Search Results

Search found 4909 results on 197 pages for 'vendor lock in'.

Page 160/197 | < Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >

  • Why is my machine unable to mount my SMB drives ("CIFS VFS: Error connecting to socket. Aborting operation", return code -115)?

    - by downbeat
    I have a machine running Precise (12.04 x64), and I cannot mount my SMB drives (I have 3, we'll call them public, private and download). It used to work (a week or two ago) and I didn't touch fstab! The machine hosting the shares is a commercial NAS, and I'm not seeing anything that would indicate it's an issue with the NAS. I have an older machine which I updated to Precise at the same time (both fresh installed, not dist-upgrade), so should have a very similar configuration. It is not having any problems. I am not having problems on windows machines/partitions either, only one of my Precise machines. The two machines are using identical entries in fstab and identical /etc/samba/smb.conf files. I don't think I've ever changed smb.conf (has never mattered before). My fstab entries all basically look like this: //10.1.1.111/public /media/public cifs credentials=/home/downbeat/.credentials,iocharset=utf8,uid=downbeat,gid=downbeat,file_mode=0644,dir_mode=0755 0 0 Here's the dmesg output on boot: [ 51.162198] CIFS VFS: Error connecting to socket. Aborting operation [ 51.162369] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.194106] CIFS VFS: Error connecting to socket. Aborting operation [ 51.194250] CIFS VFS: cifs_mount failed w/return code = -115 [ 51.198120] CIFS VFS: Error connecting to socket. Aborting operation [ 51.198243] CIFS VFS: cifs_mount failed w/return code = -115 There are no other errors I see in the dmesg output. Originally when I ran 'testparm -s', the output contained these lines ERROR: lock directory /var/run/samba does not exist ERROR: pid directory /var/run/samba does not exist Here's the samba related programs I have installed: $ dpkg --list|grep -i samba ii libpam-winbind 2:3.6.3-2ubuntu2.3 Samba nameservice and authentication integration plugins ii libwbclient0 2:3.6.3-2ubuntu2.3 Samba winbind client library ii nautilus-share 0.7.3-1ubuntu2 Nautilus extension to share folder using Samba ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii samba-common 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii samba-common-bin 2:3.6.3-2ubuntu2.3 common files used by both the Samba server and client ii winbind 2:3.6.3-2ubuntu2.3 Samba nameservice integration server $ dpkg --list|grep -i smb ii dmidecode 2.11-4 SMBIOS/DMI table decoder ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii python-smbc 1.0.13-0ubuntu1 Python bindings for Samba clients (libsmbclient) ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix ii smbfs 2:5.1-1ubuntu1 Common Internet File System utilities - compatibility package $ dpkg --list|grep -i cifs ii cifs-utils 2:5.1-1ubuntu1 Common Internet File System utilities ii libsmbclient 2:3.6.3-2ubuntu2.3 shared library for communication with SMB/CIFS servers ii smbclient 2:3.6.3-2ubuntu2.3 command-line SMB/CIFS clients for Unix I originally noticed that my other machine had "libpam-winbind" and "nautilus-share" installed and the machine with the issue did not. Installing those two packages solved my errors with 'testparm -s', but did not fix my issue. Finally, I tried to purge and reinstall these packages smbclient smbfs cifs-utils samba-common samba-common-bin Still no luck. Again, it used to work; now it doesn't. Very similarly configured machine works (but some packages are out of date on the working machine). The NAS has only one interface/IP address, nmblookup works to find it's IP from it's hostname (from the machine with the issue) and it responds to a ping. Please any help would be great. I've been searching on AskUbuntu, SuperUser, ubuntuforums and plain old search engines for a week now and it's driving me crazy!

    Read the article

  • Friday Fun: Spell Blazer

    - by Asian Angel
    Are you ready for some fun and adventure after a long week back at work? This week’s game combines jewel-matching style game play with an RPG story for an awesome mix of fun and fiction. Your goal is to help a young wizard reach the magic academy in Raven as the forces of darkness are building. Spell Blazer The object of the game is to help young Kaven reach the Lightcaster Academy in Raven alive, but he will encounter many dangers along the way. Are you ready to begin the quest? As soon as you click Start Game the intro will automatically begin. If this is your first time playing the game the intro provides a nice background story for the game and what is happening in the game environment. Once you are past the intro, you will see a map of the region with your starting point in the Farmlands, various towns and the roads connecting them, along with your final destination of Raven. Notice that some of the roads are different colors…those colors indicate the “danger levels” for each part of your journey (green = good, yellow = some danger, etc.). To begin your journey click on the Town of Goose with your mouse. You will encounter your first monster part of the way towards Goose. This first round takes you through the game play process step-by-step. Once you have clicked Okay you will see the details about the monster you have just encountered. It is very important that you do not click on Fight! or Flee! until viewing and noting the types of spells that the monster is resistant to or has a weakness against. Choose your spells wisely based on the information provided about the monster. Keep in mind that the healing spell can be very useful depending on the monster you meet and your current health status. Note: Spells shown in order here are Healing, Fireball, Icebolt, & Lightning. Ready to fight! The first battle will also explain how to fight…click Okay to get started. Once the main window is in full view there are details that you need to look at. Beneath each of the combatants you will see the three attacks that each brings to the battle and at the bottom you will see their respective health points. We got lucky and had an Icebolt attack that we could utilize on the first play! Note: You can exchange two squares without making a match in order to try and line up an attack. While it happened too quickly to capture in our screenshot, there will be cool lightning bolt effects shoot out from matched up squares to the opposite combatant. You will also see the amount of damage inflicted from a particular attack on top of the avatars. Victory! Once you have won a round of combat a window will appear showing the amount of gold coins left behind by the monster. When you reach a town you will have the opportunity to stop over and rest or directly continue on with your journey. On to Halgard after a good rest! Play Spell Blazer Latest Features How-To Geek ETC How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 The 50 Best How-To Geek Windows Articles of 2010 The 20 Best How-To Geek Explainer Topics for 2010 How to Disable Caps Lock Key in Windows 7 or Vista How to Use the Avira Rescue CD to Clean Your Infected PC The Deep – Awesome Use of Metal Objects as Deep Sea Creatures [Video] Convert or View Documents Online Easily with Zoho, No Account Required Build a Floor Scrubbing Robot out of Computer Fans and a Frisbee Serene Blue Windows Wallpaper for Your Desktop 2011 International Space Station Calendar Available for Download (Free) Ultimate Elimination – Lego Black Ops [Video]

    Read the article

  • Unable to apt-get upgrade in ubuntu 11.10

    - by blackhole
    These are the errors shows by different client Update Manager: Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 968, in simulate trans.unauthenticated = self._simulate_helper(trans) File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1092, in _simulate_helper return depends, self._cache.required_download, \ File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 235, in required_download pm.get_archives(fetcher, self._list, self._records) SystemError: E:Method has died unexpectedly!, E:Sub-process returned an error code (100), E:Method /usr/lib/apt/methods/ did not start correctly Synaptic package Manager E: Method has died unexpectedly! E: Sub-process returned an error code (100) E: Method /usr/lib/apt/methods/ did not start correctly E: Unable to lock the download directory Command: sudo apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done The following packages will be upgraded: libfreetype6 libfreetype6-dev 2 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. Failed to exec method /usr/lib/apt/methods/ E: Method has died unexpectedly! E: Sub-process returned an error code (100) E: Method /usr/lib/apt/methods/ did not start correctly Can anyone one tell me how to resolve these issues ? I have no volatile packages or anything so i am even posting the preview of my sources.list file. # deb cdrom:[Ubuntu 10.10 _Maverick Meerkat_ - Release i386 (20101007)]/ maverick main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://in.archive.ubuntu.com/ubuntu/ oneiric main restricted ## Major bug fix updates produced after the final release of the ## distribution. deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates main restricted ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team. Also, please note that software in universe WILL NOT receive any ## review or updates from the Ubuntu security team. deb http://in.archive.ubuntu.com/ubuntu/ oneiric universe deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates universe ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team, and may not be under a free licence. Please satisfy yourself as to ## your rights to use the software. Also, please note that software in ## multiverse WILL NOT receive any review or updates from the Ubuntu ## security team. deb http://in.archive.ubuntu.com/ubuntu/ oneiric multiverse deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates multiverse ## Uncomment the following two lines to add software from the 'backports' ## repository. ## N.B. software from this repository may not have been tested as ## extensively as that contained in the main release, although it includes ## newer versions of some applications which may provide useful features. ## Also, please note that software in backports WILL NOT receive any review ## or updates from the Ubuntu security team. # deb http://in.archive.ubuntu.com/ubuntu/ maverick-backports main restricted universe multiverse # deb-src http://in.archive.ubuntu.com/ubuntu/ maverick-backports main restricted universe multiverse ## Uncomment the following two lines to add software from Canonical's ## 'partner' repository. ## This software is not part of Ubuntu, but is offered by Canonical and the ## respective vendors as a service to Ubuntu users. deb http://archive.canonical.com/ubuntu oneiric partner deb-src http://archive.canonical.com/ubuntu oneiric partner ## This software is not part of Ubuntu, but is offered by third-party ## developers who want to ship their latest software. deb http://extras.ubuntu.com/ubuntu oneiric main deb-src http://extras.ubuntu.com/ubuntu oneiric main deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security main restricted deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security universe deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security multiverse # deb http://archive.canonical.com/ lucid partner Here is the preview of my sources.list file

