Search Results

Search found 15010 results on 601 pages for 'password protected'.

Page 165/601 | < Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • ASP.NET MVC ‘Extendable-hooks’ – ControllerActionInvoker class

    - by nmarun
    There’s a class ControllerActionInvoker in ASP.NET MVC. This can be used as one of an hook-points to allow customization of your application. Watching Brad Wilsons’ Advanced MP3 from MVC Conf inspired me to write about this class. What MSDN says: “Represents a class that is responsible for invoking the action methods of a controller.” Well if MSDN says it, I think I can instill a fair amount of confidence into what the class does. But just to get to the details, I also looked into the source code for MVC. Seems like the base class Controller is where an IActionInvoker is initialized: 1: protected virtual IActionInvoker CreateActionInvoker() { 2: return new ControllerActionInvoker(); 3: } In the ControllerActionInvoker (the O-O-B behavior), there are different ‘versions’ of InvokeActionMethod() method that actually call the action method in question and return an instance of type ActionResult. 1: protected virtual ActionResult InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor actionDescriptor, IDictionary<string, object> parameters) { 2: object returnValue = actionDescriptor.Execute(controllerContext, parameters); 3: ActionResult result = CreateActionResult(controllerContext, actionDescriptor, returnValue); 4: return result; 5: } I guess that’s enough on the ‘behind-the-screens’ of this class. Let’s see how we can use this class to hook-up extensions. Say I have a requirement that the user should be able to get different renderings of the same output, like html, xml, json, csv and so on. The user will type-in the output format in the url and should the get result accordingly. For example: http://site.com/RenderAs/ – renders the default way (the razor view) http://site.com/RenderAs/xml http://site.com/RenderAs/csv … and so on where RenderAs is my controller. There are many ways of doing this and I’m using a custom ControllerActionInvoker class (even though this might not be the best way to accomplish this). For this, my one and only route in the Global.asax.cs is: 1: routes.MapRoute("RenderAsRoute", "RenderAs/{outputType}", 2: new {controller = "RenderAs", action = "Index", outputType = ""}); Here the controller name is ‘RenderAsController’ and the action that’ll get called (always) is the Index action. The outputType parameter will map to the type of output requested by the user (xml, csv…). I intend to display a list of food items for this example. 1: public class Item 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public Cuisine Cuisine { get; set; } 6: } 7:  8: public class Cuisine 9: { 10: public int CuisineId { get; set; } 11: public string Name { get; set; } 12: } Coming to my ‘RenderAsController’ class. I generate an IList<Item> to represent my model. 1: private static IList<Item> GetItems() 2: { 3: Cuisine cuisine = new Cuisine { CuisineId = 1, Name = "Italian" }; 4: Item item = new Item { Id = 1, Name = "Lasagna", Cuisine = cuisine }; 5: IList<Item> items = new List<Item> { item }; 6: item = new Item {Id = 2, Name = "Pasta", Cuisine = cuisine}; 7: items.Add(item); 8: //... 9: return items; 10: } My action method looks like 1: public IList<Item> Index(string outputType) 2: { 3: return GetItems(); 4: } There are two things that stand out in this action method. The first and the most obvious one being that the return type is not of type ActionResult (or one of its derivatives). Instead I’m passing the type of the model itself (IList<Item> in this case). We’ll convert this to some type of an ActionResult in our custom controller action invoker class later. The second thing (a little subtle) is that I’m not doing anything with the outputType value that is passed on to this action method. This value will be in the RouteData dictionary and we’ll use this in our custom invoker class as well. It’s time to hook up our invoker class. First, I’ll override the Initialize() method of my RenderAsController class. 1: protected override void Initialize(RequestContext requestContext) 2: { 3: base.Initialize(requestContext); 4: string outputType = string.Empty; 5:  6: // read the outputType from the RouteData dictionary 7: if (requestContext.RouteData.Values["outputType"] != null) 8: { 9: outputType = requestContext.RouteData.Values["outputType"].ToString(); 10: } 11:  12: // my custom invoker class 13: ActionInvoker = new ContentRendererActionInvoker(outputType); 14: } Coming to the main part of the discussion – the ContentRendererActionInvoker class: 1: public class ContentRendererActionInvoker : ControllerActionInvoker 2: { 3: private readonly string _outputType; 4:  5: public ContentRendererActionInvoker(string outputType) 6: { 7: _outputType = outputType.ToLower(); 8: } 9: //... 10: } So the outputType value that was read from the RouteData, which was passed in from the url, is being set here in  a private field. Moving to the crux of this article, I now override the CreateActionResult method. 1: protected override ActionResult CreateActionResult(ControllerContext controllerContext, ActionDescriptor actionDescriptor, object actionReturnValue) 2: { 3: if (actionReturnValue == null) 4: return new EmptyResult(); 5:  6: ActionResult result = actionReturnValue as ActionResult; 7: if (result != null) 8: return result; 9:  10: // This is where the magic happens 11: // Depending on the value in the _outputType field, 12: // return an appropriate ActionResult 13: switch (_outputType) 14: { 15: case "json": 16: { 17: JavaScriptSerializer serializer = new JavaScriptSerializer(); 18: string json = serializer.Serialize(actionReturnValue); 19: return new ContentResult { Content = json, ContentType = "application/json" }; 20: } 21: case "xml": 22: { 23: XmlSerializer serializer = new XmlSerializer(actionReturnValue.GetType()); 24: using (StringWriter writer = new StringWriter()) 25: { 26: serializer.Serialize(writer, actionReturnValue); 27: return new ContentResult { Content = writer.ToString(), ContentType = "text/xml" }; 28: } 29: } 30: case "csv": 31: controllerContext.HttpContext.Response.AddHeader("Content-Disposition", "attachment; filename=items.csv"); 32: return new ContentResult 33: { 34: Content = ToCsv(actionReturnValue as IList<Item>), 35: ContentType = "application/ms-excel" 36: }; 37: case "pdf": 38: string filePath = controllerContext.HttpContext.Server.MapPath("~/items.pdf"); 39: controllerContext.HttpContext.Response.AddHeader("content-disposition", 40: "attachment; filename=items.pdf"); 41: ToPdf(actionReturnValue as IList<Item>, filePath); 42: return new FileContentResult(StreamFile(filePath), "application/pdf"); 43:  44: default: 45: controllerContext.Controller.ViewData.Model = actionReturnValue; 46: return new ViewResult 47: { 48: TempData = controllerContext.Controller.TempData, 49: ViewData = controllerContext.Controller.ViewData 50: }; 51: } 52: } A big method there! The hook I was talking about kinda above actually is here. This is where different kinds / formats of output get returned based on the output type requested in the url. When the _outputType is not set (string.Empty as set in the Global.asax.cs file), the razor view gets rendered (lines 45-50). This is the default behavior in most MVC applications where-in a view (webform/razor) gets rendered on the browser. As you see here, this gets returned as a ViewResult. But then, for an outputType of json/xml/csv, a ContentResult gets returned, while for pdf, a FileContentResult is returned. Here are how the different kinds of output look like: This is how we can leverage this feature of ASP.NET MVC to developer a better application. I’ve used the iTextSharp library to convert to a pdf format. Mike gives quite a bit of detail regarding this library here. You can download the sample code here. (You’ll get an option to download once you open the link). Verdict: Hot chocolate: $3; Reebok shoes: $50; Your first car: $3000; Being able to extend a web application: Priceless.

