Search Results

Search found 39631 results on 1586 pages for 'object model'.

Page 16/1586 | < Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >

  • Does command/query separation apply to a method that creates an object and returns its ID?

    - by Gilles
    Let's pretend we have a service that calls a business process. This process will call on the data layer to create an object of type A in the database. Afterwards we need to call again on another class of the data layer to create an instance of type B in the database. We need to pass some information about A for a foreign key. In the first method we create an object (modify state) and return it's ID (query) in a single method. In the second method we have two methods, one (createA) for the save and the other (getId) for the query. public void FirstMethod(Info info) { var id = firstRepository.createA(info); secondRepository.createB(id); } public void SecondMethod(Info info) { firstRepository.createA(info); var key = firstRepository.getID(info); secondRepository.createB(key); } From my understanding the second method follows command query separation more fully. But I find it wasteful and counter-intuitive to query the database to get the object we have just created. How do you reconcile CQS with such a scenario? Does only the second method follow CQS and if so is it preferable to use it in this case?

    Read the article

  • MVC and individual elements of the model under a common base class

    - by Stewart
    Admittedly my experience of using the MVC pattern is limited. It might be argued that I don't really separate the V from the C, though I keep the M separate from the VC to the extent I can manage. I'm considering the scenario in which the application's model includes a number of elements that have a common base class. For example, enemy characters in a video game, or shape types in a vector graphics app. The view wants to render these elements. Of course, the different subclasses call for different rendering. The problem is that the elements are part of the model. Rendering them is conceptually part of the view. But how they are to be rendered depends on parameters of both: Attributes and state of the element are parameters of the model User settings are parameters of the view - and to support multiple platforms and/or view modes, different views may be used What's your preferred way of dealing with this? Put the rendering code in the model classes, passing in any view parameters? Put the rendering code in the view, using a switch or similar to select the right rendering for the model element type? Have some intermediate classes as a model-view interface, of which the model will create objects on demand and the view will then render them? Something else?

    Read the article

  • relationship between the model and the renderer

    - by acrilige
    I tried to build a simple graphics engine, and faced with this problems: i have a list of models that i need to draw, and object (renderer) that implements IRenderer interface with method DrawObject(Object* obj). Implementation of renderer depends on using graphics library (opengl/directx). 1st question: model should not know nothing about renderer implementation, but in this case where can i hold (cache) information that depends on renderer implementation? For example, if model have this definition: class Model { public: Model(); Vertex* GetVertices() const; private: Vertex* m_vertices; }; what is the best way to cache, for example, vertex buffer of this model for dx11? Hold it in renderer object? 2nd question: what is the best way for model to say renderer HOW it must be rendered (for example with texture, bump mapping, or may be just in one color). I thought it can be done with flags, like this: model-SetRenderOptions(RENDER_TEXTURE | RENDER_BUMPMAPPING | RENDER_LIGHTING); and in Renderer::DrawModel method check for each flag. But looks like it will become uncomfortable with the options count growth...

    Read the article

  • If an entity is composed, is it still a god object?

    - by Telastyn
    I am working on a system to configure hardware. Unfortunately, there is tons of variety in the hardware, which means there's a wide variety of capabilities and configurations depending on what specific hardware the software connects to. To deal with this, we're using a Component Based Entity design where the "hardware" class itself is a very thin container for components that are composed at runtime based on what capabilities/configuration are available. This works great, and the design itself has worked well elsewhere (particularly in games). The problem is that all this software does is configure the hardware. As such, almost all of the code is a component of the hardware instance. While the consumer only ever works against the strongly typed interfaces for the components, it could be argued that the class that represents an instance of the hardware is a God Object. If you want to do anything to/with the hardware, you query an interface and work with it. So, even if the components of an object are modular and decoupled well, is their container a God Object and the downsides associated with the anti-pattern?

    Read the article

  • How to make this OO?