    Read the article

  • Oracle Data Integration 12c: Simplified, Future-Ready, High-Performance Solutions

    - by Thanos Terentes Printzios
    In today’s data-driven business environment, organizations need to cost-effectively manage the ever-growing streams of information originating both inside and outside the firewall and address emerging deployment styles like cloud, big data analytics, and real-time replication. Oracle Data Integration delivers pervasive and continuous access to timely and trusted data across heterogeneous systems. Oracle is enhancing its data integration offering announcing the general availability of 12c release for the key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c, delivering Simplified and High-Performance Solutions for Cloud, Big Data Analytics, and Real-Time Replication. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions : Supporting Current and Emerging Initiatives Extreme Performance : Even higher performance than ever before Fast Time-to-Value : Higher IT Productivity and Simplified Solutions  With the new capabilities in Oracle Data Integrator 12c, customers can benefit from: Superior developer productivity, ease of use, and rapid time-to-market with the new flow-based mapping model, reusable mappings, and step-by-step debugger. Increased performance when executing data integration processes due to improved parallelism. Improved productivity and monitoring via tighter integration with Oracle GoldenGate 12c and Oracle Enterprise Manager 12c. Improved interoperability with Oracle Warehouse Builder which enables faster and easier migration to Oracle Data Integrator’s strategic data integration offering. Faster implementation of business analytics through Oracle Data Integrator pre-integrated with Oracle BI Applications’ latest release. Oracle Data Integrator also integrates simply and easily with Oracle Business Analytics tools, including OBI-EE and Oracle Hyperion. Support for loading and transforming big and fast data, enabled by integration with big data technologies: Hadoop, Hive, HDFS, and Oracle Big Data Appliance. Only Oracle GoldenGate provides the best-of-breed real-time replication of data in heterogeneous data environments. With the new capabilities in Oracle GoldenGate 12c, customers can benefit from: Simplified setup and management of Oracle GoldenGate 12c when using multiple database delivery processes via a new Coordinated Delivery feature for non-Oracle databases. Expanded heterogeneity through added support for the latest versions of major databases such as Sybase ASE v 15.7, MySQL NDB Clusters 7.2, and MySQL 5.6., as well as integration with Oracle Coherence. Enhanced high availability and data protection via integration with Oracle Data Guard and Fast-Start Failover integration. Enhanced security for credentials and encryption keys using Oracle Wallet. Real-time replication for databases hosted on public cloud environments supported by third-party clouds. Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c and other Oracle technologies, such as Oracle Database 12c and Oracle Applications, provides a number of benefits for organizations: Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training. Integration with Oracle Database 12c provides a strong foundation for seamless private cloud deployments. Delivers real-time data for reporting, zero downtime migration, and improved performance and availability for Oracle Applications, such as Oracle E-Business Suite and ATG Web Commerce . Oracle’s data integration offering is optimized for Oracle Engineered Systems and is an integral part of Oracle’s fast data, real-time analytics strategy on Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine. Oracle Data Integrator 12c and Oracle GoldenGate 12c differentiate the new offering on data integration with these many new features. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. Find out much more about the new release in the video webcast "Introducing 12c for Oracle Data Integration", where customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Resource Kits Meet Oracle Data Integration 12c  Discover what's new with Oracle Goldengate 12c  Oracle EMEA DIS (Data Integration Solutions) Partner Community is available for all your questions, while additional partner focused webcasts will be made available through our blog here, so stay connected. For any questions please contact us at partner.imc-AT-beehiveonline.oracle-DOT-com Stay Connected Oracle Newsletters

    Read the article

  • TiVo Follow-up&hellip;Training Opportunities

    - by MightyZot
    A few posts ago I talked about my experience with TiVo Customer Service. While I didn’t receive bad service per se, I felt like the reps could have communicated better. I made the argument that it should be just as easy to leave a company as it is to engage with a company, even though my intention is to remain a TiVo fan. I worked for DataStorm Technologies in the early 90s. I pointed out to another developer that we were leaving files behind in our installations. My opinion was that, if the customer is uninstalling our application, there should be no trace of it left after uninstall except for the customer’s data. He replied with, “screw ‘em. They’re leaving us. Why do we care if we left anything behind?” Wow. Surely there is a lot of arrogance in that statement. Think about this…how often do you change your services, devices, or whatever?  Personally, I change things up about once every two or three years. If I don’t change things up, I at least think about it. So, every two or three years there is an opportunity for you (as a vendor or business) to sell me something. (That opportunity actually exists all the time, because there are many of these two or three year periods overlapping.) Likewise, you have the opportunity to win back my business every two or three years as well. Customer service on exit is just as important as customer service during engagement because, every so often, you have another chance to gain back my loyalty. If you screw that up on exit, your chances are close to zero. In addition, you need to consider all of the potential or existing customers that are part of or affected by my social organizations. “Melissa” at TiVo gave me a call last week and set up some time to talk about my experience. We talked yesterday and she gave me a few moments to pontificate about my thoughts on the importance of a complete customer experience. She had listened to my customer support calls and agreed that I had made it clear that I intended to remain a TiVo customer even though suddenLink is handling my subscription. She said that suddenLink is a very important partner for them and, of course, they want to do everything they can to support TiVo / suddenLink customers.  “Melissa” also said that they had turned this experience into a training opportunity for the reps involved. I hope that is true, because that “programmer arrogance” that I mentioned above (which was somewhat pervasive back then) may be part of the reason why that company is no longer around. Good job “Melissa”!  And, like I said, I am still a TiVo fan. In fact, we love our new TiVo and many of the great new features. In addition, if you’re one of the two people that read these posts, please remember that these are just opinions. Your experiences may be, and likely will be, completely unique to you.

    Read the article

  • Fast Data: Go Big. Go Fast.

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 For those of you who may have missed it, today’s second full day of Oracle OpenWorld 2012 started with a rumpus. Joe Tucci, from EMC outlined the human face of big data with real examples of how big data is transforming our world. And no not the usual tried-and-true weblog examples, but real stories about taxi cab drivers in Singapore using big data to better optimize their routes as well as folks just trying to get a better hair cut. Next we heard from Thomas Kurian who talked at length about the important platform characteristics of Oracle’s Cloud and more specifically Oracle’s expanded Cloud Services portfolio. Especially interesting to our integration customers are the messaging support for Oracle’s Cloud applications. What this means is that now Oracle’s Cloud applications have a lightweight integration fabric that on-premise applications can communicate to it via REST-APIs using Oracle SOA Suite. It’s an important element to our strategy at Oracle that supports this idea that whether your requirements are for private or public, Oracle has a solution in the Cloud for all of your applications and we give you more deployment choice than any vendor. If this wasn’t enough to get the juices flowing, later that morning we heard from Hasan Rizvi who outlined in his Fusion Middleware session the four most important enterprise imperatives: Social, Mobile, Cloud, and a brand new one: Fast Data. Today, Rizvi made an important step in the definition of this term to explain that he believes it’s a convergence of four essential technology elements: Event Processing for event filtering, business rules – with Oracle Event Processing Data Transformation and Loading - with Oracle Data Integrator Real-time replication and integration – with Oracle GoldenGate Analytics and data discovery – with Oracle Business Intelligence Each of these four elements can be considered (and architect-ed) together on a single integrated platform that can help customers integrate any type of data (structured, semi-structured) leveraging new styles of big data technologies (MapReduce, HDFS, Hive, NoSQL) to process more volume and variety of data at a faster velocity with greater results.  Fast data processing (and especially real-time) has always been our credo at Oracle with each one of these products in Fusion Middleware. For example, Oracle GoldenGate continues to be made even faster with the recent 11g R2 Release of Oracle GoldenGate which gives us some even greater optimization to Oracle Database with Integrated Capture, as well as some new heterogeneity capabilities. With Oracle Data Integrator with Big Data Connectors, we’re seeing much improved performance by running MapReduce transformations natively on Hadoop systems. And with Oracle Event Processing we’re seeing some remarkable performance with customers like NTT Docomo. Check out their upcoming session at Oracle OpenWorld on Wednesday to hear more how this customer is using Event processing and Big Data together. If you missed any of these sessions and keynotes, not to worry. There's on-demand versions available on the Oracle OpenWorld website. You can also checkout our upcoming webcast where we will outline some of these new breakthroughs in Data Integration technologies for Big Data, Cloud, and Real-time in more details. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • How to detect and configure an output with xrandr?