    Read the article

  • Spritebatch not working in winforms

    - by CodingMadeEasy
    I'm using the Winforms sample on the app hub and everything is working fine except my spritebatch won't draw anything unless I call Invalidate in the Draw method. I have this in my initialize method: Application.Idle += delegate { Invalidate(); }; I used a breakpoint and it is indeed invalidating my program and it is calling my draw method. I get no errors with the spritebatch and all the textures are loaded I just don't see anything on the screen. Here's the code I have: protected override void Draw() { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); tileSheet.Draw(spriteBatch); foreach (Image img in selector) img.Draw(spriteBatch); spriteBatch.End(); } But when I do this: protected override void Draw() { GraphicsDevice.Clear(Color.CornflowerBlue); spriteBatch.Begin(); tileSheet.Draw(spriteBatch); foreach (Image img in selector) img.Draw(spriteBatch); spriteBatch.End(); Invalidate(); } then all of a sudden the drawing starts to work! but the problem is that it freezes everything else and only that control gets updated. What can I do to fix this? It's really frustrating.

    Read the article

  • ASP.NET 4.0- Html Encoded Expressions

    - by Jalpesh P. Vadgama
    We all know <%=expression%> features in asp.net. We can print any string on page from there. Mostly we are using them in asp.net mvc. Now we have one new features with asp.net 4.0 that we have HTML Encoded Expressions and this prevent Cross scripting attack as we are html encoding them. ASP.NET 4.0 introduces a new expression syntax <%: expression %> which automatically convert string into html encoded. Let’s take an example for that. I have just created an hello word protected method which will return a simple string which contains characters that needed to be HTML Encoded. Below is code for that. protected static string HelloWorld() { return "Hello World!!! returns from function()!!!>>>>>>>>>>>>>>>>>"; } Now let’s use the that hello world in our page html like below. I am going to use both expression to give you exact difference. <form id="form1" runat="server"> <div> <strong><%: HelloWorld()%></strong> </div> <div> <strong><%= HelloWorld()%></strong> </div> </form> Now let’s run the application and you can see in browser both look similar. But when look into page source html in browser like below you can clearly see one is HTML Encoded and another one is not. That’s it.. It’s cool.. Stay tuned for more.. Happy Programming Technorati Tags: ASP.NET 4.0,HTMLEncode,C#4.0

    Read the article

  • Initially Unselected DropDownList

    - by Ricardo Peres
    One of the most (IMHO) things with DropDownList is its inability to show an unselected value at load time, which is something that HTML does permit. I decided to change the DropDownList to add this behavior. All was needed was some JavaScript and reflection. See the result for yourself: public class CustomDropDownList : DropDownList { public CustomDropDownList() { this.InitiallyUnselected = true; } [DefaultValue(true)] public Boolean InitiallyUnselected { get; set; } protected override void OnInit(EventArgs e) { this.Page.RegisterRequiresControlState(this); this.Page.PreRenderComplete += this.OnPreRenderComplete; base.OnInit(e); } protected virtual void OnPreRenderComplete(Object sender, EventArgs args) { FieldInfo cachedSelectedValue = typeof(ListControl).GetField("cachedSelectedValue", BindingFlags.NonPublic | BindingFlags.Instance); if (String.IsNullOrEmpty(cachedSelectedValue.GetValue(this) as String) == true) { if (this.InitiallyUnselected == true) { if ((ScriptManager.GetCurrent(this.Page) != null) && (ScriptManager.GetCurrent(this.Page).IsInAsyncPostBack == true)) { ScriptManager.RegisterStartupScript(this, this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } else { this.Page.ClientScript.RegisterStartupScript(this.GetType(), "unselect" + this.ClientID, "$get('" + this.ClientID + "').selectedIndex = -1;", true); } } } } } SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • What's the best license for my website?

    - by John Maxim
    I have developed a unique website but do not have a lot of fund to protect it with trademark or patents. I'm looking for suggestions so that when my supervisor gets my codes, some laws restrict anyone from copying it and claim their work. I'm in the middle of thinking, making the application a commercial one or never allowing it to be copied at all. What kind of steps am I required to take in order to make full measurements so my applications are fully-protected? I've come across a few, one under my consideration is MIT license. Some say we can have a mixture of both commercial and MIT. I would also like to be able to distribute some functions so it can be modified by others but I'd still retain the ownership. Last but not least, it's confusing when I think of protecting the whole website, and protecting codes by codes in division. How should we go about this? Thanks. N.B I have to pass it over to the supervisor as this is a Uni project. I need this to be done within 2 weeks. So time to get my App protected is a factor here.

