Oracle Audit Vault and Database Firewall – tracking different types of activity taking place on the cluster: Figure 3: Monitored Hadoop services. At the lowest level, every operation that accesses data in HDFS is captured. The HDFS audit log identifies the user who accessed the file, the time that file was accessed, the type of access (read, write, delete, list, etc.) and whether or not that file access was successful. The other auditing features include: MapReduce:  correlate the MapReduce job that accessed the file Oozie:  describes who ran what as part of a workflow Hive:  captures changes were made to the Hive metadata The audit data is captured in the Audit Vault Server – which integrates audit activity from a variety of sources, adding databases (Oracle, DB2, SQL Server) and operating systems to activity from the BDA. Figure 4: Consolidated audit data across the enterprise.  Once the data is in the Audit Vault server, you can leverage a rich set of prebuilt and custom reports to monitor all the activity in the enterprise. In addition, alerts may be defined to trigger violations of audit policies. Conclusion Security cannot be considered an afterthought in big data deployments. Across most organizations, Hadoop is managing sensitive data that must be protected; it is not simply crunching publicly available information used for search applications. The BDA provides a strong security foundation – ensuring users are only allowed to view authorized data and that data access is audited in a consolidated framework.

    Read the article

  • Convert ddply {plyr} to Oracle R Enterprise, or use with Embedded R Execution

    - by Mark Hornick
    The plyr package contains a set of tools for partitioning a problem into smaller sub-problems that can be more easily processed. One function within {plyr} is ddply, which allows you to specify subsets of a data.frame and then apply a function to each subset. The result is gathered into a single data.frame. Such a capability is very convenient. The function ddply also has a parallel option that if TRUE, will apply the function in parallel, using the backend provided by foreach. This type of functionality is available through Oracle R Enterprise using the ore.groupApply function. In this blog post, we show a few examples from Sean Anderson's "A quick introduction to plyr" to illustrate the correpsonding functionality using ore.groupApply. To get started, we'll create a demo data set and load the plyr package. set.seed(1) d <- data.frame(year = rep(2000:2014, each = 3),         count = round(runif(45, 0, 20))) dim(d) library(plyr) This first example takes the data frame, partitions it by year, and calculates the coefficient of variation of the count, returning a data frame. # Example 1 res <- ddply(d, "year", function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(cv.count = cv)   }) To illustrate the equivalent functionality in Oracle R Enterprise, using embedded R execution, we use the ore.groupApply function on the same data, but pushed to the database, creating an ore.frame. The function ore.push creates a temporary table in the database, returning a proxy object, the ore.frame. D <- ore.push(d) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(year=x$year[1], cv.count = cv)   }, FUN.VALUE=data.frame(year=1, cv.count=1)) You'll notice the similarities in the first three arguments. With ore.groupApply, we augment the function to return the specific data.frame we want. We also specify the argument FUN.VALUE, which describes the resulting data.frame. From our previous blog posts, you may recall that by default, ore.groupApply returns an ore.list containing the results of each function invocation. To get a data.frame, we specify the structure of the result. The results in both cases are the same, however the ore.groupApply result is an ore.frame. In this case the data stays in the database until it's actually required. This can result in significant memory and time savings whe data is large. R> class(res) [1] "ore.frame" attr(,"package") [1] "OREbase" R> head(res)    year cv.count 1 2000 0.3984848 2 2001 0.6062178 3 2002 0.2309401 4 2003 0.5773503 5 2004 0.3069680 6 2005 0.3431743 To make the ore.groupApply execute in parallel, you can specify the argument parallel with either TRUE, to use default database parallelism, or to a specific number, which serves as a hint to the database as to how many parallel R engines should be used. The next ddply example uses the summarise function, which creates a new data.frame. In ore.groupApply, the year column is passed in with the data. Since no automatic creation of columns takes place, we explicitly set the year column in the data.frame result to the value of the first row, since all rows received by the function have the same year. # Example 2 ddply(d, "year", summarise, mean.count = mean(count)) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   data.frame(year=x$year[1], mean.count = mean.count)   }, FUN.VALUE=data.frame(year=1, mean.count=1)) R> head(res)    year mean.count 1 2000 7.666667 2 2001 13.333333 3 2002 15.000000 4 2003 3.000000 5 2004 12.333333 6 2005 14.666667 Example 3 uses the transform function with ddply, which modifies the existing data.frame. With ore.groupApply, we again construct the data.frame explicilty, which is returned as an ore.frame. # Example 3 ddply(d, "year", transform, total.count = sum(count)) res <- ore.groupApply (D, D$year, function(x) {   total.count <- sum(x$count)   data.frame(year=x$year[1], count=x$count, total.count = total.count)   }, FUN.VALUE=data.frame(year=1, count=1, total.count=1)) > head(res)    year count total.count 1 2000 5 23 2 2000 7 23 3 2000 11 23 4 2001 18 40 5 2001 4 40 6 2001 18 40 In Example 4, the mutate function with ddply enables you to define new columns that build on columns just defined. Since the construction of the data.frame using ore.groupApply is explicit, you always have complete control over when and how to use columns. # Example 4 ddply(d, "year", mutate, mu = mean(count), sigma = sd(count),       cv = sigma/mu) res <- ore.groupApply (D, D$year, function(x) {   mu <- mean(x$count)   sigma <- sd(x$count)   cv <- sigma/mu   data.frame(year=x$year[1], count=x$count, mu=mu, sigma=sigma, cv=cv)   }, FUN.VALUE=data.frame(year=1, count=1, mu=1,sigma=1,cv=1)) R> head(res)    year count mu sigma cv 1 2000 5 7.666667 3.055050 0.3984848 2 2000 7 7.666667 3.055050 0.3984848 3 2000 11 7.666667 3.055050 0.3984848 4 2001 18 13.333333 8.082904 0.6062178 5 2001 4 13.333333 8.082904 0.6062178 6 2001 18 13.333333 8.082904 0.6062178 In Example 5, ddply is used to partition data on multiple columns before constructing the result. Realizing this with ore.groupApply involves creating an index column out of the concatenation of the columns used for partitioning. This example also allows us to illustrate using the ORE transparency layer to subset the data. # Example 5 baseball.dat <- subset(baseball, year > 2000) # data from the plyr package x <- ddply(baseball.dat, c("year", "team"), summarize,            homeruns = sum(hr)) We first push the data set to the database to get an ore.frame. We then add the composite column and perform the subset, using the transparency layer. Since the results from database execution are unordered, we will explicitly sort these results and view the first 6 rows. BB.DAT <- ore.push(baseball) BB.DAT$index <- with(BB.DAT, paste(year, team, sep="+")) BB.DAT2 <- subset(BB.DAT, year > 2000) X <- ore.groupApply (BB.DAT2, BB.DAT2$index, function(x) {   data.frame(year=x$year[1], team=x$team[1], homeruns=sum(x$hr))   }, FUN.VALUE=data.frame(year=1, team="A", homeruns=1), parallel=FALSE) res <- ore.sort(X, by=c("year","team")) R> head(res)    year team homeruns 1 2001 ANA 4 2 2001 ARI 155 3 2001 ATL 63 4 2001 BAL 58 5 2001 BOS 77 6 2001 CHA 63 Our next example is derived from the ggplot function documentation. This illustrates the use of ddply within using the ggplot2 package. We first create a data.frame with demo data and use ddply to create some statistics for each group (gp). We then use ggplot to produce the graph. We can take this same code, push the data.frame df to the database and invoke this on the database server. The graph will be returned to the client window, as depicted below. # Example 6 with ggplot2 library(ggplot2) df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),                  y = rnorm(30)) # Compute sample mean and standard deviation in each group library(plyr) ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y)) # Set up a skeleton ggplot object and add layers: ggplot() +   geom_point(data = df, aes(x = gp, y = y)) +   geom_point(data = ds, aes(x = gp, y = mean),              colour = 'red', size = 3) +   geom_errorbar(data = ds, aes(x = gp, y = mean,                                ymin = mean - sd, ymax = mean + sd),              colour = 'red', width = 0.4) DF <- ore.push(df) ore.tableApply(DF, function(df) {   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4) }) But let's take this one step further. Suppose we wanted to produce multiple graphs, partitioned on some index column. We replicate the data three times and add some noise to the y values, just to make the graphs a little different. We also create an index column to form our three partitions. Note that we've also specified that this should be executed in parallel, allowing Oracle Database to control and manage the server-side R engines. The result of ore.groupApply is an ore.list that contains the three graphs. Each graph can be viewed by printing the list element. df2 <- rbind(df,df,df) df2$y <- df2$y + rnorm(nrow(df2)) df2$index <- c(rep(1,300), rep(2,300), rep(3,300)) DF2 <- ore.push(df2) res <- ore.groupApply(DF2, DF2$index, function(df) {   df <- df[,1:2]   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4)   }, parallel=TRUE) res[[1]] res[[2]] res[[3]] To recap, we've illustrated how various uses of ddply from the plyr package can be realized in ore.groupApply, which affords the user explicit control over the contents of the data.frame result in a straightforward manner. We've also highlighted how ddply can be used within an ore.groupApply call.