    - by John
    Hello, Sorry for the poor title,I'm new to OOP so I don't know what is the term for what I need to do. I have, say, 10 different Objects that inherit one Object.They have different amount and type of class members,but all of them have one property in common - Visible. type TObj1=class(TObject) private a:integer; ...(More members) Visible:Boolean; end; TObj2=class(TObject) private b:String; ...(More members) Visible:Boolean; end; ...(Other 8 objects) For each of them I have a variable. var Obj1:TObj1; Obj2:TObj2; Obj3:TObj3; ....(Other 7 objects) Rule 1: Only one object can be initialized at a time(others have to be freed) to be visible. For this rule I have a global variable var CurrentVisibleObj:TObject; //Because they all inherit TObject Finally there is a procedure that changes visibility. procedure ChangeObjVisibility(newObj:TObject); begin CurrentVisibleObj.Free; //Free the old object CurrentVisibleObj:=newObj; //assign the new object CurrentVisibleObj:= ??? //Create new object CurrentVisibleObj.Visible:=true; //Set visibility to new object end; There is my problem,I don't know how to initialize it,because the derived class is unknown. How do I do this? I simplified the explanation,in the project there are TFrames each having different controls and I have to set visible/not visible the same way(By leaving only one frame initialized). Sorry again for the title,I'm very new to OOP.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Binding a list belonging to another object in a custom model binder in ASP.NET MVC

    - by Dan
    I realize something like this has been asked, but this may be a little different Below is my Event object: Event : IEvent public int Id public string Title public List<EventContact> Contacts And EventContact: EventContact public int Id public string Name So, an Event has a list of EventContact' objects. Now, Event also implements IEvent - hence the custom model binder. I useIEventinstead of Event, so when the default model binder tries to do its thing, it lets me know it can't create anIEvent'. I have my view with populated with the contact info: <input type="text" name="contact[0].Name" value="DB Value"/> <input type="text" name="contact[1].Name" value="DB Value"/> <input type="text" name="contact[2].Name" value="DB Value"/> <!-- Event fields, etc --> So, in my custom model binder I am able to see all the value - sweet! The only thing is, I'm really not sure how to get all the contact fields and create a list of contacts from them, along with binding all the Event fields. Any and all help is appreciated!

    Read the article

  • constructor function's object literal returns toString() method but no other method

    - by JohnMerlino
    I'm very confused with javascript methods defined in objects and the "this" keyword. In the below example, the toString() method is invoked when Mammal object instantiated: function Mammal(name){ this.name=name; this.toString = function(){ return '[Mammal "'+this.name+'"]'; } } var someAnimal = new Mammal('Mr. Biggles'); alert('someAnimal is '+someAnimal); Despite the fact that the toString() method is not invoked on the object someAnimal like this: alert('someAnimal is '+someAnimal.toString()); It still returns 'someAnimal is [Mammal "Mr. Biggles"]' . That doesn't make sense to me because the toString() function is not being called anywhere. Then to add even more confusion, if I change the toString() method to a method I make up such as random(): function Mammal(name){ this.name=name; this.random = function(){ return Math.floor(Math.random() * 15); } } var someAnimal = new Mammal('Mr. Biggles'); alert(someAnimal); It completely ignores the random method (despite the fact that it is defined the same way was the toString() method was) and returns: [object object] Another issue I'm having trouble understanding with inheritance is the value of "this". For example, in the below example function person(w,h){ width.width = w; width.height = h; } function man(w,h,s) { person.call(this, w, h); this.sex = s; } "this" keyword is being send to the person object clearly. However, does "this" refer to the subclass (man) or the super class (person) when the person object receives it? Thanks for clearing up any of the confusion I have with inheritance and object literals in javascript.