    - by ysap
    I have a DELL U2410 monitor connected to a Compaq 100B desktop equipped with an integrated AMD/ATI graphics card (AMD E-350). The installed O/S is Ubuntu 10.04 LTS. The computer is connected to the monitor via the DVI connection. The problem is that I cannot set the desktop resolution to the native 1920x1200. The maximum allowed resolution is 1600x1200. Doing some research I found about the xrandr utility. Unfortunately, when trying to use it I cannot configure it to the required resolution. First, it does not report the output name (which supposed to be DVI-0), saying default instead. Without it I cannot use the --fb option. The EDID utility seems to identify the monitor well. Here's the output from get-edid: # EDID version 1 revision 3 Section "Monitor" # Block type: 2:0 3:ff # Block type: 2:0 3:fc Identifier "DELL U2410" VendorName "DEL" ModelName "DELL U2410" # Block type: 2:0 3:ff # Block type: 2:0 3:fc # Block type: 2:0 3:fd HorizSync 30-81 VertRefresh 56-76 # Max dot clock (video bandwidth) 170 MHz # DPMS capabilities: Active off:yes Suspend:yes Standby:yes Mode "1920x1200" # vfreq 59.950Hz, hfreq 74.038kHz DotClock 154.000000 HTimings 1920 1968 2000 2080 VTimings 1200 1203 1209 1235 Flags "-HSync" "+VSync" EndMode # Block type: 2:0 3:ff # Block type: 2:0 3:fc # Block type: 2:0 3:fd EndSection but the xrandr -q command returns: Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 When I try to set the resolution, I get: $ xrandr --fb 1920x1200 xrandr: screen cannot be larger than 1600x1200 (desired size 1920x1200) $ xrandr --output DVI-0 --auto warning: output DVI-0 not found; ignoring How can I set the screen resolution to 1920x1200? Why doesn't xrandr identify the DVI-0 output? Note that the same computer running Ubuntu version higher than 10.04 detects the correct resolution with no problems. On this machine I cannot upgrade due to some legacy hardware compatibility problems. Also, I don't see any optional screen drivers available in the Hardware Drivers dialog. ---- UPDATE: following the answer to this question, I got some advance. Now the required mode is listed in the xrandr -q list, but I can't switch to that mode. Using the Monitors applet (which now shows the new mode), I get the response that: The selected configuration for displays could not be applied. Could not set the configuration to CRTC 262. From the command line it looks like this: $ cvt 1920 1200 60 # 1920x1200 59.88 Hz (CVT 2.30MA) hsync: 74.56 kHz; pclk: 193.25 MHz Modeline "1920x1200_60.00" 193.25 1920 2056 2256 2592 1200 1203 1209 1245 -hsync +vsync $ xrandr --newmode "1920x1200_60.00" 193.25 1920 2056 2256 2592 1200 1203 1209 1245 -hsync +vsync $ xrandr -q Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 1920x1200_60.00 (0x120) 193.0MHz h: width 1920 start 2056 end 2256 total 2592 skew 0 clock 74.5KHz v: height 1200 start 1203 end 1209 total 1245 clock 59.8Hz $ xrandr --addmode default 1920x1200_60.00 $ xrandr -q Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 1920x1200_60.00 59.8 $ xrandr --output default --mode 1920x1200_60.00 xrandr: Configure crtc 0 failed Another piece of info (if it helps anyone): $ sudo lshw -c video *-display UNCLAIMED description: VGA compatible controller product: ATI Technologies Inc vendor: ATI Technologies Inc physical id: 1 bus info: pci@0000:00:01.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: latency=0 resources: memory:c0000000-cfffffff(prefetchable) ioport:f000(size=256) memory:feb00000-feb3ffff

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • Big Data – Beginning Big Data – Day 1 of 21

    - by Pinal Dave
    What is Big Data? I want to learn Big Data. I have no clue where and how to start learning about it. Does Big Data really means data is big? What are the tools and software I need to know to learn Big Data? I often receive questions which I mentioned above. They are good questions and honestly when we search online, it is hard to find authoritative and authentic answers. I have been working with Big Data and NoSQL for a while and I have decided that I will attempt to discuss this subject over here in the blog. In the next 21 days we will understand what is so big about Big Data. Big Data – Big Thing! Big Data is becoming one of the most talked about technology trends nowadays. The real challenge with the big organization is to get maximum out of the data already available and predict what kind of data to collect in the future. How to take the existing data and make it meaningful that it provides us accurate insight in the past data is one of the key discussion points in many of the executive meetings in organizations. With the explosion of the data the challenge has gone to the next level and now a Big Data is becoming the reality in many organizations. Big Data – A Rubik’s Cube I like to compare big data with the Rubik’s cube. I believe they have many similarities. Just like a Rubik’s cube it has many different solutions. Let us visualize a Rubik’s cube solving challenge where there are many experts participating. If you take five Rubik’s cube and mix up the same way and give it to five different expert to solve it. It is quite possible that all the five people will solve the Rubik’s cube in fractions of the seconds but if you pay attention to the same closely, you will notice that even though the final outcome is the same, the route taken to solve the Rubik’s cube is not the same. Every expert will start at a different place and will try to resolve it with different methods. Some will solve one color first and others will solve another color first. Even though they follow the same kind of algorithm to solve the puzzle they will start and end at a different place and their moves will be different at many occasions. It is  nearly impossible to have a exact same route taken by two experts. Big Market and Multiple Solutions Big Data is exactly like a Rubik’s cube – even though the goal of every organization and expert is same to get maximum out of the data, the route and the starting point are different for each organization and expert. As organizations are evaluating and architecting big data solutions they are also learning the ways and opportunities which are related to Big Data. There is not a single solution to big data as well there is not a single vendor which can claim to know all about Big Data. Honestly, Big Data is too big a concept and there are many players – different architectures, different vendors and different technology. What is Next? In this 31 days series we will be exploring many essential topics related to big data. I do not claim that you will be master of the subject after 31 days but I claim that I will be covering following topics in easy to understand language. Architecture of Big Data Big Data a Management and Implementation Different Technologies – Hadoop, Mapreduce Real World Conversations Best Practices Tomorrow In tomorrow’s blog post we will try to answer one of the very essential questions – What is Big Data? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • New Release of Oracle EPM (Enterprise Performance Management)