    Read the article

  • How to present a stable data model in a public API that allows internal data structures to be changed without breaking the public view of the data?

    - by Max Palmer
    I am in the process of developing an application that allows users to write C# scripts. These scripts allow users to call selected methods and to access and manipulate data in a document. This works well, however, in the development version, scripts access the document's (internal) data structures directly. This means that if we were to change the internal data model/structure, there is a good chance that someone's script will no longer compile. We obviously want to prevent this breaking change from happening, but still want to allow the user to write sensible C# code (whilst not restricting how we develop our internal data model as a result). We therefore need to decouple our scripting API and its data structures from our internal methods and data structures. We've a few ideas as to how we might allow the user to access a what is effectively a stable public version of the document's internal data*, but I wanted to throw the question out there to someone who might have some real experience of this problem. NB our internal document's data structure is quite complex and it could be quite difficult to wrap. We know we want to expose as little as possible in our public API, especially as once it's out there, it's out there for good. Can anyone help? How do scripting languages / APIs decouple their public API and data structures from their internal data structures? Is there no real alternative to having to write a complex interaction layer? If we need to do this, what's a good approach or pattern for wrapping complex data structures that include nested objects, including collections? I've looked at the API facade pattern, which looks like it's trying to address these kinds of issues, but are there alternatives? *One idea is to build a data facade that is kept stable across versions of our application. The facade exposes a set of facade data objects that are used in the script code. These maintain backwards compatibility and wrap access to our internal document's data model.

    Read the article

  • Why Cornell University Chose Oracle Data Masking

    - by Troy Kitch
    One of the eight Ivy League schools, Cornell University found itself in the unfortunate position of having to inform over 45,000 University community members that their personal information had been breached when a laptop was stolen. To ensure this wouldn’t happen again, Cornell took steps to ensure that data used for non-production purposes is de-identified with Oracle Data Masking. A recent podcast highlights why organizations like Cornell are choosing Oracle Data Masking to irreversibly de-identify production data for use in non-production environments. Organizations often copy production data, that contains sensitive information, into non-production environments so they can test applications and systems using “real world” information. Data in non-production has increasingly become a target of cyber criminals and can be lost or stolen due to weak security controls and unmonitored access. Similar to production environments, data breaches in non-production environments can cost millions of dollars to remediate and cause irreparable harm to reputation and brand. Cornell’s applications and databases help carry out the administrative and academic mission of the university. They are running Oracle PeopleSoft Campus Solutions that include highly sensitive faculty, student, alumni, and prospective student data. This data is supported and accessed by a diverse set of developers and functional staff distributed across the university. Several years ago, Cornell experienced a data breach when an employee’s laptop was stolen.  Centrally stored backup information indicated there was sensitive data on the laptop. With no way of knowing what the criminal intended, the university had to spend significant resources reviewing data, setting up service centers to handle constituent concerns, and provide free credit checks and identity theft protection services—all of which cost money and took time away from other projects. To avoid this issue in the future Cornell came up with several options; one of which was to sanitize the testing and training environments. “The project management team was brought in and they developed a project plan and implementation schedule; part of which was to evaluate competing products in the market-space and figure out which one would work best for us.  In the end we chose Oracle’s solution based on its architecture and its functionality.” – Tony Damiani, Database Administration and Business Intelligence, Cornell University The key goals of the project were to mask the elements that were identifiable as sensitive in a consistent and efficient manner, but still support all the previous activities in the non-production environments. Tony concludes,  “What we saw was a very minimal impact on performance. The masking process added an additional three hours to our refresh window, but it was well worth that time to secure the environment and remove the sensitive data. I think some other key points you can keep in mind here is that there was zero impact on the production environment. Oracle Data Masking works in non-production environments only. Additionally, the risk of exposure has been significantly reduced and the impact to business was minimal.” With Oracle Data Masking organizations like Cornell can: Make application data securely available in non-production environments Prevent application developers and testers from seeing production data Use an extensible template library and policies for data masking automation Gain the benefits of referential integrity so that applications continue to work Listen to the podcast to hear the complete interview.  Learn more about Oracle Data Masking by registering to watch this SANS Institute Webcast and view this short demo.