    Read the article

  • Rails Tableless Model

    - by mplacona
    I'm creating a tableless Rails model, and am a bit stuck on how I should use it. Basically I'm trying to create a little application using Feedzirra that scans a RSS feed every X seconds, and then sends me an email with only the updates. I'm actually trying to use it as an activerecord model, and although I can get it to work, it doesn't seem to "hold" data as expected. As an example, I have an initializer method that parses the feed for the first time. On the next requests, I would like to simply call the get_updates method, which according to feedzirra, is the existing object (created during the initialize) that gets updated with only the differences. I'm finding it really hard to understand how this all works, as the object created on the initialize method doesn't seem to persist across all the methods on the model. My code looks something like: def initialize feed parse here end def get_updates feedzirra update passing the feed object here end Not sure if this is the right way of doing it, but it all seems a bit confusing and not very clear. I could be over or under-doing here, but I'd like your opinion about this approach. Thanks in advance

    Read the article

  • Rails - Scalable calculation model

    - by H O
    I currently have a calculation structure in my rails app that has models metric, operand and operation_type. Presently, the metric model has many operands, and can perform calculations based on the operation_type (e.g. sum, multiply, etc.), and each operand is defined as being right or left (i.e. so that if the operation is division, the numerator and denominator can be identified). Presently, an operand is always an attribute of some model, e.g. @customer.sales.selling_price.sum. In order to make this scalable, in need to allow an operand to be either an attribute of some kind, or the results of a previous operation, i.e. an operand can be a metric. I have included a diagram of how my models currently look: Can anyone assist me with the most elegant way of allowing an operand to be an actual operand, or another metric? Thanks! EDIT: It seems based on the only answer so far that perhaps polymorphic associations are the way to go on this, but the answer is so brief I have no idea how they could be used in this way - can anyone elaborate? EDIT 2: OK, I think I'm getting somewhere - essentially i presently have a metric, which has_many operands, and an operand has_many metrics. I need a polymorphic self join, where a metric can also have many metrics - do I need to call this something else, perhaps calculated_metrics, so that the metric model can use itself? That would leave me with a situation where a metric has_many operands, and a metric has many calculated_metrics.

    Read the article

  • java: assigning object reference IDs for custom serialization

    - by Jason S
    For various reasons I have a custom serialization where I am dumping some fairly simple objects to a data file. There are maybe 5-10 classes, and the object graphs that result are acyclic and pretty simple (each serialized object has 1 or 2 references to another that are serialized). For example: class Foo { final private long id; public Foo(long id, /* other stuff */) { ... } } class Bar { final private long id; final private Foo foo; public Bar(long id, Foo foo, /* other stuff */) { ... } } class Baz { final private long id; final private List<Bar> barList; public Baz(long id, List<Bar> barList, /* other stuff */) { ... } } The id field is just for the serialization, so that when I am serializing to a file, I can write objects by keeping a record of which IDs have been serialized so far, then for each object checking whether its child objects have been serialized and writing the ones that haven't, finally writing the object itself by writing its data fields and the IDs corresponding to its child objects. What's puzzling me is how to assign id's. I thought about it, and it seems like there are three cases for assigning an ID: dynamically-created objects -- id is assigned from a counter that increments reading objects from disk -- id is assigned from the number stored in the disk file singleton objects -- object is created prior to any dynamically-created object, to represent a singleton object that is always present. How can I handle these properly? I feel like I'm reinventing the wheel and there must be a well-established technique for handling all the cases.