    Read the article

  • Creando controles personalizados para asp.net

    - by jaullo
    Si bien es cierto que asp.net contiene muchos controles que nos facilitan la vida, en muchas ocasiones requerimos funcionalidades adicionales. Una de las opciones es recurrir a la creación de controles personalizados. Este será el Primero de varios post que dedicare a mostrar como crear algunos controles personalizados utilizando elementos sumamente sencillos y faciles de entender. Para ello utilizaremos unicamente los regularexpressionvalidator y unas cuantas expresiones regulares. Para este ejemplo extenderemos la funcionalidad de un textbox para que valide números de tarjetas de crédito. Nuestro textbox deberá verificar que existan 16 números, en grupos de 4, separados por un - Entonces, creamos un nuevo proyecto de tipo control de servidor asp.net Primeramente importamos los espacios de nombres Imports System.ComponentModel Imports System.Web Imports System.Web.UI.WebControls Imports System.Web.UI   Segundo creamos nuestra clase Public Class TextboxCreditCardNumber end class Ahora,  le decimos a nuestra clase que vamos a heredar de textbox Public Class TextboxCreditCardNumber           Inherits TextBox end class Una vez que tenemos esto, nuestra base de programación esta lista, asi que vamos a codificar nuestra nueva funcionalidad Declaramos nuestra variables y una propiedad pública que contendrá el mensaje de error que debe ser devuelto al usuario, esta será publica para que pueda ser personalizada.    Private req As New RegularExpressionValidator     Private mstrmensaje As String = "Número de Tarjeta Invalido"     Public Property MensajeError() As String         Get             Return mstrmensaje         End Get         Set(ByVal value As String)             mstrmensaje = value         End Set     End Property   Ahora definimos el metodo OnInit de nuestro control, en el cual asignaremos las propiedad e inicializaremos nuestras funciones    Protected Overrides Sub OnInit(ByVal e As System.EventArgs)         req.ControlToValidate = MyBase.ID         req.ErrorMessage = mstrmensaje         req.Display = ValidatorDisplay.Dynamic         req.ValidationExpression = "^(\d{4}-){3}\d{4}$|^(\d{4} ){3}\d{4}$|^\d{16}$"         Controls.Add(New LiteralControl("&nbsp;"))         Controls.Add(req)         MyBase.OnInit(e)     End Sub   Y por último, definimos el evento render (que es el encarado de dibujar nuestro control) Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)         MyBase.Render(writer)         req.RenderControl(writer)     End Sub   Lo unico que nos queda ahora es compilar nuestra clase y añadir nuestro nuevo control al ToolBox de Controles para que pueda ser utilizado.

    Read the article

  • My New BDD Style

    - by Liam McLennan
    I have made a change to my code-based BDD style. I start with a scenario such as: Pre-Editing * Given I am a book editor * And some chapters are locked and some are not * When I view the list of chapters for editing * Then I should see some chapters are editable and are not locked * And I should see some chapters are not editable and are locked and I implement it using a modified SpecUnit base class as: [Concern("Chapter Editing")] public class when_pre_editing_a_chapter : BaseSpec { private User i; // other context variables protected override void Given() { i_am_a_book_editor(); some_chapters_are_locked_and_some_are_not(); } protected override void Do() { i_view_the_list_of_chapters_for_editing(); } private void i_am_a_book_editor() { i = new UserBuilder().WithUsername("me").WithRole(UserRole.BookEditor).Build(); } private void some_chapters_are_locked_and_some_are_not() { } private void i_view_the_list_of_chapters_for_editing() { } [Observation] public void should_see_some_chapters_are_editable_and_are_not_locked() { } [Observation] public void should_see_some_chapters_are_not_editable_and_are_locked() { } } and the output from the specunit report tool is: Chapter Editing specifications    1 context, 2 specifications Chapter Editing, when pre editing a chapter    2 specifications should see some chapters are editable and are not locked should see some chapters are not editable and are locked The intent is to provide a clear mapping from story –> scenarios –> bdd tests.