    - by Theresa Hickman
    I'm a huge fan of Hyperion products and consider Hyperion to be one of the best acquisitions Oracle has made in terms of applications. So I am really excited to talk about their latest release, Release 11.1.2 of the Oracle EPM System. This is EPM's largest release in 2 years, and it's jam-packed with new modules and features. In terms of brand new products, there are three: 1. Public Sector Planning and Budgeting meets the needs of public sector agencies, higher education, governments, etc. that have complex budget requirements. It supports position or employee-based budgeting and integrates with MS Office and your ERP ledgers to perform commitment control. 2. Hyperion Financial Close Management is a complete financial close solution that orchestrates the entire close process from subledgers and general ledger to financial reporting and disclosure submissions. And of course, it is integrated with GL systems and consolidation systems. I saw a demo of this and it looked pretty slick. They have this unified close calendar that looks like a regular calendar that gives each person participating in the close process a task list. It comes with a Gantt chart that shows the relationships and dependencies among closing tasks. There are dashboards to allow you to track the close progress and completion of tasks as well as perform trend analysis and see how much time is being spent on different activities in the close process. This gives you visibility that you never had before to understand where the bottlenecks are and where improvements could be made. I think what I liked best about this product was that it provides a central place for all participants to communicate their progress. When I worked as an Accountant, we used ad hoc tools, such as spreadsheets, Word documents, emails, and phone calls during the close process. I like the idea of having a central system to track the overall progress as well as automate the entire financial close process. Who knows, maybe Accountants won't have to revolve their lives around the month end close anymore with a tool like this. Those periodic fire drills can become predictable, well managed processes. 3. Disclosure Management is an out-of-the-box, pre-packaged XBRL solution to meet statutory reporting requirements. This product is really going to help companies improve the timeliness of producing financial reports. Reports can be authored using MS Word and Excel and then XBRL instance documents can be produced with its embedded XBRL tags. It even supports footnotes and disclosures of non-financial information. With a product like this, companies no longer have to outsource their XBRL filing; they can bring it back in house to save costs and time. In terms of other enhancements, they have ERP Integrator that provides integration and drill downs from Hyperion products to source systems, such as Oracle E-Business Suite, PeopleSoft, and SAP. No other vendor offers this level of integration. There's also a new product that links Oracle Essbase directly to Hyperion Financial Management for internal financial reporting, and new integrations between Hyperion Financial Management and Oracle's GRC products. They also improved the usability of Oracle Hyperion Planning. They made it much easier for end users to use the system via the web or via MS Excel when submitting plans and budgets. It is also integrated with intelligent approval workflows that are data-driven, user-configurable, and scenario-specific to efficiently streamline the budgeting process. Here's the press release from April 7, 2010. Here's the pre-recorded web cast where you can see the demos. Just register and watch the hour long presentation. And finally, here's the newsletter

    Read the article

  • How to Set Up Your Enterprise Social Organization

    - by Mike Stiles
    The rush for business organizations to establish, grow, and adopt social was driven out of necessity and inevitability. The result, however, was a sudden, booming social presence creating touch points with customers, partners and influencers, but without any corporate social organization or structure in place to effectively manage it. Even today, many business leaders remain uncertain as to how to corral this social media thing so that it makes sense for their enterprise. Imagine their panic when they hear one of the most beneficial approaches to corporate use of social involves giving up at least some hierarchical control and empowering employees to publicly engage customers. And beyond that, they should also be empowered, regardless of their corporate status, to engage and collaborate internally, spurring “off the grid” innovation. An HBR blog points out that traditionally, enterprise organizations function from the top down, and employees work end-to-end, structured around business processes. But the social enterprise opens up structures that up to now have not exactly been embraced by turf-protecting executives and managers. The blog asks, “What if leaders could create a future where customers, associates and suppliers are no longer seen as objects in the system but as valued sources of innovation, ideas and energy?” What if indeed? The social enterprise activates internal resources without the usual obsession with position. It is the dawn of mass collaboration. That does not, however, mean this mass collaboration has to lead to uncontrolled chaos. In an extended interview with Oracle, Altimeter Group analyst Jeremiah Owyang and Oracle SVP Reggie Bradford paint a complete picture of today’s social enterprise, including internal organizational structures Altimeter Group has seen emerge. One sign of a mature social enterprise is the establishing of a social Center of Excellence (CoE), which serves as a hub for high-level social strategy, training and education, research, measurement and accountability, and vendor selection. This CoE is led by a corporate Social Strategist, most likely from a Marketing or Corporate Communications background. Reporting to them are the Community Managers, the front lines of customer interaction and engagement; business unit liaisons that coordinate the enterprise; and social media campaign/product managers, social analysts, and developers. With content rising as the defining factor for social success, Altimeter also sees a Content Strategist position emerging. Across the enterprise, Altimeter has seen 5 organizational patterns. Watching the video will give you the pros and cons of each. Decentralized - Anyone can do anything at any time on any social channel. Centralized – One central groups controls all social communication for the company. Hub and Spoke – A centralized group, but business units can operate their own social under the hub’s guidance and execution. Most enterprises are using this model. Dandelion – Each business unit develops their own social strategy & staff, has its own ability to deploy, and its own ability to engage under the central policies of the CoE. Honeycomb – Every employee can do social, but as opposed to the decentralized model, it’s coordinated and monitored on one platform. The average enterprise has a whopping 178 social accounts, nearly ¼ of which are usually semi-idle and need to be scrapped. The last thing any C-suite needs is to cope with fragmented technologies, solutions and platforms. It’s neither scalable nor strategic. The prepared, effective social enterprise has a technology partner that can quickly and holistically integrate emerging platforms and technologies, such that whatever internal social command structure you’ve set up can continue efficiently executing strategy without skipping a beat. @mikestiles

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Failure Sucks, But Does It Have To?

    - by steve.diamond
    Hey Folks--It's "elephant in the room" time. Imagine a representative from a CRM VENDOR discussing CRM FAILURES. Well. I recently saw this blog post from Michael Krigsman on "six ways CRM projects go wrong." Now, I know this may come off defensive, but my comments apply to ALL CRM vendors, not just Oracle. As I perused the list, I couldn't find any failures related to technology. They all seemed related to people or process. Now, this isn't about finger pointing, or impugning customers. I love customers! And when they fail, WE fail. Although I sit in the cheap seats, i.e., I haven't funded any multi-million dollar CRM initiatives lately, I kept wondering how to convert the perception of failure as something that ends and is never to be mentioned again (see Michael's reason #4), to something that one learns from and builds upon. So to continue my tradition of speaking in platitudes, let me propose the following three tenets: 1) Try and get ahead of your failures while they're very very small. 2) Immediately assess what you can learn from those failures. 3) With more than 15 years of CRM deployments, seek out those vendors that have a track record both in learning from "misses" and in supporting MANY THOUSANDS of CRM successes at companies of all types and sizes. Now let me digress briefly with an unpleasant (for me, anyway) analogy. I really don't like flying. Call it 'fear of dying' or 'fear of no control.' Whatever! I've spoken with quite a few commercial pilots over the years, and they reassure me that there are multiple failures on most every flight. We as passengers just don't know about them. Most of them are too miniscule to make a difference, and most of them are "caught" before they become LARGER failures. It's typically the mid-sized to colossal failures we hear about, and a significant percentage of those are due to human error. What's the point? I'd propose that organizations consider the topic of FAILURE in five grades. On one end, FAILURE Grade 1 is a minor/miniscule failure. On the other end, FAILURE Grade 5 is a colossal failure A Grade 1 CRM FAILURE could be that a particular interim milestone was missed. Why? What can we learn from that? How can we prevent that from happening as we proceed through the project? Individual organizations will need to define their own Grade 2 and Grade 3 failures. The opportunity is to keep those Grade 3 failures from escalating any further. Because honestly, a GRADE 5 failure may not be recoverable. It could result in a project being pulled, countless amounts of hours and dollars lost, and jobs lost. We don't want to go there. In closing, I want to thank Michael for opening my eyes up to the world of "color," versus thinking of failure as both "black and white" and a dead end road that organizations can't learn from and avoid discussing like the plague.

    Read the article

  • All for one and one for all…the power of partnership in higher education

    - by Student Solutions Team-Oracle
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Recently, several of our Oracle student solutions team members were in Latin America at a user group conference. Not an Oracle user group—although the conference was about and for higher education customers using Oracle software—but a Higher Education User Group (HEUG) conference. So what’s the difference? First of all, the HEUG is an entirely independent organization from Oracle, incorporated as a 501(c)(3) non-profit corporation governed by a Board of Directors. As a self-governing organization, the more than 23,000 higher education members (and growing!) actively participate in a multitude of initiatives, communications and shared-learning opportunities that benefit each of them and their institutions. For example, one of these programs includes 16 active and effective Product Advisor Groups (PAGs) that interact directly with Oracle management, developers and business partners to provide input into product strategies and improvements. The HEUG also provides a variety of online tools to help its members navigate the world of Oracle applications software. There’s a lot more that this organization does, but you can go to www.heug.org yourself to learn more. We want to get back to our story! Anyway, as we were leaving the HEUG conference in Latin America, one of the guests invited to attend commented: “Do these users realize and appreciate how many people from Oracle come to support them? You have a much larger representation at these types of conferences than any other vendor. It shows the tremendous support you have for your higher education customers.” So that’s it! This is why the partnership between the HEUG and Oracle is so powerful and unique in the software industry. Two distinct, independent organizations come together focused entirely on providing the highest value and mutual benefit to each member, each organization and the larger higher education community. Through open communications and active engagement since the HEUG was formed in 1998, our partnership today is stronger than it has ever been and membership growing globally. Result? Everyone benefits. All for one and one for all—we are in this together. We’ve got a lot going on in the student solutions team and are working closely with customers and the HEUG to move ahead on continued development for PeopleSoft Campus Solutions 9.2 and a new Oracle Student Cloud. Come back here for more stories, news and information! --Oracle Student Solutions Team  