    Read the article

  • Domain model for an online WYSYWG webpage generator / runtime

    - by CharlieBrown
    Hi all, I'm using C#, MVC, NHibernate and StructureMap as my IoC container, and need some ideas regarding my domain model. The application I'm working has two parts: an Authoring part and a Runtime part. The idea is to allow the user to create a webpage in Authoring (mostly a form actually) by choosing from a set of predefined controls. That webpage will be later used as a form in a call center environment (Runtime part), or may be used in an intranet portal, etc. Basically something similar to what a CMS would do. The difference is, of course, that the webpage/form the author generates will be used and fulfilled in runtime, and that authros should be able to freely create the webpage they want without limitations. I have a draft working model that allows a RunController to iterate over the ScriptPage (my class for the "generated webpage") Controls collection and uses partial views to render each of them. Works kind of fine. Basically I have a common ScriptControl class, and then I can create for example a TextInputControl or a DropDownControl by inheriting from that base class. I can also figure out the Authoring part of the app, although that will surely be fun in itself for sure. :) The biggest problem I have now is persistance. In order to be flexible, I want to be able to add more controls, and template controls (think of an Address composite control) in sepparate DLLs, so I think having a relational model that handles very possible control is not the way to go. My current thinking is using a kind of ObjectStore: binary-serializing the ScriptPage object that contains the List collection and deserializing at Runtime, but I'm not sure how good will it work with NHibernate and how good the performance will be. Serializing a small "page" with 10 controls results in 7964 bytes, for example. Any ideas out there? Thanks in advance, excuse the length. ;)