    Read the article

  • NHibernate Conventions

    - by Ricardo Peres
    Introduction It seems that nowadays everyone loves conventions! Not the ones that you go to, but the ones that you use, that is! It just happens that NHibernate also supports conventions, and we’ll see exactly how. Conventions in NHibernate are supported in two ways: Naming of tables and columns when not explicitly indicated in the mappings; Full domain mapping. Naming of Tables and Columns Since always NHibernate has supported the concept of a naming strategy. A naming strategy in NHibernate converts class and property names to table and column names and vice-versa, when a name is not explicitly supplied. In concrete, it must be a realization of the NHibernate.Cfg.INamingStrategy interface, of which NHibernate includes two implementations: DefaultNamingStrategy: the default implementation, where each column and table are mapped to identically named properties and classes, for example, “MyEntity” will translate to “MyEntity”; ImprovedNamingStrategy: underscores (_) are used to separate Pascal-cased fragments, for example, entity “MyEntity” will be mapped to a “my_entity” table. The naming strategy can be defined at configuration level (the Configuration instance) by calling the SetNamingStrategy method: 1: cfg.SetNamingStrategy(ImprovedNamingStrategy.Instance); Both the DefaultNamingStrategy and the ImprovedNamingStrategy classes offer singleton instances in the form of Instance static fields. DefaultNamingStrategy is the one NHibernate uses, if you don’t specify one. Domain Mapping In mapping by code, we have the choice of relying on conventions to do the mapping automatically. This means a class will inspect our classes and decide how they will relate to the database objects. The class that handles conventions is NHibernate.Mapping.ByCode.ConventionModelMapper, a specialization of the base by code mapper, NHibernate.Mapping.ByCode.ModelMapper. The ModelMapper relies on an internal SimpleModelInspector to help it decide what and how to map, but the mapper lets you override its decisions.  You apply code conventions like this: 1: //pick the types that you want to map 2: IEnumerable<Type> types = Assembly.GetExecutingAssembly().GetExportedTypes(); 3:  4: //conventions based mapper 5: ConventionModelMapper mapper = new ConventionModelMapper(); 6:  7: HbmMapping mapping = mapper.CompileMappingFor(types); 8:  9: //the one and only configuration instance 10: Configuration cfg = ...; 11: cfg.AddMapping(mapping); This is a very simple example, it lacks, at least, the id generation strategy, which you can add by adding an event handler like this: 1: mapper.BeforeMapClass += (IModelInspector modelInspector, Type type, IClassAttributesMapper classCustomizer) => 2: { 3: classCustomizer.Id(x => 4: { 5: //set the hilo generator 6: x.Generator(Generators.HighLow); 7: }); 8: }; The mapper will fire events like this whenever it needs to get information about what to do. And basically this is all it takes to automatically map your domain! It will correctly configure many-to-one and one-to-many relations, choosing bags or sets depending on your collections, will get the table and column names from the naming strategy we saw earlier and will apply the usual defaults to all properties, such as laziness and fetch mode. However, there is at least one thing missing: many-to-many relations. The conventional mapper doesn’t know how to find and configure them, which is a pity, but, alas, not difficult to overcome. To start, for my projects, I have this rule: each entity exposes a public property of type ISet<T> where T is, of course, the type of the other endpoint entity. Extensible as it is, NHibernate lets me implement this very easily: 1: mapper.IsOneToMany((MemberInfo member, Boolean isLikely) => 2: { 3: Type sourceType = member.DeclaringType; 4: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 5:  6: //check if the property is of a generic collection type 7: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 8: { 9: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 10:  11: //check if the type of the generic collection property is an entity 12: if (mapper.ModelInspector.IsEntity(destinationEntityType) == true) 13: { 14: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 15: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 16:  17: if (collectionInDestinationType != null) 18: { 19: return (false); 20: } 21: } 22: } 23:  24: return (true); 25: }); 26:  27: mapper.IsManyToMany((MemberInfo member, Boolean isLikely) => 28: { 29: //a relation is many to many if it isn't one to many 30: Boolean isOneToMany = mapper.ModelInspector.IsOneToMany(member); 31: return (!isOneToMany); 32: }); 33:  34: mapper.BeforeMapManyToMany += (IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) => 35: { 36: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 37: //set the mapping table column names from each source entity name plus the _Id sufix 38: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 39: }; 40:  41: mapper.BeforeMapSet += (IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) => 42: { 43: if (modelInspector.IsManyToMany(member.LocalMember) == true) 44: { 45: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 46:  47: Type sourceType = member.LocalMember.DeclaringType; 48: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 49: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 50:  51: //set inverse on the relation of the alphabetically first entity name 52: propertyCustomizer.Inverse(sourceType.Name == names.First()); 53: //set mapping table name from the entity names in alphabetical order 54: propertyCustomizer.Table(String.Join("_", names)); 55: } 56: }; We have to understand how the conventions mapper thinks: For each collection of entities found, it will ask the mapper if it is a one-to-many; in our case, if the collection is a generic one that has an entity as its generic parameter, and the generic parameter type has a similar collection, then it is not a one-to-many; Next, the mapper will ask if the collection that it now knows is not a one-to-many is a many-to-many; Before a set is mapped, if it corresponds to a many-to-many, we set its mapping table. Now, this is tricky: because we have no way to maintain state, we sort the names of the two endpoint entities and we combine them with a “_”; for the first alphabetical entity, we set its relation to inverse – remember, on a many-to-many relation, only one endpoint must be marked as inverse; finally, we set the column name as the name of the entity with an “_Id” suffix; Before the many-to-many relation is processed, we set the column name as the name of the other endpoint entity with the “_Id” suffix, as we did for the set. And that’s it. With these rules, NHibernate will now happily find and configure many-to-many relations, as well as all the others. You can wrap this in a new conventions mapper class, so that it is more easily reusable: 1: public class ManyToManyConventionModelMapper : ConventionModelMapper 2: { 3: public ManyToManyConventionModelMapper() 4: { 5: base.IsOneToMany((MemberInfo member, Boolean isLikely) => 6: { 7: return (this.IsOneToMany(member, isLikely)); 8: }); 9:  10: base.IsManyToMany((MemberInfo member, Boolean isLikely) => 11: { 12: return (this.IsManyToMany(member, isLikely)); 13: }); 14:  15: base.BeforeMapManyToMany += this.BeforeMapManyToMany; 16: base.BeforeMapSet += this.BeforeMapSet; 17: } 18:  19: protected virtual Boolean IsManyToMany(MemberInfo member, Boolean isLikely) 20: { 21: //a relation is many to many if it isn't one to many 22: Boolean isOneToMany = this.ModelInspector.IsOneToMany(member); 23: return (!isOneToMany); 24: } 25:  26: protected virtual Boolean IsOneToMany(MemberInfo member, Boolean isLikely) 27: { 28: Type sourceType = member.DeclaringType; 29: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 30:  31: //check if the property is of a generic collection type 32: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 33: { 34: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 35:  36: //check if the type of the generic collection property is an entity 37: if (this.ModelInspector.IsEntity(destinationEntityType) == true) 38: { 39: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 40: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 41:  42: if (collectionInDestinationType != null) 43: { 44: return (false); 45: } 46: } 47: } 48:  49: return (true); 50: } 51:  52: protected virtual new void BeforeMapManyToMany(IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) 53: { 54: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 55: //set the mapping table column names from each source entity name plus the _Id sufix 56: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 57: } 58:  59: protected virtual new void BeforeMapSet(IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) 60: { 61: if (modelInspector.IsManyToMany(member.LocalMember) == true) 62: { 63: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 64:  65: Type sourceType = member.LocalMember.DeclaringType; 66: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 67: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 68:  69: //set inverse on the relation of the alphabetically first entity name 70: propertyCustomizer.Inverse(sourceType.Name == names.First()); 71: //set mapping table name from the entity names in alphabetical order 72: propertyCustomizer.Table(String.Join("_", names)); 73: } 74: } 75: } Conclusion Of course, there is much more to mapping than this, I suggest you look at all the events and functions offered by the ModelMapper to see where you can hook for making it behave the way you want. If you need any help, just let me know!