    Read the article

  • Patching and PCI Compliance

    - by Joel Weise
    One of my friends and master of the security universe, Darren Moffat, pointed me to Dan Anderson's blog the other day.  Dan went to Toorcon which is a security conference where he went to a talk on security patching titled, "Stop Patching, for Stronger PCI Compliance".  I realize that often times speakers will use a headline grabbing title to create interest in their talk and this one certainly got my attention.  I did not go to the conference and did not see the presentation, so I can only go by what is in the Toorcon agenda summary and on Dan's blog, but the general statement to stop patching for stronger PCI compliance seems a bit misleading to me.  Clearly patching is important to all systems management and should be a part of any organization's security hygiene.  Further, PCI does require the patching of systems to maintain compliance.  So it's important to mention that organizations should not simply stop patching their systems; and I want to believe that was not the speakers intent. So let's look at PCI requirement 6: "Unscrupulous individuals use security vulnerabilities to gain privileged access to systems. Many of these vulnerabilities are fixed by vendor- provided security patches, which must be installed by the entities that manage the systems. All critical systems must have the most recently released, appropriate software patches to protect against exploitation and compromise of cardholder data by malicious individuals and malicious software." Notice the word "appropriate" in the requirement.  This is stated to give organizations some latitude and apply patches that make sense in their environment and that target the vulnerabilities in question.  Haven't we all seen a vulnerability scanner throw a false positive and flag some module and point to a recommended patch, only to realize that the module doesn't exist on our system?  Applying such a patch would obviously not be appropriate.  This does not mean an organization can ignore the fact they need to apply security patches.  It's pretty clear they must.  Of course, organizations have other options in terms of compliance when it comes to patching.  For example, they could remove a system from scope and make sure that system does not process or contain cardholder data.  [This may or may not be a significant undertaking.  I just wanted to point out that there are always options available.] PCI DSS requirement 6.1 also includes the following note: "Note: An organization may consider applying a risk-based approach to prioritize their patch installations. For example, by prioritizing critical infrastructure (for example, public-facing devices and systems, databases) higher than less-critical internal devices, to ensure high-priority systems and devices are addressed within one month, and addressing less critical devices and systems within three months." Notice there is no mention to stop patching one's systems.  And the note also states organization may apply a risk based approach. [A smart approach but also not mandated].  Such a risk based approach is not intended to remove the requirement to patch one's systems.  It is meant, as stated, to allow one to prioritize their patch installations.   So what does this mean to an organization that must comply with PCI DSS and maintain some sanity around their patch management and overall operational readiness?  I for one like to think that most organizations take a common sense and balanced approach to their business and security posture.  If patching is becoming an unbearable task, review why that is the case and possibly look for means to improve operational efficiencies; but also recognize that security is important to maintaining the availability and integrity of one's systems.  Likewise, whether we like it or not, the cyber-world we live in is getting more complex and threatening - and I dont think it's going to get better any time soon.

    Read the article

  • jtreg update, March 2012

    - by jjg
    There is a new update for jtreg 4.1, b04, available. The primary changes have been to support faster and more reliable test runs, especially for tests in the jdk/ repository. [ For users inside Oracle, there is preliminary direct support for gathering code coverage data using jcov while running tests, and for generating a coverage report when all the tests have been run. ] -- jtreg can be downloaded from the OpenJDK jtreg page: http://openjdk.java.net/jtreg/. Scratch directories On platforms like Windows, if a test leaves a file open when the test is over, that can cause a problem for downstream tests, because the scratch directory cannot be emptied beforehand. This is addressed in agentvm mode by discarding any agents using that scratch directory and starting new agents using a new empty scratch directory. Successive directives use suffices _1, _2, etc. If you see such directories appearing in the work directory, that is an indication that files were left open in the preceding directory in the series. Locking support Some tests use shared system resources such as fixed port numbers. This causes a problem when running tests concurrently. So, you can now mark a directory such that all the tests within all such directories will be run sequentially, even if you use -concurrency:N on the command line to run the rest of the tests in parallel. This is seen as a short term solution: it is recommended that tests not use shared system resources whenever possible. If you are running multiple instances of jtreg on the same machine at the same time, you can use a new option -lock:file to specify a file to be used for file locking; otherwise, the locking will just be within the JVM used to run jtreg. "autovm mode" By default, if no options to the contrary are given on the command line, tests will be run in othervm mode. Now, a test suite can be marked so that the default execution mode is "agentvm" mode. In conjunction with this, you can now mark a directory such that all the tests within that directory will be run in "othervm" mode. Conceptually, this is equivalent to putting /othervm on every appropriate action on every test in that directory and any subdirectories. This is seen as a short term solution: it is recommended tests be adapted to use agentvm mode, or use "@run main/othervm" explicitly. Info in test result files The user name and jtreg version info are now stored in the properties near the beginning of the .jtr file. Build The makefiles used to build and test jtreg have been reorganized and simplified. jtreg is now using JT Harness version 4.4. Other jtreg provides access to GNOME_DESKTOP_SESSION_ID when set. jtreg ensures that shell tests are given an absolute path for the JDK under test. jtreg now honors the "first sentence rule" for the description given by @summary. jtreg saves the default locale before executing a test in samevm or agentvm mode, and restores it afterwards. Bug fixes jtreg tried to execute a test even if the compilation failed in agentvm mode because of a JVM crash. jtreg did not correctly handle the -compilejdk option. Acknowledgements Thanks to Alan, Amy, Andrey, Brad, Christine, Dima, Max, Mike, Sherman, Steve and others for their help, suggestions, bug reports and for testing this latest version.

    Read the article

  • How to Set Up Your Enterprise Social Organization?

    - by Richard Lefebvre
    By Mike Stiles on Dec 04, 2012 The rush for business organizations to establish, grow, and adopt social was driven out of necessity and inevitability. The result, however, was a sudden, booming social presence creating touch points with customers, partners and influencers, but without any corporate social organization or structure in place to effectively manage it. Even today, many business leaders remain uncertain as to how to corral this social media thing so that it makes sense for their enterprise. Imagine their panic when they hear one of the most beneficial approaches to corporate use of social involves giving up at least some hierarchical control and empowering employees to publicly engage customers. And beyond that, they should also be empowered, regardless of their corporate status, to engage and collaborate internally, spurring “off the grid” innovation. An HBR blog points out that traditionally, enterprise organizations function from the top down, and employees work end-to-end, structured around business processes. But the social enterprise opens up structures that up to now have not exactly been embraced by turf-protecting executives and managers. The blog asks, “What if leaders could create a future where customers, associates and suppliers are no longer seen as objects in the system but as valued sources of innovation, ideas and energy?” What if indeed? The social enterprise activates internal resources without the usual obsession with position. It is the dawn of mass collaboration. That does not, however, mean this mass collaboration has to lead to uncontrolled chaos. In an extended interview with Oracle, Altimeter Group analyst Jeremiah Owyang and Oracle SVP Reggie Bradford paint a complete picture of today’s social enterprise, including internal organizational structures Altimeter Group has seen emerge. One sign of a mature social enterprise is the establishing of a social Center of Excellence (CoE), which serves as a hub for high-level social strategy, training and education, research, measurement and accountability, and vendor selection. This CoE is led by a corporate Social Strategist, most likely from a Marketing or Corporate Communications background. Reporting to them are the Community Managers, the front lines of customer interaction and engagement; business unit liaisons that coordinate the enterprise; and social media campaign/product managers, social analysts, and developers. With content rising as the defining factor for social success, Altimeter also sees a Content Strategist position emerging. Across the enterprise, Altimeter has seen 5 organizational patterns. Watching the video will give you the pros and cons of each. Decentralized - Anyone can do anything at any time on any social channel. Centralized – One central groups controls all social communication for the company. Hub and Spoke – A centralized group, but business units can operate their own social under the hub’s guidance and execution. Most enterprises are using this model. Dandelion – Each business unit develops their own social strategy & staff, has its own ability to deploy, and its own ability to engage under the central policies of the CoE. Honeycomb – Every employee can do social, but as opposed to the decentralized model, it’s coordinated and monitored on one platform. The average enterprise has a whopping 178 social accounts, nearly ¼ of which are usually semi-idle and need to be scrapped. The last thing any C-suite needs is to cope with fragmented technologies, solutions and platforms. It’s neither scalable nor strategic. The prepared, effective social enterprise has a technology partner that can quickly and holistically integrate emerging platforms and technologies, such that whatever internal social command structure you’ve set up can continue efficiently executing strategy without skipping a beat. @mikestiles