    Read the article

  • Generating EF Code First model classes from an existing database

    - by Jon Galloway
    Entity Framework Code First is a lightweight way to "turn on" data access for a simple CLR class. As the name implies, the intended use is that you're writing the code first and thinking about the database later. However, I really like the Entity Framework Code First works, and I want to use it in existing projects and projects with pre-existing databases. For example, MVC Music Store comes with a SQL Express database that's pre-loaded with a catalog of music (including genres, artists, and songs), and while it may eventually make sense to load that seed data from a different source, for the MVC 3 release we wanted to keep using the existing database. While I'm not getting the full benefit of Code First - writing code which drives the database schema - I can still benefit from the simplicity of the lightweight code approach. Scott Guthrie blogged about how to use entity framework with an existing database, looking at how you can override the Entity Framework Code First conventions so that it can work with a database which was created following other conventions. That gives you the information you need to create the model classes manually. However, it turns out that with Entity Framework 4 CTP 5, there's a way to generate the model classes from the database schema. Once the grunt work is done, of course, you can go in and modify the model classes as you'd like, but you can save the time and frustration of figuring out things like mapping SQL database types to .NET types. Note that this template requires Entity Framework 4 CTP 5 or later. You can install EF 4 CTP 5 here. Step One: Generate an EF Model from your existing database The code generation system in Entity Framework works from a model. You can add a model to your existing project and delete it when you're done, but I think it's simpler to just spin up a separate project to generate the model classes. When you're done, you can delete the project without affecting your application, or you may choose to keep it around in case you have other database schema updates which require model changes. I chose to add the Model classes to the Models folder of a new MVC 3 application. Right-click the folder and select "Add / New Item..."   Next, select ADO.NET Entity Data Model from the Data Templates list, and name it whatever you want (the name is unimportant).   Next, select "Generate from database." This is important - it's what kicks off the next few steps, which read your database's schema.   Now it's time to point the Entity Data Model Wizard at your existing database. I'll assume you know how to find your database - if not, I covered that a bit in the MVC Music Store tutorial section on Models and Data. Select your database, uncheck the "Save entity connection settings in Web.config" (since we won't be using them within the application), and click Next.   Now you can select the database objects you'd like modeled. I just selected all tables and clicked Finish.   And there's your model. If you want, you can make additional changes here before going on to generate the code.   Step Two: Add the DbContext Generator Like most code generation systems in Visual Studio lately, Entity Framework uses T4 templates which allow for some control over how the code is generated. K Scott Allen wrote a detailed article on T4 Templates and the Entity Framework on MSDN recently, if you'd like to know more. Fortunately for us, there's already a template that does just what we need without any customization. Right-click a blank space in the Entity Framework model surface and select "Add Code Generation Item..." Select the Code groupt in the Installed Templates section and pick the ADO.NET DbContext Generator. If you don't see this listed, make sure you've got EF 4 CTP 5 installed and that you're looking at the Code templates group. Note that the DbContext Generator template is similar to the EF POCO template which came out last year, but with "fix up" code (unnecessary in EF Code First) removed.   As soon as you do this, you'll two terrifying Security Warnings - unless you click the "Do not show this message again" checkbox the first time. It will also be displayed (twice) every time you rebuild the project, so I checked the box and no immediate harm befell my computer (fingers crossed!).   Here's the payoff: two templates (filenames ending with .tt) have been added to the project, and they've generated the code I needed.   The "MusicStoreEntities.Context.tt" template built a DbContext class which holds the entity collections, and the "MusicStoreEntities.tt" template build a separate class for each table I selected earlier. We'll customize them in the next step. I recommend copying all the generated .cs files into your application at this point, since accidentally rebuilding the generation project will overwrite your changes if you leave them there. Step Three: Modify and use your POCO entity classes Note: I made a bunch of tweaks to my POCO classes after they were generated. You don't have to do any of this, but I think it's important that you can - they're your classes, and EF Code First respects that. Modify them as you need for your application, or don't. The Context class derives from DbContext, which is what turns on the EF Code First features. It holds a DbSet for each entity. Think of DbSet as a simple List, but with Entity Framework features turned on.   //------------------------------------------------------------------------------ // <auto-generated> // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Data.Entity; public partial class Entities : DbContext { public Entities() : base("name=Entities") { } public DbSet<Album> Albums { get; set; } public DbSet<Artist> Artists { get; set; } public DbSet<Cart> Carts { get; set; } public DbSet<Genre> Genres { get; set; } public DbSet<OrderDetail> OrderDetails { get; set; } public DbSet<Order> Orders { get; set; } } } It's a pretty lightweight class as generated, so I just took out the comments, set the namespace, removed the constructor, and formatted it a bit. Done. If I wanted, though, I could have added or removed DbSets, overridden conventions, etc. using System.Data.Entity; namespace MvcMusicStore.Models { public class MusicStoreEntities : DbContext { public DbSet Albums { get; set; } public DbSet Genres { get; set; } public DbSet Artists { get; set; } public DbSet Carts { get; set; } public DbSet Orders { get; set; } public DbSet OrderDetails { get; set; } } } Next, it's time to look at the individual classes. Some of mine were pretty simple - for the Cart class, I just need to remove the header and clean up the namespace. //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Cart { // Primitive properties public int RecordId { get; set; } public string CartId { get; set; } public int AlbumId { get; set; } public int Count { get; set; } public System.DateTime DateCreated { get; set; } // Navigation properties public virtual Album Album { get; set; } } } I did a bit more customization on the Album class. Here's what was generated: //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Album { public Album() { this.Carts = new HashSet(); this.OrderDetails = new HashSet(); } // Primitive properties public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } // Navigation properties public virtual Artist Artist { get; set; } public virtual Genre Genre { get; set; } public virtual ICollection Carts { get; set; } public virtual ICollection OrderDetails { get; set; } } } I removed the header, changed the namespace, and removed some of the navigation properties. One nice thing about EF Code First is that you don't have to have a property for each database column or foreign key. In the Music Store sample, for instance, we build the app up using code first and start with just a few columns, adding in fields and navigation properties as the application needs them. EF Code First handles the columsn we've told it about and doesn't complain about the others. Here's the basic class: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { public class Album { public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List OrderDetails { get; set; } } } It's my class, not Entity Framework's, so I'm free to do what I want with it. I added a bunch of MVC 3 annotations for scaffolding and validation support, as shown below: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { [Bind(Exclude = "AlbumId")] public class Album { [ScaffoldColumn(false)] public int AlbumId { get; set; } [DisplayName("Genre")] public int GenreId { get; set; } [DisplayName("Artist")] public int ArtistId { get; set; } [Required(ErrorMessage = "An Album Title is required")] [StringLength(160)] public string Title { get; set; } [Required(ErrorMessage = "Price is required")] [Range(0.01, 100.00, ErrorMessage = "Price must be between 0.01 and 100.00")] public decimal Price { get; set; } [DisplayName("Album Art URL")] [StringLength(1024)] public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List<OrderDetail> OrderDetails { get; set; } } } The end result was that I had working EF Code First model code for the finished application. You can follow along through the tutorial to see how I built up to the finished model classes, starting with simple 2-3 property classes and building up to the full working schema. Thanks to Diego Vega (on the Entity Framework team) for pointing me to the DbContext template.