    Read the article

  • EF4 CPT5 Code First Remove Cascading Deletes

    - by Dane Morgridge
    I have been using EF4 CTP5 with code first and I really like the new code.  One issue I was having however, was cascading deletes is on by default.  This may come as a surprise as using Entity Framework with anything but code first, this is not the case.  I ran into an exception with some one-to-many relationships I had: Introducing FOREIGN KEY constraint 'ProjectAuthorization_UserProfile' on table 'ProjectAuthorizations' may cause cycles or multiple cascade paths. Specify ON DELETE NO ACTION or ON UPDATE NO ACTION, or modify other FOREIGN KEY constraints. Could not create constraint. See previous errors. To get around this, you can use the fluent API and put some code in the OnModelCreating: 1: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) 2: { 3: modelBuilder.Entity<UserProfile>() 4: .HasMany(u => u.ProjectAuthorizations) 5: .WithRequired(a => a.UserProfile) 6: .WillCascadeOnDelete(false); 7: } This will work to remove the cascading delete, but I have to use the fluent API and it has to be done for every one-to-many relationship that causes the problem. I am personally not a fan of cascading deletes in general (for several reasons) and I’m not a huge fan of fluent APIs.  However, there is a way to do this without using the fluent API.  You can in the OnModelCreating, remove the convention that creates the cascading deletes altogether. 1: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) 2: { 3: modelBuilder.Conventions.Remove<OneToManyCascadeDeleteConvention>(); 4: } Thanks to Jeff Derstadt from Microsoft for the info on removing the convention all together.  There is a way to build a custom attribute to remove it on a case by case basis and I’ll have a post on how to do this in the near future.

    Read the article

  • Access Officejet Pro L7590 memory card reader

    - by luri
    I can't manage to access my printer's memory card reader in Nautilus. I can just access it with hp-unload. Here's a sample output from this command: lubuntu@L-X6:~$ hp-unload hp:/net/Officejet_Pro_L7500?zc=HP065193 HP Linux Imaging and Printing System (ver. 3.10.6) Photo Card Access Utility ver. 3.3 Copyright (c) 2001-9 Hewlett-Packard Development Company, LP This software comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to distribute it under certain conditions. See COPYING file for more details. Using device: hp:/net/Officejet_Pro_L7500?zc=HP065193 |error: Photo card write failed (Card may be write protected) / Photocard on device hp:/net/Officejet_Pro_L7500?zc=HP065193 mounted DO NOT REMOVE PHOTO CARD UNTIL YOU EXIT THIS PROGRAM warning: Photo card is write protected. Type 'help' for a list of commands. Type 'exit' to quit. pcard: / > ls \ Name Size Type dcim/ directory eos_digi.tal 0 B unknown/unknown 1 files, 0 B pcard: / > cd dcim |pcard: /dcim > ls | Name Size Type . directory .. directory 100eos5d/ directory 267canon/ directory 270canon/ directory 271canon/ directory 272canon/ directory 0 files, 0 B pcard: /dcim > cd 272canon -pcard: /dcim/272canon > ls \ Name Size Type . directory .. directory _mg_7201.jpg 3.1 MB image/jpeg ...........(some more files)................. _mg_7281.jpg 2.5 MB image/jpeg _mg_7282.jpg 2.5 MB image/jpeg 82 files, 241.6 MB (253377883) How can I acess it from nautilus or mount it as a filesystem? Note that this is similar to this other question: Can't get HP Officejet 6500 card reader to work. but actually there seemed to be no supported device here, while in my case I manage to access the memory card from hp-unload.

    Read the article

  • Is it better to load up a class with methods or extend member functionality in a local subclass?

    - by Calvin Fisher
    Which is better? Class #1: public class SearchClass { public SearchClass (string ProgramName) { /* Searches LocalFile objects, handles exceptions, and puts results into m_Results. */ } DateTime TimeExecuted; bool OperationSuccessful; protected List<LocalFile> m_Results; public ReadOnlyCollection<LocalFile> Results { get { return new ReadOnlyCollection<LocalFile>(m_Results); } } #region Results Filters public DateTime OldestFileModified { get { /* Does what it says. */ } } public ReadOnlyCollection<LocalFile> ResultsWithoutProcessFiles() { return new ReadOnlyCollection<LocalFile> ((from x in m_Results where x.FileTypeID != FileTypeIDs.ProcessFile select x).ToList()); } #endregion } Or class #2: public class SearchClass { public SearchClass (string ProgramName) { /* Searches LocalFile objects, handles exceptions, and puts results into m_Results. */ } DateTime TimeExecuted; bool OperationSuccessful; protected List<LocalFile> m_Results; public ReadOnlyCollection<LocalFile> Results { get { return new ReadOnlyCollection<LocalFile>(m_Results); } } public class SearchResults : ReadOnlyCollection<LocalFile> { public SearchResults(IList<LocalFile> iList) : base(iList) { } #region Results Filters public DateTime OldestFileModified { get { /* Does what it says. */ } } public ReadOnlyCollection<LocalFile> ResultsWithoutProcessFiles() { return new ReadOnlyCollection<LocalFile> ((from x in this where x.FileTypeID != FileTypeIDs.ProcessFile select x).ToList()); } #endregion } } ...with the implication that OperationSuccessful is accompanied by a number of more interesting properties on how the operation went, and OldestFileModified and ResultsWithoutProcessFiles() also have several more siblings in the Results Filters section.

    Read the article

  • Alternatives to Component Based Architecture?