    Read the article

  • Removing Barriers to Create Effective Data Models

    After years of creating and maintaining data models, I have started to notice common barriers that decrease the accuracy and usefulness of models. In my opinion, the main causes of these barriers are the lack of knowledge and communication from within a company. The lack of knowledge in regards to data models or data modeling can take many forms. Company Culture Knowledge Whether documented or undocumented, existing business rules of a company can affect how data is modeled. For example, if a company only allows 1 assigned person per customer to be able to manipulate a customer’s record then then a data model that includes an associated table that joins customers and employee’s would be unneeded because that would allow for the possibility of multiple employees to handle a customer because of the potential for a many to many relationship between Customers and Employees. Technical Knowledge Depending on the data modeler’s proficiency in modeling data they can inadvertently cause issues and/or complications with a design without even noticing. It is important that companies share data modeling responsibilities so that the models are developed from multiple perspectives of a system, company and the original problem.  In addition, the tools that a company selects to create data models can also affect the accuracy of the model if designer are not familiar with the tools or the tools are too complex to use for the designer. Existing System Knowledge In order for a data modeler to model data for an existing system so that new changes can be applied to a system then they need to at least know the basic concepts of a system so that they can work within it. This will promote reusability of data and prevent the chance of duplicating data. Project Knowledge This should be pretty obvious, but it is very hard to create an accurate data model without knowing what data needs to be modeled. I have always found it strange that I have been asked to start modeling data prior to a client formalizing any requirements. Usually when this happens I have to make several iterations to a model, and the client still does not know exactly what they want.  In addition additional issues can arise when certain stakeholders of a project are not consulted prior to the design or after the project is over because it can cause miss understandings and confusion by the end user as well as possibly not solving the original problem for which a project is intended to solve. One common thread between each type of knowledge is that they can all be avoided through the use of good communication. For example, if a modeler is new to a company then they should ask older employees about any business specific rules that may be documented or undocumented that must be applied to projects in general. Furthermore, if a modeler is not really familiar with a specific data modeling software then they need to speak up and ask for help form other employees or their manager. This will not only help the modeler in the project, but also help them in future projects that they do for the company. Additionally, if a project is not clearly defined prior to a data modeler being assigned the modeling project then it is their responsibility to communicate with the other stakeholders to clarify any part of a project that is unclear so that the data model that is created is accurately aligned with a project.

    Read the article

  • Enterprise Library DAAB for JAVA?

    - by user48545
    Hi, I'm looking for a java library thats similar to .NET's Enterprise Library specifically the Data Access block. More details.. working on a java poc and would like a library to build the data access.. no ORM's or something too complicated. The library should be able to use MsSQL as a database.

    Read the article

  • Oracle Social Network -The Social Glue for Enterprise Applications

    - by kellsey.ruppel
    by Peter Reiser  - Social Business Evangelist, Oracle WebCenter  Tom Petrocelli of Enterprise Strategy Group published a report recently, “Oracle Social Network: The Social Glue for Enterprise Applications”, on Oracle Social Network (OSN) and how traditional social products create social silos whereas OSN is the “social glue” for enterprise applications.  This report supports the point of Oracle’s Social Business Strategy to seamless integrate social capabilities into the main business processes. Quote from report: “Oracle has adopted the correct approach to creating a social layer and socially enabled applications. Oracle Social Network is not simply another enterprise social network product; it is a complete social layer for the enterprise application stack. This approach will serve Oracle users well in the future.” OSN allow to capture the related Conversations of a business process right where it’s happens – within the respective Business application.  Fusion CRM is an excellent example for this approach. Quote from report: “Oracle’s new software, Oracle Social Network, is an example of a solution to the silo problem. While Oracle fields a typical enterprise social network application with microblogging, file sharing, shared documents or wikis, and activity streams, the front-end application is only a small part of what Oracle Social Network does. Instead, Oracle Social Network is a platform that provides social features as a service to other enterprise applications. In effect, Oracle Social Network socially enables all of Oracle’s enterprise applications—all enterprise applications really—with not only the same features, but also the same conversations. As a result, the social conversations act as a conduit for inter-application communication and collaboration.” Source: ESG Research Report, Oracle Social Network: The Social Glue for Enterprise Applications, August 2012. You can download the report here.

    Read the article

  • Oracle Social Network -The Social Glue for Enterprise Applications

    - by me
    Tom Petrocelli of Enterprise Strategy Group published a report recently, “Oracle Social Network: The Social Glue for Enterprise Applications”, on Oracle Social Network (OSN) and how traditional social products create social silos whereas OSN is the “social glue” for enterprise applications.  This report supports the point of Oracle’s Social Business Strategy to seamless integrate social capabilities into the main business processes. Quote from report: “Oracle has adopted the correct approach to creating a social layer and socially enabled applications. Oracle Social Network is not simply another enterprise social network product; it is a complete social layer for the enterprise application stack. This approach will serve Oracle users well in the future.” OSN allow to capture the related Conversations of a business process right where it’s happens – within the respective Business application.  Fusion CRM is an excellent example for this approach. Quote from report: “Oracle’s new software, Oracle Social Network, is an example of a solution to the silo problem. While Oracle fields a typical enterprise social network application with microblogging, file sharing, shared documents or wikis, and activity streams, the front-end application is only a small part of what Oracle Social Network does. Instead, Oracle Social Network is a platform that provides social features as a service to other enterprise applications. In effect, Oracle Social Network socially enables all of Oracle’s enterprise applications—all enterprise applications really—with not only the same features, but also the same conversations. As a result, the social conversations act as a conduit for inter-application communication and collaboration.” Source: ESG Research Report, Oracle Social Network: The Social Glue for Enterprise Applications, August 2012. cross-post from Oracle WebCenter blog