    Read the article

  • Created nested model setting a property on nested model before save

    - by CWitty
    I have two models a Company and a User the Company has_many :users and the User belongs_to :company. I have a form such as: <%= form_for @company, data: {toggle: :validator}, novalidate: "novalidate", html: {role: :form} do |f| %> company fields Then in there I have <%= f.fields_for :users, @company.users.build do |user_form| %> A bunch of user fields It posts the data with the nested attributes of users_attributes: {"0" => {name: "Chad"}} But it doesn't create the user only the company object. Company Model class Company < ActiveRecord::Base has_many :users, dependent: :destroy has_many :contacts, dependent: :destroy accepts_nested_attributes_for :users accepts_nested_attributes_for :contacts attr_accessor :card_token, :users_attributes before_create :create_company_customer_token before_create :create_admin_user before_destroy :set_deleted_flag validates_presence_of :name, :phone_number private def create_admin_user self.users.first.admin = true end def set_deleted_flag self.deleted = true save users.each do |u| u.destroy end false end def create_company_customer_token begin customer = Stripe::Customer.create(description: "Company: #{self.name}", card: self.card_token, plan: self.plan) self.stripe_customer_id = customer['id'] rescue Stripe::StripeError => e self.errors.add(:stripe_customer_id, "Looks like we are having an issue at the moment, please try again shortly") @logger ||= Rails.logger @logger.error(e) end end end User Model class User < ActiveRecord::Base include Clearance::User has_many :messages belongs_to :company before_destroy :set_deleted_flag after_create :send_welcome_email validates_presence_of :first_name, :last_name validates_uniqueness_of :email, scope: :company_id, conditions: -> { where.not(deleted: true) } def name "#{first_name} #{last_name}" end private def set_deleted_flag self.deleted = true save end def send_welcome_email UserMailer.welcome_email(self).deliver end end

    Read the article

  • Deriving an HTMLElement Object from jQuery Object

    - by Jasconius
    I'm doing a fairly exhaustive series of DOM manipulations where a few elements (specifically form elements) have some events. I am dynamically creating (actually cloning from a source element) several boxes and assigning a change() event to them. The change event executes, and within the context of the event, "this" is the HTML Element Object. What I need to do at this point however is determine a contact for this HTML Element Object. I have these objects stored already as jQuery entities in assorted arrays, but obviously [HTMLElement Object] != [Object Object] And the trick is that I cannot cast $(this) and make a valid comparison since that would create a new object and the pointer would be different. So... I've been banging my head against this for a while. In the past I've been able to circumvent this problem by doing an innerHTML comparison, but in this case the objects I am comparing are 100% identical, just there's lots of them. Therefore I need a solid comparison. This would be easy if I could somehow derive the HTMLElement object from my originating jQuery object. Thoughts, other ideas? Help. :(