    - by Ben Lakey
    Usually when I develop a game I will use an architecture like what you see below. What other architectures are popular for simple game development? I'm concerned about having a narrow view of what exists out there for architectures beyond this. Is this an example of component-based architecture? Or is this something else? What would that look like? What alternatives exist? public abstract class ComponentBase { protected final Collection<ComponentBase> subComponents = new LinkedList<ComponentBase>(); private boolean enableInput; private boolean isVisible; protected ComponentBase(boolean enableInput, boolean isVisible) { this.enableInput = enableInput; this.isVisible = isVisible; } public void render(Graphics2D graphics) { for(ComponentBase gameComponent : this.subComponents) { if(gameComponent.isVisible()) { gameComponent.render(graphics); } } } public void input(InputData input) { for(ComponentBase gameComponent : this.subComponents) { if(gameComponent.inputIsEnabled()) { gameComponent.input(input); } } } ... getters/setters ... public void update(long elapsedTimeMillis) { for(ComponentBase gameComponent : this.subComponents) { gameComponent.update(elapsedTimeMillis); } } }

    Read the article

  • Vertex fog producing black artifacts

    - by Nick
    I originally posted this question on the XNA forums but got no replies, so maybe someone here can help: I am rendering a textured model using the XNA BasicEffect. When I enable fog, the model outline is still visible as many small black dots when it should be "in the fog". Why is this happening? Here's what it looks like for me -- http://tinypic.com/r/fnh440/6 Here is a minimal example showing my problem: (the ship model that this example uses is from the chase camera sample on this site -- http://xbox.create.msdn.com/en-US/education/catalog/sample/chasecamera -- in case anyone wants to try it out ;)) public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Model model; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here model = Content.Load<Model>("ship"); foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect be in mesh.Effects) { be.EnableDefaultLighting(); be.FogEnabled = true; be.FogColor = Color.CornflowerBlue.ToVector3(); be.FogStart = 10; be.FogEnd = 30; } } } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here model.Draw(Matrix.Identity * Matrix.CreateScale(0.01f) * Matrix.CreateRotationY(3 * MathHelper.PiOver4), Matrix.CreateLookAt(new Vector3(0, 0, 30), Vector3.Zero, Vector3.Up), Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, 16f/9f, 1, 100)); base.Draw(gameTime); } }

    Read the article

  • Sendmail encrypted

    - by user1948828
    I manage a website running on Apache. It has public and private areas. When people apply for an account to access the protected portions of the site, they do a TLS/SSL protected POST containing their information which is saved to a (hopefully) nonpublic directory on the server. Then I have a python script which takes URL Encoded POSTS with this user information, sends back a plaintext confirmation to the applicant, encrypts their information with a freeware java command-line utility to protect it (specifically this one: http://spi.dod.mil/ewizard.htm), base64 encodes them, puts them in a file as a mime attachment and uses sendmail to forward the file information to my (and several coworkers' scattered around the country) email account(s) on an Exchange server with Outlook clients. This has worked well for years, but is awkward because it involves manually decrypting the information on a windows box once it is received, using the above mentioned encryption utility. This significantly limits how many can be processed. I would like to be able to encrypt my information in a format that Outlook/Exchange can inherently understand and display so that these emails can be viewed simply by clicking on them. I do have company provided PKI public certs for all the people I need to send to, and am able to send/receive encrypted emails on Outlook manually, but would like to know how I can send to Outlook from apache/linux/python from the command line using the same PKI certs. Dont need to receive them, just send. Is there a utility that can do this? I had thought pgp might but I havent been able to figure it out.

    Read the article

  • Reloading Resources on Resume

    - by Siddharth
    I'm having a problem with my game. If I press the "Home button" the game is paused... everythings fine, but if I then go back to the game all the resources are reloaded before I can continue the game. And it takes quite a bit. Is this normal, or is there a way to avoid the reloading? I have write following code in onResume and onPause method. It loads same texture again and again on resume of game. @Override protected void onPause() { super.onPause(); if (Utility.flagSound && mScene != null) { if (mScene.getUserData().equals(Constants.GAME_SCENE)) Utility.isPlayLevelMusic = false; else Utility.isPlayLevelMusic = true; audioManager.gameBgMusic.pause(); audioManager.levelBgMusic.pause(); } if (this.mEngine != null && this.mEngine.isRunning()) { this.mEngine.stop(); } } @Override protected void onResume() { super.onResume(); if (audioManager != null && Utility.flagSound && dataManager != null) { if (Utility.flagSound) { if (Utility.isPlayLevelMusic) audioManager.levelBgMusic.play(); else audioManager.gameBgMusic.play(); } } if (this.mEngine != null && !this.mEngine.isRunning()) { this.mEngine.start(); } } I would be glad if anybody could help...

    Read the article

  • How stoper one annimation model on XNA?

    - by Mehdi Bugnard
    I met a Difficulty for one stoper annimation. Everything works great starter for the animation. But I do not see how stoper and can continue the annimation paused. The "animationPlayer.StartClip (clip)" is used to choke the annimation but impossible to find a way to stoper Thans's a lot Here is my code to use. protected override void LoadContent() { //Model - Player model_player = Content.Load<Model>("Models\\Player\\models"); // Look up our custom skinning information. SkinningData skinningData = model_player.Tag as SkinningData; if (skinningData == null) throw new InvalidOperationException ("This model does not contain a SkinningData tag."); // Create an animation player, and start decoding an animation clip. animationPlayer = new AnimationPlayer(skinningData); AnimationClip clip = skinningData.AnimationClips["ArmLowAction_006"]; animationPlayer.StartClip(clip); } protected overide update(GameTime gameTime) { KeyboardState key = Keyboard.GetState(); // If player don't move -> stop anim if (!key.IsKeyDown(Keys.W) && !keyStateOld.IsKeyUp(Keys.S) && !keyStateOld.IsKeyUp(Keys.A) && !keyStateOld.IsKeyUp(Keys.D)) { //animation stop ? not exist ? animationPlayer.Stop(); isPlayerStop = true; } else { if(isPlayerStop == true) { isPlayerStop = false; animationPlayer.StartClip(Clip); } }