    Read the article

  • E-Business Suite Plug-in 12.1.0.1 for Enterprise Manager 12c Now Available

    - by Steven Chan (Oracle Development)
    Oracle E-Business Suite Plug-in 12.1.0.1.0 is now available for use with Oracle Enterprise Manager 12c.  Oracle E-Business Suite Plug-in 12.1.0.1 is an integral part of Oracle Enterprise Manager 12 Application Management Suite for Oracle E-Business Suite. This latest plug-in extends EM 12c Cloud Control with E-Business Suite specific system management capabilities and features enhanced change management support. The Oracle Enterprise Manager 12c Application Management Suite for Oracle E-Business Suite includes: Oracle E-Business Suite Plug-in 12.1.0.1 combines functionality that was available in the previously-standalone Application Management Pack for Oracle E-Business Suite and Application Change Management Pack for Oracle E-Business Suite with Oracle Real User Experience Insight Oracle Configuration & Compliance capabilities  Features that were previously available in the standalone management packs are now packaged in the Oracle E-Business Suite Plug-in, which is certified with Oracle Enterprise Manager 12c Cloud Control:  Functionality previously available for Application Management Pack (AMP) is now classified as “System Management for Oracle E-Business Suite” within the plug-in. Functionality previously available for Application Change Management Pack (ACMP) is now classified as “Change Management for Oracle E-Business Suite” within the plug-in. The Application Configuration Console and the Configuration Change Console are now native components of Oracle Enterprise Manager 12c. System Management Enhancements General Oracle Enterprise Manager 12c Base Platform uptake: All components of the management suite are certified with Oracle Enterprise Manager 12c Cloud Control. Security Privilege Delegation: The Oracle E-Business Suite Plug-in now extends Enterprise Manager’s privilege delegation through Sudo and PowerBroker to Oracle E-Business Suite Plug-in host targets. Privileges and Roles for Managing Oracle E-Business Suite: This release includes new ready-to-use target and resource privileges to monitor, manage, and perform Change Management functionality. Cloning Named Credentials Uptake in Cloning: The Clone module transactions now let users leverage the Named Credential feature introduced in Enterprise Manager 12c, thereby passing all the benefits of Named Credentials features in Enterprise Manager to the Oracle E-Business Suite Plug-in users. Smart Clone improvements: In addition to the existing 11i support that was available on previous releases, the new Oracle E-Business Suite Plug-in widens the coverage supporting Oracle E-Business Suite releases 12.0.x and 12.1.x. The new and improved Smart Clone UI supports the adding of "pre and post" custom steps to a copy of the ready-to-use cloning deployment procedure. Now a user can pass parameters to the custom steps through the interview screen of the UI as well as pass ready-to-use parameters to the custom steps. Additional configuration enhancements are included for configuring RAC targets databases, such as the ability to customize listener names and the option to configure with Virtual IP or Scan IP. Change Management Enhancements Customization Manager Support for longer file names: Customization Manager now handles file names up to thirty characters in length. Patch Manager Queuing of Patch Manager Runs: This feature allows patch runs to queue up if Patch Manager detects a specific target is in a blackout state. Multi-node system patching: The patch run interview has been enhanced to allow Enterprise Manager Administrator to choose which nodes adpatch will run on. New AD Administration Options: The patch run interview has been extended to include AD Administration Options "Relink Application Programs", "Generate Product Jars Files", "Generate Report Files", and "Generate Form Files". Downloads Fresh install For new customers or existing customers wishing to perform a fresh install Enterprise Manager Store (within Enterprise Manager 12c) Oracle Software Delivery Cloud Upgrades For existing customers wishing to upgrade their AMP 4.0 or AMP 3.1 installations Oracle Technology Network Getting Started with Oracle E-Business Suite Plug-In, Release 12.1.0.1 (Note 1434392.1) Prerequisites Enterprise Manager Cloud Control 12cOne or more of the following Oracle E-Business Suite Releases Release 11.5.10 CU2 with 11i.ATG_PF.H.RUP6 or higher Release 12.0.4 with R12.ATG_PF.A.delta.6 Release 12.1 with R12.ATG_PF.B.delta.3 Platforms and OS Release certification information is available from My Oracle Support via the Certification page. Search for "Oracle Application Management Pack for Oracle E-Business Suite and release 12.1.0.1.0." Related Articles Oracle E-Business Suite Plug-in 4.0 Released for OEM 11g (11.1.0.1)

    Read the article

  • Announcing Oracle Enterprise Manager 12c Release 4

    - by Javier Puerta
    Oracle Delivers Latest Release of Oracle Enterprise Manager 12c. Richer Service Catalog for Database and Middleware as a Service; Enhanced Database and Middleware Management Help Drive Enterprise-Scale Private Cloud Adoption. Oracle Enterprise Manager 12c Release 4, available today, lets organizations rapidly adopt Oracle-based, enterprise-scale private clouds. New capabilities provide advanced technology stack management, secure database administration, and enterprise service governance, enabling Oracle customers and partners to maximize database and application performance and drive innovation using self-service IT platforms. The enhancements have been driven by customers and the growing Oracle Enterprise Manager Ecosystem, comprised of more than 750 Oracle PartnerNetwork (OPN) Specialized partners. Oracle and its partners and customers have built over 140 plug-ins and connectors for Oracle Enterprise Manager. Watch Dan Koloski introducing Enterprise Manager 12c Release 4 in this video

    Read the article

  • How often do you use data structures (ie Binary Trees, Linked Lists) in your jobs/side projects?

    - by Chris2021
    It seems to me that, for everyday use, more primitive data structures like arrays get the job done just as well as a binary tree would. My question is how common is to use these structures when writing code for projects at work or projects that you pursue in your free time? I understand the better insertion time/deletion time/sorting time for certain structures but would that really matter that much if you were working with a relatively small amount of data?

    Read the article

  • New sales kit for partners: Oracle Enterprise Manager 12c

    - by Javier Puerta
    Check out the latest Quick Reference Guides for Enterprise Manager 12c in the Knowledge Zone. The two-page Quick Reference Guide is designed to help partners uncover additional revenue opportunity by positioning Enterprise Manager in your sales engagement. Content includes elevator pitch for Enterprise Manager, tips on identifying target customers, qualifying questions to initiate customers discussion, supporting videos, references, and whitepapers for each customer scenario: Enterprise Manager 12c for Application Partners Enterprise Manager 12c for Hardware Partners Enterprise Manager 12c for Database Partners

    Read the article

  • New Sales Kit – Enterprise Manager 12c

    - by Cinzia Mascanzoni
    Check out the latest Quick Reference Guides for Enterprise Manager 12c in the Knowledge Zone. The two-page Quick Reference Guide is designed to help partners uncover additional revenue opportunity by positioning Enterprise Manager. Content includes elevator pitch for Enterprise Manager, tips on identifying target customers, qualifying questions to initiate customers discussion, supporting videos, references, and whitepapers for each customer scenario.• Enterprise Manager 12c for Application Partners • Enterprise Manager 12c for Hardware Partners• Enterprise Manager 12c for Database Partners

    Read the article

  • Why would you use data structures (ie Binary Trees, Linked Lists) in your jobs/side projects? [closed]

    - by Chris2021
    It seems to me that, for everyday use, more primitive data structures like arrays get the job done just as well as a binary tree would. My question is how common is to use these structures when writing code for projects at work or projects that you pursue in your free time? I understand the better insertion time/deletion time/sorting time for certain structures but would that really matter that much if you were working with a relatively small amount of data?