    Read the article

  • bluez 5.19 PS4 controller

    - by Athanase
    I currently have a problem when pairing my computer with a PS4 remote. On my Ubuntu 14.04 I removed everything related with bluez and bluetooth, and I built and installed bluez 5.19. Here are some useful command outputs: jean@system ~ hcitool hcitool - HCI Tool ver 5.19 jean@system ~ hcitool dev Devices: hci0 00:15:83:4C:0C:BB jean@system ~ bluetoothctl [bluetooth]# version Version 5.19 jean@system ~ bluetoothctl [NEW] Controller 00:15:83:4C:0C:BB BlueZ [default] jean@system ~ lsusb Bus 003 Device 012: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) So here is what happens. When I try to hard pair the controller with the computer, by holding the share and ps button for a while, everything works as expected and the pairing is done properly. After a hard pairing if I try the pairing by pressing the ps button only, nothings happen. In order to go it, I first power up the bluetooth dongle: jean@system ~ sudo hciconfig hciX up and then I run the bluetooh deamon bluetoothd: jean@system /usr/libexec/bluetooth ~ ./bluetoothd -d -n bluetoothd[11270]: Bluetooth daemon 5.19 bluetoothd[11270]: src/main.c:parse_config() parsing main.conf bluetoothd[11270]: src/main.c:parse_config() discovto=0 bluetoothd[11270]: src/main.c:parse_config() pairto=0 bluetoothd[11270]: src/main.c:parse_config() auto_to=60 bluetoothd[11270]: src/main.c:parse_config() name=%h-%d bluetoothd[11270]: src/main.c:parse_config() class=0x000100 bluetoothd[11270]: src/main.c:parse_config() Key file does not have key 'DeviceID' bluetoothd[11270]: src/gatt.c:gatt_init() Starting GATT server bluetoothd[11270]: src/adapter.c:adapter_init() sending read version command bluetoothd[11270]: Starting SDP server bluetoothd[11270]: src/sdpd-service.c:register_device_id() Adding device id record for 0002:1d6b:0246:0513 ... bluetoothd[11270]: src/adapter.c:adapter_service_insert() /org/bluez/hci0 bluetoothd[11270]: src/adapter.c:add_uuid() sending add uuid command for index 0 bluetoothd[11270]: profiles/audio/a2dp.c:a2dp_sink_server_probe() path /org/bluez/hci0 bluetoothd[11270]: profiles/audio/a2dp.c:a2dp_source_server_probe() path /org/bluez/hci0 bluetoothd[11270]: src/adapter.c:btd_adapter_unblock_address() hci0 00:00:00:00:00:00 bluetoothd[11270]: src/adapter.c:get_ltk_info() A4:15:66:C1:0D:2A bluetoothd[11270]: src/device.c:device_create_from_storage() address A4:15:66:C1:0D:2A bluetoothd[11270]: src/device.c:device_new() address A4:15:66:C1:0D:2A bluetoothd[11270]: src/device.c:device_new() Creating device /org/bluez/hci0/dev_A4_15_66_C1_0D_2A bluetoothd[11270]: src/device.c:device_set_bonded() bluetoothd[11270]: src/adapter.c:get_ltk_info() A4:15:66:88:5E:9A bluetoothd[11270]: src/device.c:device_create_from_storage() address A4:15:66:88:5E:9A bluetoothd[11270]: src/device.c:device_new() address A4:15:66:88:5E:9A bluetoothd[11270]: src/device.c:device_new() Creating device /org/bluez/hci0/dev_A4_15_66_88_5E_9A bluetoothd[11270]: src/device.c:device_set_bonded() bluetoothd[11270]: src/adapter.c:load_link_keys() hci0 keys 2 debug_keys 0 bluetoothd[11270]: src/adapter.c:load_ltks() hci0 keys 0 bluetoothd[11270]: src/adapter.c:load_connections() sending get connections command for index 0 bluetoothd[11270]: src/adapter.c:adapter_service_insert() /org/bluez/hci0 bluetoothd[11270]: src/adapter.c:add_uuid() sending add uuid command for index 0 bluetoothd[11270]: src/adapter.c:set_did() hci0 source 2 vendor 1d6b product 246 version 513 bluetoothd[11270]: src/adapter.c:adapter_register() Adapter /org/bluez/hci0 registered bluetoothd[11270]: src/adapter.c:set_dev_class() sending set device class command for index 0 bluetoothd[11270]: src/adapter.c:set_name() sending set local name command for index 0 bluetoothd[11270]: src/adapter.c:set_mode() sending set mode command for index 0 bluetoothd[11270]: src/adapter.c:set_mode() sending set mode command for index 0 bluetoothd[11270]: src/adapter.c:adapter_start() adapter /org/bluez/hci0 has been enabled bluetoothd[11270]: src/adapter.c:trigger_passive_scanning() bluetoothd[11270]: plugins/hostname.c:property_changed() static hostname: system bluetoothd[11270]: plugins/hostname.c:property_changed() pretty hostname: bluetoothd[11270]: plugins/hostname.c:update_name() name: system bluetoothd[11270]: src/adapter.c:adapter_set_name() name: system bluetoothd[11270]: plugins/hostname.c:property_changed() chassis: desktop bluetoothd[11270]: plugins/hostname.c:update_class() major: 0x01 minor: 0x01 bluetoothd[11270]: src/adapter.c:load_link_keys_complete() link keys loaded for hci0 bluetoothd[11270]: src/adapter.c:load_ltks_complete() LTKs loaded for hci0 bluetoothd[11270]: src/adapter.c:get_connections_complete() Connection count: 0 And then I press the ps button of the PS4 controller bluetoothd[11270]: src/adapter.c:connected_callback() hci0 device A4:15:66:C1:0D:2A connected eir_len 5 bluetoothd[11270]: profiles/input/server.c:connect_event_cb() Incoming connection from A4:15:66:C1:0D:2A on PSM 17 bluetoothd[11270]: profiles/input/device.c:input_device_set_channel() idev (nil) psm 17 bluetoothd[11270]: Refusing input device connect: No such file or directory (2) bluetoothd[11270]: profiles/input/server.c:confirm_event_cb() bluetoothd[11270]: Refusing connection from A4:15:66:C1:0D:2A: unknown device bluetoothd[11270]: src/adapter.c:dev_disconnected() Device A4:15:66:C1:0D:2A disconnected, reason 3 bluetoothd[11270]: src/adapter.c:adapter_remove_connection() bluetoothd[11270]: plugins/policy.c:disconnect_cb() reason 3 bluetoothd[11270]: src/adapter.c:bonding_attempt_complete() hci0 bdaddr A4:15:66:C1:0D:2A type 0 status 0xe bluetoothd[11270]: src/device.c:device_bonding_complete() bonding (nil) status 0x0e bluetoothd[11270]: src/device.c:device_bonding_failed() status 14 bluetoothd[11270]: src/adapter.c:resume_discovery() So I don't know what is happening here and a bit of help would be appreciated.