    Read the article

  • Convert JSON flattened for forms back to an object

    - by George Jempty
    I am required (please therefore no nit-picking the requirement, I've already nit-picked it, and this is the req) to convert certain form fields that have "object nesting" embedded in the field names, back to the object(s) themselves. Below are some typical form field names: phones_0_patientPhoneTypeId phones_0_phone phones_1_patientPhoneTypeId phones_1_phone The form fields above were derived from an object such as the one toward the bottom (see "Data"), and that is the format of the object I need to reassemble. It can be assumed that any form field with a name that contains the underscore _ character needs to undergo this conversion. Also that the segment of the form field between underscores, if numeric, signifies a Javascript array, otherwise an object. I found it easy to devise a (somewhat naive) implementation for the "flattening" of the original object for use by the form, but am struggling going in the other direction; below the object/data below I'm pasting my current attempt. One problem (perhaps the only one?) with it is that it does not currently properly account for array indexes, but this might be tricky because the object will subsequently be encoded as JSON, which will not account for sparse arrays. So if "phones_1" exists, but "phones_0" does not, I would nevertheless like to ensure that a slot exists for phones[0] even if that value is null. Implementations that tweak what I have begun, or are entirely different, encouraged. If interested let me know if you'd like to see my code for the "flattening" part that is working. Thanks in advance Data: var obj = { phones: [{ "patientPhoneTypeId": 4, "phone": "8005551212" }, { "patientPhoneTypeId": 2, "phone": "8885551212" }]}; Code to date: var unflattened = {}; for (var prop in values) { if (prop.indexOf('_') > -1) { var lastUnderbarPos = prop.lastIndexOf('_'); var nestedProp = prop.substr(lastUnderbarPos + 1); var nesting = prop.substr(0, lastUnderbarPos).split("_"); var nestedRef, isArray, isObject; for (var i=0, n=nesting.length; i<n; i++) { if (i===0) { nestedRef = unflattened; } if (i < (n-1)) { // not last if (/^\d+$/.test(nesting[i+1])) { isArray = true; isObject = false; } else { isArray = true; isObject = false; } var currProp = nesting[i]; if (!nestedRef[currProp]) { if (isArray) { nestedRef[currProp] = []; } else if (isObject) { nestedRef[currProp] = {}; } } nestedRef = nestedRef[currProp]; } else { nestedRef[nestedProp] = values[prop]; } } }

    Read the article

  • Using an object in an if statement... (Android)

    - by James Rattray
    I have an object variable Object test = Spinner.getSelectedItem(); -It gets the selected item from the Spinner (called spinner) and names the item 'test' I want to do an if statement related to that object e.g: 'if (test = "hello") { //do something }' But it appears not to work.... Can someone give me some help? -Do I have to use a different if? or convert the object to string etc.? Thanks alot... James

    Read the article

  • Scala passing type parameters to object

    - by Shahzad Mian
    In Scala v 2.7.7 I have a file with class Something[T] extends Other { } object Something extends OtherConstructor[Something] { } This throws the error: class Something takes type parameters object Something extends OtherConstructor[Something] { However, I can't do this object Something[T] extends OtherConstructor[Something[T]] { } It throws an error: error: ';' expected but '[' found. Is it possible to send type parameters to object? Or should I change and simply use Otherconstructor

    Read the article

  • Code Contracts Vs. Object Initializers (.net 4.0)

    - by Mystagogue
    At face value, it would seem that object initializers present a problem for .net 4.0 "code contracts", where normally the invariant should be established by the time the object constructor is finished. Presumably, however, object-initializers require properties to be set after construction is complete. My question is if the invariants of "code contracts" are able to handle object initializers, "as if" the properties were set before the constructor completes? That would be very nice indeed!!

    Read the article

  • Check if an object is defined in html

    - by Manikanta
    In HTML, I have an object tag as follows: <OBJECT ID="objectid" CLASSID="some-class-id" CODEBASE="some-codebase"> I have written a function in JavaScript to access this object. I checked the null value as follows: if(objectid==null){-----} i want to check if the object is undefined or is empty. Do we have any functions to check so?

    Read the article

  • So what *did* Alan Kay really mean by the term "object-oriented"?

    - by Charlie Flowers
    Reportedly, Alan Kay is the inventor of the term "object oriented". And he is often quoted as having said that what we call OO today is not what he meant. For example, I just found this on Google: I made up the term 'object-oriented', and I can tell you I didn't have C++ in mind -- Alan Kay, OOPSLA '97 I vaguely remember hearing something pretty insightful about what he did mean. Something along the lines of "message passing". Do you know what he meant? Can you fill in more details of what he meant and how it differs from today's common OO? Please share some references if you have any. Thanks.