    Read the article

  • ???????/???Oracle Enterprise Manager 12c ???????/??????????

    - by user788995
    ??:2012/01/23 ??:??????/?? ???·?????????????????????????????????? Enterprise Manager 12c ????????????????????????????????????????????????? Enterprise Manager ???????Enterprise Manager 12c ??????Enterprise Manager 12c ???????Enterprise Manager 12c ???????Enterprise Manager 12c ?????? ????????? ????????????????? http://otndnld.oracle.co.jp/ondemand/otn-seminar/movie/2_Framework_120113_1.wmv http://otndnld.oracle.co.jp/ondemand/otn-seminar/movie/mp4/2_Framework_120113_1.mp4 http://www.oracle.com/technetwork/jp/ondemand/db-new/2-feamework-120127-1503669-ja.pdf

    Read the article

  • Queued Loadtest to remove Concurrency issues using Shared Data Service in OpenScript

    - by stefan.thieme(at)oracle.com
    Queued Processing to remove Concurrency issues in Loadtest ScriptsSome scripts act on information returned by the server, e.g. act on first item in the returned list of pending tasks/actions. This may lead to concurrency issues if the virtual users simulated in a load test scenario are not synchronized in some way.As the load test cases should be carried out in a comparable and straight forward manner simply cancel a transaction in case a collision occurs is clearly not an option. In case you increase the number of virtual users this approach would lead to a high number of requests for the early steps in your transaction (e.g. login, retrieve list of action points, assign an action point to the virtual user) but later steps would be rarely visited successfully or at all, depending on the application logic.A way to tackle this problem is to enqueue the virtual users in a Shared Data Service queue. Only the first virtual user in this queue will be allowed to carry out the critical steps (retrieve list of action points, assign an action point to the virtual user) in your transaction at any one time.Once a virtual user has passed the critical path it will dequeue himself from the head of the queue and continue with his actions. This does theoretically allow virtual users to run in parallel all steps of the transaction which are not part of the critical path.In practice it has been seen this is rarely the case, though it does not allow adding more than N users to perform a transaction without causing delays due to virtual users waiting in the queue. N being the time of the total transaction divided by the sum of the time of all critical steps in this transaction.While this problem can be circumvented by allowing multiple queues to act on individual segments of the list of actions, e.g. per country filter, ends with 0..9 filter, etc.This would require additional handling of these additional queues of slots for the virtual users at the head of the queue in order to maintain the mutually exclusive access to the first element in the list returned by the server at any one time of the load test. Such an improved handling of multiple queues and/or multiple slots is above the subject of this paper.Shared Data Services Pre-RequisitesStart WebLogic Server to host Shared Data ServicesYou will have to make sure that your WebLogic server is installed and started. Shared Data Services may not work if you installed only the minimal installation package for OpenScript. If however you installed the default package including OLT and OTM, you may follow the instructions below to start and verify WebLogic installation.To start the WebLogic Server deployed underneath of Oracle Load Testing and/or Oracle Test Manager you can go to your Start menu, Oracle Application Testing Suite and select the Restart Oracle Application Testing Suite Application Service entry from the Tools submenu.To verify the service has been started you can run the Microsoft Management Console for Services by Selecting Run from the Start Menu and entering services.msc. Look for the entry that reads Oracle Application Testing Suite Application Service, once it has changed it status from Starting to Started you can proceed to verify the login. Please note that this may take several minutes, I would say up to 10 minutes depending on the strength of your CPU horse-power.Verify WebLogic Server user credentialsYou will have to make sure that your WebLogic Server is installed and started. Next open the Oracle WebLogic Server Adminstration Console on http://localhost:8088/console.It may take a while until the application is deployed and started. It may display the following until the Administration Console has been deployed on the fly.Afterwards you can login using the username oats and the password that you selected during install time for your Application Testing Suite administrative purposes.This will bring up the Home page of you WebLogic Server. You have actually verified that you are able to login with these credentials already. However if you want to check the details, navigate to Security Realms, myrealm, Users and Groups tab.Here you could add users to your WebLogic Server which could be used in the later steps. Details on the Groups required for such a custom user to work are exceeding this quick overview and have to be selected with the WebLogic Server Adminstration Guide in mind.Shared Data Services pre-requisites for Load testingOpenScript Preferences have to be set to enable Encryption and provide a default Shared Data Service Connection for Playback.These are pre-requisites you want to use for load testing with Shared Data Services.Please note that the usage of the Connection Parameters (individual directive in the script) for Shared Data Services did not playback reliably in the current version 9.20.0370 of Oracle Load Testing (OLT) and encryption of credentials still seemed to be mandatory as well.General Encryption settingsSelect OpenScript Preferences from the View menu and navigate to the General, Encryption entry in the tree on the left. Select the Encrypt script data option from the list and enter the same password that you used for securing your WebLogic Server Administration Console.Enable global shared data access credentialsSelect OpenScript Preferences from the View menu and navigate to the Playback, Shared Data entry in the tree on the left. Enable the global shared data access credentials and enter the Address, User name and Password determined for your WebLogic Server to host Shared Data Services.Please note, that you may want to replace the localhost in Address with the hosts realname in case you plan to run load tests with Loadtest Agents running on remote systems.Queued Processing of TransactionsEnable Shared Data Services Module in Script PropertiesThe Shared Data Services Module has to be enabled for each Script that wants to employ the Shared Data Service Queue functionality in OpenScript. It can be enabled under the Script menu selecting Script Properties. On the Script Properties Dialog select the Modules section and check Shared Data to enable Shared Data Service Module for your script. Checking the Shared Data Services option will effectively add a line to your script code that adds the sharedData ScriptService to your script class of IteratingVUserScript.