    Read the article

  • Bluetooth not found on BCM43228

    - by TK Kocheran
    I've got a Broadcom BCM43228 mPCIe card which came with my motherboard (ASUS ROG Maximus V Extreme, can't seem to find a link to what the card is) which is working great for WiFi right now, but I can't detect the Bluetooth hardware onboard. In Windows, I have full Bluetooth 4.0 support. $ lspci 00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:14.0 USB controller: Intel Corporation Panther Point USB xHCI Host Controller (rev 04) 00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04) 00:19.0 Ethernet controller: Intel Corporation 82579V Gigabit Network Connection (rev 04) 00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04) 00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) 00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) 00:1c.4 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 5 (rev c4) 00:1c.6 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 7 (rev c4) 00:1c.7 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 8 (rev c4) 00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04) 00:1f.2 SATA controller: Intel Corporation Panther Point 6 port SATA Controller [AHCI mode] (rev 04) 00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04) 01:00.0 VGA compatible controller: NVIDIA Corporation Device 1189 (rev a1) 01:00.1 Audio device: NVIDIA Corporation Device 0e0a (rev a1) 0d:00.0 USB controller: ASMedia Technology Inc. ASM1042 SuperSpeed USB Host Controller 0e:00.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:01.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:04.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:05.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:06.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:07.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:08.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 0f:09.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s) Switch (rev ba) 10:00.0 USB controller: ASMedia Technology Inc. ASM1042 SuperSpeed USB Host Controller 12:00.0 SATA controller: ASMedia Technology Inc. ASM1062 Serial ATA Controller (rev 01) 15:00.0 Network controller: Broadcom Corporation BCM43228 802.11a/b/g/n 17:00.0 SATA controller: ASMedia Technology Inc. ASM1062 Serial ATA Controller (rev 01) The key line seems to be: 15:00.0 Network controller: Broadcom Corporation BCM43228 802.11a/b/g/n If I try to detect the Bluetooth card, I don't see anything: $ hcitool dev Devices: rfkill list all: Output lspci: Output lsusb: Output I finally found the card with usb-devices: T: Bus=01 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=12 MxCh= 0 D: Ver= 2.00 Cls=ff(vend.) Sub=01 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=0b05 ProdID=17b5 Rev=01.12 S: Manufacturer=Broadcom Corp S: Product=BCM20702A0 S: SerialNumber=############ C: #Ifs= 4 Cfg#= 1 Atr=e0 MxPwr=0mA I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=01 Prot=01 Driver=(none) I: If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=01 Prot=01 Driver=(none) I: If#= 2 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=(none) I: If#= 3 Alt= 0 #EPs= 0 Cls=fe(app. ) Sub=01 Prot=01 Driver=(none) I've heard that this card needs to have firmware injected into it in order to function. If that's the case, how do I do it?

    Read the article

  • My Doors - Why Standards Matter to Business

    - by Brian Dayton
    "Standards save money." "Standards accelerate projects." "Standards make better solutions."   What do these statements mean to you? You buy technology solutions like Oracle Applications but you're a business person--trying to close the quarter, get performance reviews processed, negotiate a new sourcing contract, etc.   When "standards" come up in presentations and discussions do you: -          Nod your head politely -          Tune out and check your smart phone -          Turn to your IT counterpart and say "Bob's all over this standards thing, right Bob?"   Here's why standards matter. My wife wants new external doors downstairs, ones that would get more light into the rooms. Am I OK with that? "Uhh, sure...it's a little dark in the kitchen."   -          24 hours ago - wife calls to tell me that she's going to the hardware store and may look at doors -          20 hours ago - wife pulls into driveway, informs me that two doors are in the back of her station wagon, ready for me to carry -          19 hours ago - I re-discovered the fact that it's not fun to carry a solid wood door by myself -          5 hours ago - Local handyman, who was at our house anyway, tells me that the doors we bought will likely cost 2-3x the material cost in installation time and labor...the doors are standard but our doorways aren't   We could have done more research. I could be more handy. Sure. But the fact is, my 1951 house wasn't built with me in mind. They built what worked and called it a day.   The same holds true with a lot of business applications. They were designed and architected for one-time use with one use-case in mind. Today's business climate is different. If you're going to use your processes and technology to differentiate your business you should have at least a working knowledge of: -          How standards can benefit your business -          Your IT organization's philosophy around standards -          Your vendor's track-record around standards...and watch for those who pay lip-service to standards but don't follow through   The rallying cry in most IT organizations today is "learn more about the business, drop the acronyms." I'm not advocating that you go out and learn how to code in Java. But I do believe it will help your business and your decision-making process if you meet IT ½...even ¼ of the way there.   Epilogue: The door project has been put on hold and yours truly has to return the doors to the hardware store tomorrow.

    Read the article

  • Where is the value of OEA

    - by [email protected]
    In a room full of architects, if you were to ask for the definition of enterprise architecture, or the importance thereof,  you are likely to get a number of varying view points ranging from,  a complete analysis of the digital assets of an organization,  to, a strategic alignment of business goals/objectives to IT initiatives.  Similiarily in a room full of senior business executives,  if you asked them how they see their IT groups and their effectiveness to align to business strategy,  you would get a myriad of responses,  ranging from, “a huge drain on our bottom line”, “always more expensive than budgeted”, “lack of agility,  by the time IT is ready,  my business strategy has changed”, and on the rare occurrence, “ a leader of innovation,  that is lock step with my business strategy”. However does this necessarily demonstrate the overall value of enterprise architecture.  Having a framework, and process is of critical importance to help produce a number of the artefacts that ultimately align technology goals and initiatives to business strategy,  however,  is that really where the value is?  I believe that first we need to understand the concept of value.  Value typically is a measure of sorts,  when we purchase a product it’s value is equivalent to the maximum amount that someone is willing to pay for the product,  however,  is the same equation valid in terms of the business value of enterprise architecture? Is the library of artefacts generated through a process/framework, inclusive of a strategic roadmap to realize the enterprise architecture where the value is? If we agree that enterprise architecture is the alignment of IT and IT assets to support business strategy, and by achieving our business strategy, we have we have increased the business value of the enterprise then;  it seems that, in order to really identify the true value of an enterprise architecture,  we need to understand how we measure business value .  A number of formal measurement methodologies exist for this purpose, business models, balanced scorecards, etc   After we have an understanding on how to measure the business value of each of the organizational units within an enterprise, then we understand how the enterprise architecture contributes to the success of business strategy,  and EXECUTE on the roadmap to implement, and deliver the IT initiatives that provide MEASUREABLE returns, As we analyse the value chain of each of the individual organizational units within the enterprise we may identify how that unit has performed by quantitatively measuring it proximity to achieving the goals defined by the business for each unit. However, It would appear that true business value (the aggregate of all of the business units in the value chain), is to some degree subjectively measured  as for public companies this lies in shareholder value,  as the true value, or be it, the maximum amount that someone would pay for shares of an organization.

    Read the article

  • F# and the rose-tinted reflection

    - by CliveT
    We're already seeing increasing use of many cores on client desktops. It is a change that has been long predicted. It is not just a change in architecture, but our notions of efficiency in a program. No longer can we focus on the asymptotic complexity of an algorithm by counting the steps that a single core processor would take to execute it. Instead we'll soon be more concerned about the scalability of the algorithm and how well we can increase the performance as we increase the number of cores. This may even lead us to throw away our most efficient algorithms, and switch to less efficient algorithms that scale better. We might even be willing to waste cycles in order to speculatively execute at the algorithm rather than the hardware level. State is the big headache in this parallel world. At the hardware level, main memory doesn't necessarily contain the definitive value corresponding to a particular address. An update to a location might still be held in a CPU's local cache and it might be some time before the value gets propagated. To get the latest value, and the notion of "latest" takes a lot of defining in this world of rapidly mutating state, the CPUs may well need to communicate to decide who has the definitive value of a particular address in order to avoid lost updates. At the user program level, this means programmers will need to lock objects before modifying them, or attempt to avoid the overhead of locking by understanding the memory models at a very deep level. I think it's this need to avoid statefulness that has led to the recent resurgence of interest in functional languages. In the 1980s, functional languages started getting traction when research was carried out into how programs in such languages could be auto-parallelised. Sadly, the impracticality of some of the languages, the overheads of communication during this parallel execution, and rapid improvements in compiler technology on stock hardware meant that the functional languages fell by the wayside. The one thing that these languages were good at was getting rid of implicit state, and this single idea seems like a solution to the problems we are going to face in the coming years. Whether these languages will catch on is hard to predict. The mindset for writing a program in a functional language is really very different from the way that object-oriented problem decomposition happens - one has to focus on the verbs instead of the nouns, which takes some getting used to. There are a number of hybrid functional/object languages that have been becoming more popular in recent times. These half-way houses make it easy to use functional ideas for some parts of the program while still allowing access to the underlying object-focused platform without a great deal of impedance mismatch. One example is F# running on the CLR which, in Visual Studio 2010, has because a first class member of the pack. Inside Visual Studio 2010, the tooling for F# has improved to the point where it is easy to set breakpoints and watch values change while debugging at the source level. In my opinion, it is the tooling support that will enable the widespread adoption of functional languages - without this support, people will put off any transition into the functional world for as long as they possibly can. Without tool support it will make it hard to learn these languages. One tool that doesn't currently support F# is Reflector. The idea of decompiling IL to a functional language is daunting, but F# is potentially so important I couldn't dismiss the idea. As I'm currently developing Reflector 6.5, I thought it wise to take four days just to see how far I could get in doing so, even if it achieved little more than to be clearer on how much was possible, and how long it might take. You can read what happened here, and of the insights it gave us on ways to improve the tool.