    Read the article

  • For a Javascript library, what is the best or standard way to support extensibility

    - by Michael Best
    Specifically, I want to support "plugins" that modify the behavior of parts of the library. I couldn't find much information on the web about this subject. But here are my ideas for how a library could be extensible. The library exports an object with both public and "protected" functions. A plugin can replace any of those functions, thus modifying the library's behavior. Advantages of this method are that it's simple and that the plugin's functions can have full access to the library's "protected" functions. Disadvantages are that the library may be harder to maintain with a larger set of exposed functions and it could be hard to debug if multiple plugins are involved (how to know which plugin modified which function?). The library provides an "add plugin" function that accepts an object with a specific interface. Internally, the library will use the plugin instead of it's own code if appropriate. With this method, the internals of the library can be rearranged more freely as long as it still supports the same plugin interface. This could also support having different plugin interfaces to modify different parts of the library. A disadvantage of this method is that the plugins may have to re-implement code that is already part of the library since the library's internal functions are not exported. The library provides a "set implementation" function that accepts an object inherited from a specific base object. The library's public API calls functions in the implementation object for any functionality that can be modified and the base implementation object includes the core functionality, with both external (to the API) and internal functions. A plugin creates a new implementation object, which inherits from the base object and replaces any functions it wants to modify. This combines advantages and disadvantages of both the other methods.

    Read the article

  • Generic Repositories with DI & Data Intensive Controllers

    - by James
    Usually, I consider a large number of parameters as an alarm bell that there may be a design problem somewhere. I am using a Generic Repository for an ASP.NET application and have a Controller with a growing number of parameters. public class GenericRepository<T> : IRepository<T> where T : class { protected DbContext Context { get; set; } protected DbSet<T> DbSet { get; set; } public GenericRepository(DbContext context) { Context = context; DbSet = context.Set<T>(); } ...//methods excluded to keep the question readable } I am using a DI container to pass in the DbContext to the generic repository. So far, this has met my needs and there are no other concrete implmentations of IRepository<T>. However, I had to create a dashboard which uses data from many Entities. There was also a form containing a couple of dropdown lists. Now using the generic repository this makes the parameter requirments grow quickly. The Controller will end up being something like public HomeController(IRepository<EntityOne> entityOneRepository, IRepository<EntityTwo> entityTwoRepository, IRepository<EntityThree> entityThreeRepository, IRepository<EntityFour> entityFourRepository, ILogError logError, ICurrentUser currentUser) { } It has about 6 IRepositories plus a few others to include the required data and the dropdown list options. In my mind this is too many parameters. From a performance point of view, there is only 1 DBContext per request and the DI container will serve the same DbContext to all of the Repositories. From a code standards/readability point of view it's ugly. Is there a better way to handle this situation? Its a real world project with real world time constraints so I will not dwell on it too long, but from a learning perspective it would be good to see how such situations are handled by others.

    Read the article

  • Pause and Resume and get the value of a countdown timer by savedInstanceState [closed]

    - by Catherine grace Balauro
    I have developed a countdown timer and I am not sure how to pause and resume the timer as the TextView for the timer is being clicked. Click to start then click again to pause and to resume, click again the timer's text view. This is my code: Timer = (TextView)this.findViewById(R.id.time); //TIMER Timer.setOnClickListener(TimerClickListener); counter = new MyCount(600000, 1000); }//end of create private OnClickListener TimerClickListener = new OnClickListener() { public void onClick(View v) { updateTimeTask(); } private void updateTimeTask() { if (decision==0){ counter.start(); decision=1;} else if(decision==2){ counter.onResume1(); decision=1; } else{ counter.onPause1(); decision=2; }//end if }; }; class MyCount extends CountDownTimer { public MyCount(long millisInFuture, long countDownInterval) { super(millisInFuture, countDownInterval); }//MyCount public void onResume1(){ onResume(); } public void onPause1() { onPause();} public void onFinish() { Timer.setText("00:00"); p1++; if (p1<=4){ TextView PScore = (TextView) findViewById(R.id.pscore); PScore.setText(p1 + ""); }//end if }//finish public void onTick(long millisUntilFinished) { Integer milisec = new Integer(new Double(millisUntilFinished).intValue()); Integer cd_secs = milisec / 1000; Integer minutes = (cd_secs % 3600) / 60; Integer seconds = (cd_secs % 3600) % 60; Timer.setText(String.format("%02d", minutes) + ":" + String.format("%02d", seconds)); //long timeLeft = millisUntilFinished / 1000; }//on tick }//class MyCount protected void onResume() { super.onResume(); //handler.removeCallbacks(updateTimeTask); //handler.postDelayed(updateTimeTask, 1000); }//onResume @Override protected void onPause() { super.onPause(); //do stuff }//onPause I am only beginner in android programming and I don't know how to get the value of the countdown timer using savedInstanceState. How do I do this?

    Read the article

  • Why can't I compare two Texture2D's?

    - by Fiona
    I am trying to use an accessor, as it seems to me that that is the only way to accomplish what I want to do. Here is my code: Game1.cs public class GroundTexture { private Texture2D dirt; public Texture2D Dirt { get { return dirt; } set { dirt = value; } } } public class Main : Game { public static Texture2D texture = tile.Texture; GroundTexture groundTexture = new GroundTexture(); public static Texture2D dirt; protected override void LoadContent() { Tile tile = (Tile)currentLevel.GetTile(20, 20); dirt = Content.Load<Texture2D>("Dirt"); groundTexture.Dirt = dirt; Texture2D texture = tile.Texture; } protected override void Update(GameTime gameTime) { if (texture == groundTexture.Dirt) { player.TileCollision(groundBounds); } base.Update(gameTime); } } I removed irrelevant information from the LoadContent and Update functions. On the following line: if (texture == groundTexture.Dirt) I am getting the error Operator '==' cannot be applied to operands of type 'Microsoft.Xna.Framework.Graphics.Texture2D' and 'Game1.GroundTexture' Am I using the accessor correctly? And why do I get this error? "Dirt" is Texture2D, so they should be comparable. This using a few functions from a program called Realm Factory, which is a tile editor. The numbers "20, 20" are just a sample of the level I made below: tile.Texture returns the sprite, which here is the content item Dirt.png Thank you very much! (I posted this on the main Stackoverflow site, but after several days didn't get a response. Since it has to do mainly with Texture2D, I figured I'd ask here.)