@ScriptService oracle.oats.scripting.modules.sharedData.api.SharedDataService sharedData;Record your scriptRecord your script as usual and then add the following things for Queue handling in the Initialize code block, before the first step and after the last step of your critical path and in the Finalize code block.The java code to be added at individual locations is explained in the following sections in full detail.Create a Shared Data Queue in InitializeTo create a Shared Data Queue go to the Java view of your script and enter the following statements to the initialize() code block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);This will create an instantiation of the Shared Data Queue object named queueA which is maintained for upto 120 minutes.If you want to use the code for multiple scripts, make sure to use a different queue name for each one here and in the subsequent steps. You may even consider to use a dynamic queueName based on filters of your result list being concurrently accessed.Prepare a unique id for each IterationIn order to keep track of individual virtual users in our queue we need to create a unique identifier from the virtual user id and the used username right after retrieving the next record from our databank file.getDatabank("Usernames").getNextDatabankRecord();getVariables().set("usernameValue1","VU_{{@vuid}}_{{@iterationnum}}_{{db.Usernames.Username}}_{{@timestamp}}_{{@random(10000)}}");String usernameValue = getVariables().get("usernameValue1");info("Now running virtual user " + usernameValue);As you can see from the above code block, we have set the OpenScript variable usernameValue1 to VU_{{@vuid}}_{{@iterationnum}}_{{db.Usernames.Username}}_{{@timestamp}}_{{@random(10000)}} which is a concatenation of the virtual user id and the iterationnumber for general uniqueness; as well as the username from our databank, the timestamp and a random number for making it further unique and ease spotting of errors.Not all of these fields are actually required to make it really unique, but adding the queue name may also be considered to help troubleshoot multiple queues.The value is then retrieved with the getVariables.get() method call and assigned to the usernameValue String used throughout the script.Please note that moving the getDatabank("Usernames").getNextDatabankRecord(); call to the initialize block was later considered to remove concurrency of multiple virtual users running with the same userid and therefor accessing the same "My Inbox" in step 6. This will effectively give each virtual user a userid from the databank file. Make sure you have enough userids to remove this second hurdle.Enqueue and attend Queue before Critical PathTo maintain the right order of virtual users being allowed into the critical path of the transaction the following pseudo step has to be added in front of the first critical step. In the case of this example this is right in front of the step where we retrieve the list of actions from which we select the first to be assigned to us.beginStep("[0] Waiting in the Queue", 0);{info("Enqueued virtual user " + usernameValue + " at the end of queueA");sharedData.offerLast("queueA", usernameValue);info("Wait until the user is the first in queueA");String queueValue1 = null;do {// we wait for at least 0.7 seconds before we check the head of the// queue. This is the time it takes one user to move through the// critical path, i.e. pass steps [5] Enter country and [6] Assign// to meThread.sleep(700);queueValue1 = (String) sharedData.peekFirst("queueA");info("The first user in queueA is currently: '" + queueValue1 + "' " + queueValue1.getClass() + " length " + queueValue1.length() );info("The current user is '"+ usernameValue + "' " + usernameValue.getClass() + " length " + usernameValue.length() + ": indexOf " + usernameValue.indexOf(queueValue1) + " equals " + usernameValue.equals(queueValue1) );} while ( queueValue1.indexOf(usernameValue) < 0 );info("Now the user is the first in queueA");}endStep();This will enqueue the username to the tail of our Queue. It will will wait for at least 700 milliseconds, the time it takes for one user to exit the critical path and then compare the head of our queue with it's username. This last step will be repeated while the two are not equal (indexOf less than zero). If they are equal the indexOf will yield a value of zero or larger and we will perform the critical steps.Dequeue after Critical PathAfter the virtual user has left the critical path and complete its last step the following code block needs to dequeue the virtual user. In the case of our example this is right after the action has been actually assigned to the virtual user. This will allow the next virtual user to retrieve the list of actions still available and in turn let him make his selection/assignment.info("Get and remove the current user from the head of queueA");String pollValue1 = (String) sharedData.pollFirst("queueA");The current user is removed from the head of the queue. The next one will now be able to match his username against the head of the queue.Clear and Destroy Queue for FinishWhen the script has completed, it should clear and destroy the queue. This code block can be put in the finish block of your script and/or in a separate script in order to clear and remove the queue in case you have spotted an error or want to reset the queue for some reason.info("Clear queueA");sharedData.clearQueue("queueA");info("Destroy queueA");sharedData.destroyQueue("queueA");The users waiting in queueA are cleared and the queue is destroyed. If you have scripts still executing they will be caught in a loop.I found it better to maintain a separate Reset Queue script which contained only the following code in the initialize() block. I use to call this script to make sure the queue is cleared in between multiple Loadtest runs. This script could also even be added as the first in a larger scenario, which would execute it only once at very start of the Loadtest and make sure the queues do not contain any stale entries.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);info("Clear queueA");sharedData.clearQueue("queueA");This will create a Shared Data Queue instance of queueA and clear all entries from this queue.Monitoring QueueWhile creating the scripts it was useful to monitor the contents, i.e. the current first user in the Queue. The following code block will make sure the Shared Data Queue is accessible in the initialize() block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);In the run() block the following code will continuously monitor the first element of the Queue and write an informational message with the current username Value to the Result window.info("Monitor the first users in queueA");String queueValue1 = null;do {queueValue1 = (String) sharedData.peekFirst("queueA");if (queueValue1 != null)info("The first user in queueA is currently: '" + queueValue1 + "' " + queueValue1.getClass() + " length " + queueValue1.length() );} while ( true );This script can be run from OpenScript parallel to a loadtest performed by the Oracle Load Test.However it is not recommend to run this in a production loadtest as the performance impact is unknown. Accessing the Queue's head with the peekFirst() method has been reported with about 2 seconds response time by both OpenScript and OTL. It is advised to log a Service Request to see if this could be lowered in future releases of Application Testing Suite, as the pollFirst() and even offerLast() writing to the tail of the Queue usually returned after an average 0.1 seconds.Debugging QueueWhile debugging the scripts the following was useful to remove single entries from its head, i.e. the current first user in the Queue. The following code block will make sure the Shared Data Queue is accessible in the initialize() block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);In the run() block the following code will remove the first element of the Queue and write an informational message with the current username Value to the Result window.info("Get and remove the current user from the head of queueA");String pollValue1 = (String) sharedData.pollFirst("queueA");info("The first user in queueA was currently: '" + pollValue1 + "' " + pollValue1.getClass() + " length " + pollValue1.length() );ReferencesOracle Functional Testing OpenScript User's Guide Version 9.20 [E15488-05]Chapter 17 Using the Shared Data Modulehttp://download.oracle.com/otn/nt/apptesting/oats-docs-9.21.0030.zipOracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help 11g Release 1 (10.3.4) [E13952-04]Administration Console Online Help - Manage users and groupshttp://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e13952/taskhelp/security/ManageUsersAndGroups.htm