    Read the article

  • ASP.NET MVC in Action: The model in depth

    In this chapter, we’ll explore a model for a system that helps to manage a small conference, like a Code Camp. The model enables the application to provide an interesting service. Without the model, the application provides no value. We place great importance on creating a rich model with which our controllers can work. Presented By: NEC   Ads by Pheedo

    Read the article

  • Rotate model using quaternion

    - by ChocoMan
    Currently I have this to rotate my 3D model that rotates on it's local axis independent from the world's axis: // Rotate model with Right Thumbstick modelRotation -= pController.ThumbSticks.Right.X * mRotSpeed; // float value What I'm trying to do is rotate the model using quaternion and not by a matrix. I've searched for tutorials, but have found none that explains thoroughly on how to achieve this. Does anyone know how to I can use quaternions to rotate my model or a complete tutorial?

    Read the article

  • Understanding the SQL Server 2012 BI Semantic Model (BISM)

    SQL Server 2012 introduced an unified BI Semantic Model (BISM) which is based on some of the existing as well as some new technologies. This model is intended to serve as one model for all end user experiences for reporting, analytics, scorecards, dashboards, etc. In this tip, I will talk in detail about the new BISM, how it differs from earlier the earlier Unified Dimensional Model (UDM) and how BISM lays down a foundation for future.

    Read the article

  • Using multiple diagrams per model in Entity Framework 5.0

    - by nikolaosk
    I have downloaded .Net framework 4.5 and Visual Studio 2012 since it was released to MSDN subscribers on the 15th of August.For people that do not know about that yet please have a look at Jason Zander's excellent blog post .Since then I have been investigating the many new features that have been introduced in this release.In this post I will be looking into theIn order to follow along this post you must have Visual Studio 2012 and .Net Framework 4.5 installed in your machine.Download and install VS 20120 using this link.My machine runs on Windows 8 and Visual Studio 2012 works just fine. I have also installed in my machine SQL Server 2012 developer edition. I have also downloaded and installed AdventureWorksLT2012 database.You can download this database from the codeplex website.   Before I start showcasing the demo I want to say that I strongly believe that Entity Framework is maturing really fast and now at version 5.0 can be used as your data access layer in all your .Net projects.I have posted extensively about Entity Framework in my blog.Please find all the EF related posts here. In this demo I will show you how to split an entity model into multiple diagrams using the new enhanced EF designer. We will not build an application in this demo.Sometimes our model can become too large to edit or view.In earlier versions we could only have one diagram per EDMX file.In EF 5.0 we can split the model into more diagrams.1) Launch VS 2012. Express edition will work fine.2) Create a New Project. From the available templates choose a Web Forms application  3) Add a new item in your project, an ADO.Net Entity Data Model. I have named it AdventureWorksLT.edmx.Then we will create the model from the database and click Next.Create a new connection by specifying the SQL Server instance and the database name and click OK.Then click Next in the wizard.In the next screen of the wizard select all the tables from the database and hit Finish.4) It will take a while for our .edmx diagram to be created. When I select an Entity (e.g Customer) from my diagram and right click on it,a new option appears "Move to new Diagram".Make sure you have the Model Browser window open.Have a look at the picture below 5) When we do that a new diagram is created and our new Entity is moved there.Have a look at the picture below  6) We can also right-click and include the related entities. Have a look at the picture below. 7) When we do that the related entities are copied to the new diagram.Have a look at the picture below  8) Now we can cut (CTRL+X) the entities from Diagram2 and paste them back to Diagram1.9) Finally another great enhancement of the EF 5.0 designer is that you can change colors in the various entities that make up the model.Select the entities you want to change color, then in the Properties window choose the color of your choice. Have a look at the picture below. To recap we have demonstrated how to split your entity model in multiple diagrams which comes handy in EF models that have a large number of entities in them Hope it helps!!!!

    Read the article

< Previous Page | 12 13 14 15 16 17 18 19 20 21 22 23  | Next Page >