    Read the article

  • What is the disadvantage of using abstract class as a database connectivity in zend framework 2 instead of service locator

    - by arslaan ejaz
    If I use database by creating adapter with drivers, initialize it in some abstract class and extend that abstract class to required model. Then use simple query statement. Like this: namespace My-Model\Model\DB; abstract class MysqliDB { protected $adapter; public function __construct(){ $this->adapter = new \Zend\Db\Adapter\Adapter(array( 'driver' => 'Mysqli', 'database' => 'my-database', 'username' => 'root', 'password' => '' )); } } And use abstract class of database like this in my models: class States extends DB\MysqliDB{ public function __construct(){ parent::__construct(); } protected $states = array(); public function select_all_states(){ $data = $this->adapter->query('select * from states'); foreach ($data->execute() as $row){ $this->states[] = $row; } return $this->states; } } I am new to zend framework, before i have experience of working in YII and Codeigniter. I like the object oriented in zend so i want to use it like this. And don't want to use it through service locater something like this: public function getServiceConfig(){ return array( 'factories' => array( 'addserver-mysqli' => new Model\MyAdapterFactory('addserver-mysqli'), 'loginDB' => function ($sm){ $adapter = $sm->get('addserver-mysqli'); return new LoginDB($adapter); } ) ); } In module. Am i Ok with this approach?

    Read the article

  • What You Said: How You Set Up a Novice-Proof Computer

    - by Jason Fitzpatrick
    Earlier this week we asked you to share your tips and tricks for setting up a novice-proof computer; read on to see how your fellow readers ensure friends and relatives have a well protected computer. Image available as wallpaper here. If you only listen to a single bit of advice from your fellow readers, let that advice be the importance of separate and non-administrative user accounts. Grant writes: I have two boys, now 8 and 10, who have been using the computer since age 2. I set them up on Linux (Debian first, now Ubuntu) with a limited rights account. They can only make a mess of their own area. Worst case, empty their home directory and let them start over. I have to install software for them, but they can’t break the machine without causing physical damage (hammers, water, etc.) My wife was on Windows, and I was on Debian, and before they had their own, they knew they could only use my computer, and only logged in as themselves. All accounts were password protected, so that was easy to enforce. What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8 HTG Explains: Why You Shouldn’t Use a Task Killer On Android

    Read the article

  • Interfaces on an abstract class

    - by insta
    My coworker and I have different opinions on the relationship between base classes and interfaces. I'm of the belief that a class should not implement an interface unless that class can be used when an implementation of the interface is required. In other words, I like to see code like this: interface IFooWorker { void Work(); } abstract class BaseWorker { ... base class behaviors ... public abstract void Work() { } protected string CleanData(string data) { ... } } class DbWorker : BaseWorker, IFooWorker { public void Work() { Repository.AddCleanData(base.CleanData(UI.GetDirtyData())); } } The DbWorker is what gets the IFooWorker interface, because it is an instantiatable implementation of the interface. It completely fulfills the contract. My coworker prefers the nearly identical: interface IFooWorker { void Work(); } abstract class BaseWorker : IFooWorker { ... base class behaviors ... public abstract void Work() { } protected string CleanData(string data) { ... } } class DbWorker : BaseWorker { public void Work() { Repository.AddCleanData(base.CleanData(UI.GetDirtyData())); } } Where the base class gets the interface, and by virtue of this all inheritors of the base class are of that interface as well. This bugs me but I can't come up with concrete reasons why, outside of "the base class cannot stand on its own as an implementation of the interface". What are the pros & cons of his method vs. mine, and why should one be used over another?

    Read the article

  • Securing a Cloud-Based Data Center

    - by Orgad Kimchi
    No doubt, with all the media reports about stolen databases and private information, a major concern when committing to a public or private cloud must be preventing unauthorized access of data and applications. In this article, we discuss the security features of Oracle Solaris 11 that provide a bullet-proof cloud environment. As an example, we show how the Oracle Solaris Remote Lab implementation utilizes these features to provide a high level of security for its users. Note: This is the second article in a series on cloud building with Oracle Solaris 11. See Part 1 here.  When we build a cloud, the following aspects related to the security of the data and applications in the cloud become a concern: • Sensitive data must be protected from unauthorized access while residing on storage devices, during transmission between servers and clients, and when it is used by applications. • When a project is completed, all copies of sensitive data must be securely deleted and the original data must be kept permanently secure. • Communications between users and the cloud must be protected to prevent exposure of sensitive information from “man in a middle attacks.” • Limiting the operating system’s exposure protects against malicious attacks and penetration by unauthorized users or automated “bots” and “rootkits” designed to gain privileged access. • Strong authentication and authorization procedures further protect the operating system from tampering. • Denial of Service attacks, whether they are started intentionally by hackers or accidentally by other cloud users, must be quickly detected and deflected, and the service must be restored. In addition to the security features in the operating system, deep auditing provides a trail of actions that can identify violations,issues, and attempts to penetrate the security of the operating system. Combined, these threats and risks reinforce the need for enterprise-grade security solutions that are specifically designed to protect cloud environments. With Oracle Solaris 11, the security of any cloud is ensured. This article explains how.

    Read the article

< Previous Page | 161 162 163 164 165 166 167 168 169 170 171 172  | Next Page >