    Read the article

  • Oracle Enterprise Data Quality: Ever Integration-ready

    - by Mala Narasimharajan
    It is closing in on a year now since Oracle’s acquisition of Datanomic, and the addition of Oracle Enterprise Data Quality (EDQ) to the Oracle software family. The big move has caused some big shifts in emphasis and some very encouraging excitement from the field.  To give an illustration, combined with a shameless promotion of how EDQ can help to give quick insights into your data, I did a quick Phrase Profile of the subject field of emails to the Global EDQ mailing list since it was set up last September. The results revealed a very clear theme:   Integration, Integration, Integration! As well as the important Siebel and Oracle Data Integrator (ODI) integrations, we have been asked about integration with a huge variety of Oracle applications, including EBS, Peoplesoft, CRM on Demand, Fusion, DRM, Endeca, RightNow, and more - and we have not stood still! While it would not have been possible to develop specific pre-integrations with all of the above within a year, we have developed a package of feature-rich out-of-the-box web services and batch processes that can be plugged into any application or middleware technology with ease. And with Siebel, they work out of the box. Oracle Enterprise Data Quality version 9.0.4 includes the Customer Data Services (CDS) pack – a ready set of standard processes with standard interfaces, to provide integrated: Address verification and cleansing  Individual matching Organization matching The services can are suitable for either Batch or Real-Time processing, and are enabled for international data, with simple configuration options driving the set of locale-specific dictionaries that are used. For example, large dictionaries are provided to support international name transcription and variant matching, including highly specialized handling for Arabic, Japanese, Chinese and Korean data. In total across all locales, CDS includes well over a million dictionary entries.   Excerpt from EDQ’s CDS Individual Name Standardization Dictionary CDS has been developed to replace the OEM of Informatica Identity Resolution (IIR) for attached Data Quality on the Oracle price list, but does this in a way that creates a ‘best of both worlds’ situation for customers, who can harness not only the out-of-the-box functionality of pre-packaged matching and standardization services, but also the flexibility of OEDQ if they want to customize the interfaces or the process logic, without having to learn more than one product. From a competitive point of view, we believe this stands us in good stead against our key competitors, including Informatica, who have separate ‘Identity Resolution’ and general DQ products, and IBM, who provide limited out-of-the-box capabilities (with a steep learning curve) in both their QualityStage data quality and Initiate matching products. Here is a brief guide to the main services provided in the pack: Address Verification and Standardization EDQ’s CDS Address Cleaning Process The Address Verification and Standardization service uses EDQ Address Verification (an OEM of Loqate software) to verify and clean addresses in either real-time or batch. The Address Verification processor is wrapped in an EDQ process – this adds significant capabilities over calling the underlying Address Verification API directly, specifically: Country-specific thresholds to determine when to accept the verification result (and therefore to change the input address) based on the confidence level of the API Optimization of address verification by pre-standardizing data where required Formatting of output addresses into the input address fields normally used by applications Adding descriptions of the address verification and geocoding return codes The process can then be used to provide real-time and batch address cleansing in any application; such as a simple web page calling address cleaning and geocoding as part of a check on individual data.     Duplicate Prevention Unlike Informatica Identity Resolution (IIR), EDQ uses stateless services for duplicate prevention to avoid issues caused by complex replication and synchronization of large volume customer data. When a record is added or updated in an application, the EDQ Cluster Key Generation service is called, and returns a number of key values. These are used to select other records (‘candidates’) that may match in the application data (which has been pre-seeded with keys using the same service). The ‘driving record’ (the new or updated record) is then presented along with all selected candidates to the EDQ Matching Service, which decides which of the candidates are a good match with the driving record, and scores them according to the strength of match. In this model, complex multi-locale EDQ techniques can be used to generate the keys and ensure that the right balance between performance and matching effectiveness is maintained, while ensuring that the application retains control of data integrity and transactional commits. The process is explained below: EDQ Duplicate Prevention Architecture Note that where the integration is with a hub, there may be an additional call to the Cluster Key Generation service if the master record has changed due to merges with other records (and therefore needs to have new key values generated before commit). Batch Matching In order to allow customers to use different match rules in batch to real-time, separate matching templates are provided for batch matching. For example, some customers want to minimize intervention in key user flows (such as adding new customers) in front end applications, but to conduct a more exhaustive match on a regular basis in the back office. The batch matching jobs are also used when migrating data between systems, and in this case normally a more precise (and automated) type of matching is required, in order to minimize the review work performed by Data Stewards.  In batch matching, data is captured into EDQ using its standard interfaces, and records are standardized, clustered and matched in an EDQ job before matches are written out. As with all EDQ jobs, batch matching may be called from Oracle Data Integrator (ODI) if required. When working with Siebel CRM (or master data in Siebel UCM), Siebel’s Data Quality Manager is used to instigate batch jobs, and a shared staging database is used to write records for matching and to consume match results. The CDS batch matching processes automatically adjust to Siebel’s ‘Full Match’ (match all records against each other) and ‘Incremental Match’ (match a subset of records against all of their selected candidates) modes. The Future The Customer Data Services Pack is an important part of the Oracle strategy for EDQ, offering a clear path to making Data Quality Assurance an integral part of enterprise applications, and providing a strong value proposition for adopting EDQ. We are planning various additions and improvements, including: An out-of-the-box Data Quality Dashboard Even more comprehensive international data handling Address search (suggesting multiple results) Integrated address matching The EDQ Customer Data Services Pack is part of the Enterprise Data Quality Media Pack, available for download at http://www.oracle.com/technetwork/middleware/oedq/downloads/index.html.