    Read the article

  • Why Your ERP System Isn't Ready for the Next Evolution of the Enterprise

    - by ken.pulverman
      ERP has been the backbone of enterprise software.  The data held in your ERP system is core of most companies.  Efficiencies gained through the accounting and resource allocation through ERP software have literally saved companies trillions of dollars. Not only does everything seem to be fine with your ERP system, you haven't had to touch it in years.  Why aren't you ready for what comes next? Well judging by the growth rates in the space (Oracle posted only a 3% growth rate, while SAP showed a 12% decline) there hasn't been much modernization going on, just a little replacement activity. If you are like most companies, your ERP system is connected to a proprietary middleware solution that only effectively talks with a handful of other systems you might have acquired from the same vendor.   Connecting your legacy system through proprietary middleware is expensive and brittle and if you are like most companies, you were only willing to pay an SI so much before you said "enough."  So your ERP is working.  It's humming along.  You might not be able to get Order to Promise information when you take orders in your call center, but there are work arounds that work just fine. So what's the problem? The problem is that you built your business around your ERP core, and now there is such pressure to innovate your business processes to keep up that you need a whole new slew of modern apps and you need ERP data to be accessible from everywhere.   Every time you change a sales territory or a comp plan or change a benefits provider your ERP system, literally the economic brain of your business, needs to know what's going on.  And this giant need to access and provide information to your ERP is only growing. What makes matters even more challenging is that apps today come in every flavor under the Sun™.   SaaS, cloud, managed, hybrid, outsourced, composite....and they all have different integration protocols. The only easy way to get ahead of all this is to modernize the way you connect and run your applications.  Unlike the middleware solutions of yesteryear, modern middleware is effectively the operating system of the enterprise.  In the same way that you rely on Apple, Microsoft, and Google to find a video driver for your 23" monitor or to ensure the Word or Keynote runs, modern middleware takes care of intra-application connectivity and process execution.  It effectively allows you to take ERP out of the middle while ensuring connectivity to your vital data for anything you want to do.  The diagram below reflects that change.    In this model, the hegemony of ERP is over.  It too has to become a stealthy modern app to help you quickly adapt to business changes while managing vital information.  And through modern middleware it will connect to everything.  So yes ERP as we've know it is dead, but long live ERP as a connected application member of the modern enterprise. I want to Thank Andrew Zoldan, Group Vice President Oracle Manufacturing Industries Business Unit for introducing me to how some of his biggest customers have benefited by modernizing their applications infrastructure and making ERP a connected application. by John Burke, Group Vice President, Applications Business Unit

    Read the article

  • SQL SERVER – Read Only Files and SQL Server Management Studio (SSMS)

    - by pinaldave
    Just like any other Developer or DBA SQL Server Management Studio is my favorite application. Any any moment of the time I have multiple instances of the same application are open and I am working on it. Recently, I have come across a very interesting feature in SSMS related to “Read Only” files. I believe it is a little unknown feature as well so decided to write a blog about the same. First create a read only SQL file. You can make any file read by Right Click >> Properties >> Select Attribute Read Only. Now open the same file in SQL Server Management Studio. You will find that besides the file name there is a small ‘lock’ icon. This small icon indicates that the file is read only. Now let us attempt to edit the read only file. It will let us edit the file any way we want, however when we attempt to save it, it gives following pop-up value. The options in the pop-up are self explanatory and I liked it. The goal of the read only file is to prevent users to make un-intended changes. However, when a user should have complete control over the user file. User should be aware that the file is read only but if he wants to edit the file or save as a new file the choices should be present in front of it and the pop-up menu precisely captures the same. Now let us check option related to this feature in SSMS. Go to Menu >> Options >> Environment >> Documents You will find the third option which is “Allow editing of read-only files; warn when attempt to save”. In the above scenario it was already checked. Let us uncheck the same and do the same exercise which we have done earlier. I closed all the earlier window to avoid confusion. With the new option selected when I attempt to even modify the Read Only file, it gives me totally different pop up screen. It gives me an option like “Edit In-Memory”, “Make Writeable” etc. When you select “Edit In-Memory” it allows you to edit the file and later you can save as new file – just like the earlier scenario which we have discussed. . If clicked on the Make Writeable it will remove the restriction of the Read Only and file can be edited as pleased. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Ubuntu 12.04 / 12.10 Randomly Freezing - nVidia?

    - by Alix Axel
    My Ubuntu install frequently freezes, sometimes showing a black screen (not very common anymore - in my latest installs), some other times the mouse and keyboard just fail to move and respond (not even Ctrl + Alt + F1 works) and some other times I'm able to move the mouse with a huge delay (2-5 seconds) but I'm not able to do/click anything. I have a pretty strong feeling that this problem is related to my graphic card drivers because: after hard reset, I usually get error reports about X.org / jockey it's common for artifacts to appear during loading / shutdown / whenever, for instance: pattern filled with £ during log off ugly-colored squared pattern during boot windows that are partially moved (i.e.: only the top half) Firefox renderings that leave the bottom ~30% of the page black These artifacts appear right before the system freezes. I've installed Ubuntu 12.04 LTS and after several failed attempts to get my dual monitor setup to work properly I tried installing the new 12.10 version, hoping that this new version would have this problem solved... Unfortunatly, that was not the case, so I reverted to Ubuntu 12.04. I've tried all the drivers in the Additional Drivers application (even the experimental ones), I've also tried the nvidia-current package from the PPA repository ubuntu-x-swat/x-updates as well as the nouveau OSS driver. Nothing (except no driver at all with a 640*480 resolution) at all seems stable. Here is the info of my graphic card: alix@alix-E500:~$ lspci | grep VGA 01:00.0 VGA compatible controller: NVIDIA Corporation G86 [GeForce 8400M G] (rev a1) alix@alix-E500:~$ sudo lshw -C video [sudo] password for alix: *-display description: VGA compatible controller product: G86 [GeForce 8400M G] vendor: NVIDIA Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a1 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nouveau latency=0 resources: irq:16 memory:fd000000-fdffffff memory:d0000000-dfffffff memory:fa000000-fbffffff ioport:cc00(size=128) memory:fe0e0000-fe0fffff Right now, I don't even have my 22" monitor connected as I can't even get my laptop display to work properly and without freezes. I've searched, read and tried all that I could (over several fresh reinstalls) to fix the problem, but so far, no solution has proven definitive. I'm sorry I can't precise which symptom maps to each driver but I've been trying to solve this one on my own without logging what I'm doing, perhaps someone here will be able to point me to a certain-fix solution, if not I'll keep updating this question as I go along. Please let me know if any more info is needed to pinpoint the exact problem. Trying out NVIDIA accelerated graphics driver (version 173). The scrolling, minimizing / maximizing windows takes between 2 and 5 seconds to finalize. Context menus also pop up very slowly and the typing seems delayed by ~1 second. No critical issues so far. Firefox rendering of the Save Edits button is consistently messed up (random black lines in the top). Trying out NVIDIA accelerated graphics driver (version current) [Recommended]. All the delays mentioned above and the buggy rendering of the Save Edits button are gone, but I'm noticing that the whole screen flashes black for a couple of microseconds and while I was writing this test for the first time, the bottom 30% of the screen went black and I couldn't do anything (not even Ctrl + Alt + F1 would work). Had to force a hard reset. Also, the system hanged a little for a couple of seconds with the fade out of the "Restart" menu. Trying out NVIDIA accelerated graphics driver (*experimental*beta) (version experimental-304). Same symptoms as before, it crashed once while I was trying to install Chromium and again after a hard reset when I was trying to remove the driver. The bottom of the screen did not went black and I could move my mouse both times. Ctrl + Alt + F1 didn't work. The ugly-colored pattern also showed up during the second boot. Trying out NVIDIA accelerated graphics driver (*experimental*beta) (version experimental-307). The system crashed as soon as I clicked something. Had to do a fresh re-install. Trying out Nouveau: Accelerated Open Source driver for nVidia cards. Artifacts still show up during boot but other than that this one seems stable. As soon as I connected my second monitor, the responsiveness dropped a lot, animations and video are somewhat slow. I'm gonna try this solution http://askubuntu.com/a/98871/9018 later on.

    Read the article

< Previous Page | 156 157 158 159 160 161 162 163 164 165 166 167  | Next Page >