    Read the article

  • New version of SQL Server Data Tools is now available

    - by jamiet
    If you don’t follow the SQL Server Data Tools (SSDT) blog then you may not know that two days ago an updated version of SSDT was released (and by SSDT I mean the database projects, not the SSIS/SSRS/SSAS stuff) along with a new version of the SSDT Power Tools. This release incorporates a an updated version of the SQL Server Data Tier Application Framework (aka DAC Framework, aka DacFX) which you can read about on Adam Mahood’s blog post SQL Server Data-Tier Application Framework (September 2012) Available. DacFX is essentially all the gubbins that you need to extract and publish .dacpacs and according to Adam’s post it incorporates a new feature that I think is very interesting indeed: Extract DACPAC with data – Creates a database snapshot file (.dacpac) from a live SQL Server or Windows Azure SQL Database that contains data from user tables in addition to the database schema. These packages can be published to a new or existing SQL Server or Windows Azure SQL Database using the SqlPackage.exe Publish action. Data contained in package replaces the existing data in the target database. In short, .dacpacs can now include data as well as schema. I’m very excited about this because one of my long-standing complaints about SSDT (and its many forebears) is that whilst it has great support for declarative development of schema it does not provide anything similar for data – if you want to deploy data from your SSDT projects then you have to write Post-Deployment MERGE scripts. This new feature for .dacpacs does not change that situation yet however it is a very important pre-requisite so I am hoping that a feature to provide declaration of data (in addition to declaration of schema which we have today) is going to light up in SSDT in the not too distant future. Read more about the latest SSDT, Power Tools & DacFX releases at: Now available: SQL Server Data Tools - September 2012 update! by Janet Yeilding New SSDT Power Tools! Now for both Visual Studio 2010 and Visual Studio 2012 by Sarah McDevitt SQL Server Data-Tier Application Framework (September 2012) Available by Adam Mahood @Jamiet

    Read the article

  • Extract news links from news website

    - by Ali
    Is there any reliable method to find out the collection of links which is directed us to detail news page. in other word after visiting the first page of website I just want those links that refer to a news item. any solution ?

    Read the article

  • Reader for Android Updates; Now with Feed Widgets and More

    - by ETC
    Android phone owners rocking the official Google Reader app will be pleased to see the new update includes much requested features such as polished feed widgets, unread counter widgets, and a handy “mark previous as read” button. Widgets have long been one of the most requested feature for Google Reader for Android. This update rolls them out in two forms. News ticker widgets show you current headlines for your Google Reader folders (as seen in the screenshot here); folder widgets function just as unread counters and only take up a 1×1 space. In addition to the widgets another much requested feature made an appearance. While scrolling through your feed you can now mark all the previous entries as read. Hit up the link below to read more or visit the Android Market on your phone to update the application. Updates to the Google Reader App for Android [The Official Google Reader Blog] Latest Features How-To Geek ETC How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Ask How-To Geek: How Can I Monitor My Bandwidth Usage? Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware Comix is an Awesome Comics Archive Viewer for Linux Get the MakeUseOf eBook Guide to Speeding Up Windows for Free Need Tech Support? Call the Star Wars Help Desk! [Video Classic] Reclaim Vertical UI Space by Adding a Toolbar to the Left or Right Side of Firefox Androidify Turns You into an Android-style Avatar Reader for Android Updates; Now with Feed Widgets and More

    Read the article

  • "Oracle Enterprise Manager Grid Control Advanced OEM Techniques for the Real World" Book - My Humble Review

    - by cristobal.soto(at)oracle.com
    After reviewing this book, I am really amazed with it. I really recommend it, specially if you work with these tools (BPEL, SOA Suite and/or OSB), if you are a SOA Architect and/or if your work is focused on production environments.This book provides valuable and useful information for monitoring and automation tasks.In the books is very clearly explained and with screenshots (which makes it even easier to read, understand and follow) how to perform several tasks that are necessary to keep a correct performance on the production environments and the subtasks that must be executed on them.The test sections on chapters 3, 10 and 13 (SOAP tests for partner links and BPEL processes, service tests on web applications, and SOAP test OSB proxy and business service endpoints) look specially interesting for me and I really liked to see that there is special emphasis on the use of WebLogic Server as well.For further information and order the book, please go to the Packt Publishing web site.

    Read the article

  • UPDATE FOR BI PUBLISHER ENTERPRISE 10.1.3.4.2 NOVEMBER 2011

    - by Tim Dexter
    It's Friday, that means its patch release time. Why do we do this to ourselves, 'we'll release on Friday!' It might 11.59 on Friday but by golly we'll have released on Friday. I can remember a release of BIP years ago that for some reason we went for 12/31 as a release date ... were we mad? I seem to remember we made it but talk about ridiculous pressure! The latest 10g rollup is out in the wild and available from Oracle support. A bug fixing rollup but worth getting to and know that support will want you to get to it and re-test before going forward on an SR. One simple but very useful fix or enhancement:[Cause of the bug] @ ================== @ Customer reports that despite the clock being shown, end users are clicking @ on the View button repeatedly as the initial generation is taking some time.   @ If the button were to be grayed out then  this would prevent the users @ requesting the report more than  once.  Repeated requests are causing a @ system overload and as this is their Production  instance this is extremely @ important to the customer. @ . @ [The Fix] @ ========= @ Added the logic to disable the button after the user clicks on the "view" @ button and re-enable it when the report is loaded. I told a group of customers once that they have a headache and we have a non-steroidal anti-inflammatory drug, alright, I actually said 'aspirin'. This little gem of a fix helps relieve another little headache that our aspirin was causing. The patch number for all this BIP pain killing is 13399232, enjoy!

    Read the article

  • Powerful Lessons in Data from the Presidential Election

    - by Christina McKeon
    Now that we’ve had a few days to recover from the U.S. presidential election, it’s a good time to take a step back from politics and look for the customer experience lessons that we can take away. The most powerful lesson is that when you know more about your base, you will have an advantage over your competition. That advantage will translate into you winning and your competition losing. Michael Scherer of TIME was given access to Obama’s data analysts two days before the election. His account is documented in Inside the Secret World of the Data Crunchers Who Helped Obama Win. What we learned from Scherer’s inside view is how well Obama’s team did in getting the right data, analyzing it, and acting on it. This data team recognized how critical it was to break down data silos within the campaign. As Scherer noted, they created “a single system that merged information from pollsters, fundraisers, field workers, consumer databases, and social-media and mobile contacts with the main Democratic voter files in the swing states.” The Obama analysis was so meticulous that they knew which celebrity and which type of celebrity event would help them maximize campaign contributions. With a single system, their data models became more precise. They determined which messages were more successful with specific demographic groups and that who made the calls mattered. Data analysis also led to many other changes in Obama’s campaign including a new ad buying strategy, using social media and applications to tap into supporters’ friends, and using new social news sites. While we did not have that same inside view into Romney’s campaign, much of the post-mortem coverage indicates that Romney’s team did not have the right analysis. As Peter Hamby of CNN wrote in Analysis: Why Romney Lost, “Romney officials had modeled an electorate that looked something like a mix of 2004 and 2008….” That historical data did not account for the changing demographics in the U.S. Does your organization approach data like the Obama or Romney team? Do you really know your base? How well can you predict what is going to happen in your business? If you haven’t already put together a strategy and plan to know more, this week’s civics lesson is a powerful reason to do it sooner rather than later. Your competitors are probably thinking the same thing that you are!

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >