Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 167/657 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • Whole continent simulation [on hold]

    - by user2309021
    Let's suppose I am planning to create a simulation of an entire continent at some point in the past (let's say, around 0 A.D). Is it feasible to spawn a hundred million actors that interact with each other and their environments? Having them reproduce, extract resources, etc? The fact is that I actually want to create a simulation that allows me to zoom in from a view of the entire continent up to a single village, and interact with it. (Think as if you could keep zooming in the campaign map of any Total War game and the transition to the battle map was seamless, not a change of the "game mode"). By the way, I have never made a game in my entire life (I have programmed normal desktop applications, though), so I am really having trouble wrapping my head around how to implement such a thing. Even while thinking about how to implement a simple population simulator, without a graphical interface, I think that the O(n) complexity of traversing an array and telling all people to get one year older each time the program ticks is kind of stupid. Any kind help would be greatly appreciated :) EDIT: After being put on hold, I shall specify a question. How would you implement a simulation of all basic human dynamics (reproduction, resource consumption) in an entire continent (with millions of people)?

    Read the article

  • Collision detection between a sprite and rectangle in canvas

    - by Andy
    I'm building a Javascript + canvas game which is essentially a platformer. I have the player all set up and he's running, jumping and falling, but I'm having trouble with the collision detection between the player and blocks (the blocks will essentially be the platforms that the player moves on). The blocks are stored in an array like this: var blockList = [[50, 400, 100, 100]]; And drawn to the canvas using this: this.draw = function() { c.fillRect(blockList[0][0], blockList[0][1], 100, 100); } I'm checking for collisions using something along these lines in the player object: this.update = function() { // Check for collitions with blocks for(var i = 0; i < blockList.length; i++) { if((player.xpos + 34) > blockList[i][0] && player.ypos > blockList[i][1]) { player.xpos = blockList[i][0] - 28; return false; } } // Other code to move the player based on keyboard input etc } The idea is if the player will collide with a block in the next game update (the game uses a main loop running at 60Htz), the function will return false and exit, thus meaning the player won't move. Unfortunately, that only works when the player hits the left side of the block, and I can't work out how to make it so the player stops if it hits any side of the block. I have the properties player.xpos and player.ypos to help here.

    Read the article

  • Costs/profit of/when starting an indie company

    - by Jack
    In short, I want to start a game company. I do not have much coding experience (just basic understanding and ability to write basic programs), any graphics design experience, any audio mixing experience, or whatever else technical. However, I do have a lot of ideas, great analytical skills and a very logical approach to life. I do not have any friends who are even remotely technical (or creative in regards to games for that matter). So now that we've cleared that up, my question is this: how much, minimally, would it cost me to start such a company? I know that a game could be developed in under half a year, which means it would have to operate for half a year prior, and that's assuming that the people working on the first project do their jobs good, don't leave game breaking bugs, a bunch of minor bugs, etc.. So how much would it cost me, and what would be the likely profit in half a year? I'm looking at minimal costs here, as to do it, I would have to sell my current apartment and buy a new, smaller one, pay taxes, and likely move to US/CA/UK to be closer to technologically advanced people (and be able to speak the language of course). EDIT: I'm looking at a small project for starters, not a huge AAA title.

    Read the article

  • Sorting for 2D Drawing

    - by Nexian
    okie, looked through quite a few similar questions but still feel the need to ask mine specifically (I know, crazy). Anyhoo: I am drawing a game in 2D (isometric) My objects have their own arrays. (i.e. Tiles[], Objects[], Particles[], etc) I want to have a draw[] array to hold anything that will be drawn. Because it is 2D, I assume I must prioritise depth over any other sorting or things will look weird. My game is turn based so Tiles and Objects won't be changing position every frame. However, Particles probably will. So I am thinking I can populate the draw[] array (probably a vector?) with what is on-screen and have it add/remove object, tile & particle references when I pan the screen or when a tile or object is specifically moved. No idea how often I'm going to have to update for particles right now. I want to do this because my game may have many thousands of objects and I want to iterate through as few as possible when drawing. I plan to give each element a depth value to sort by. So, my questions: Does the above method sound like a good way to deal with the actual drawing? What is the most efficient way to sort a vector? Most of the time it wont require efficiency. But for panning the screen it will. And I imagine if I have many particles on screen moving across multiple tiles, it may happen quite often. For reference, my screen will be drawing about 2,800 objects at any one time. When panning, it will be adding/removing about ~200 elements every second, and each new element will need adding in the correct location based on depth.

    Read the article

  • How can I create an orthographic display that handles different screen dimensions?

    - by Piku
    I'm trying to create an iPad/iPhone game using GLES2.0 that contains a 3D scene with a heads-up-display/GUI overlaid on the top. However, this problem would also apply if I were to port my game to a computer and run the game in a resizable window, or allow the user to change screen resolutions... When trying to make the 2D GUI/HUD work I've made the assumption that all I'm really doing is drawing a load of 2D textured 'quads' on the screen and am trying to treat the orthographic projection as an old-style 2D display with 0,0 in the upper left and screenWidth,ScreenHeight in the lower right. This causes me all sorts of confusion when I rotate my ipad into Landscape mode since I can't work out what to put into my projection and modelview matrices to turn everything around the right way. It also gets messy if I want to support the iPad's large screen, an iPhone or a Retina display since I have to then draw three sets of textures for everything and work out which ones to use. Should I be trying to map the 2D OpenGL co-ords 1:1 with the screen? While typing out this question it occurs to me that I could keep my origin in the centre, still running -1/+1 along the axes. This would let me scale my 2D content appropriately on the different screen sizes, but wouldn't I end up with the textures being scaled and possibly losing quality? I'm using OpenGLES 2.0 and have a matrix library that has equivalents to the GLES1.1 glOrthof() and glFrustrum() calls.

    Read the article

  • How to prevent one account from unlocking products on other devices using Apple StoreKit?

    - by reapz
    We are currently wrapping up a free-to-play game on iOS in which you can purchase non-consumable products. We have been discussing this case internally and are not quite sure what the best practices are as this is our first title. For example, if a user downloads our app, and makes some purchases. These can be restored should the app ever be deleted and reinstalled as long as the user uses the same Apple ID. What is to stop him from making a fake Apple account, purchasing items and then posting this account on the web allowing everyone to get the items for free? That is obviously a worst case situation. But a smaller case would be a user unlocking items for his friends. We do not want this to be an always online game but have considered doing a check on startup if there is internet available. If the currently logged in account doesn't own the products do we lock them again? Probably not because people may simply sign into the device with different Game Center logins at which point we don't want to constantly lock and unlock items. At some point we will be adding multiplayer at which point we can definately do a check with the currently logged in account. This is because A, they will be online when attempting multiplayer, and B, they will want to use their own account for multiplayer. Unfortunately we aren't quite ready for this yet. Has anyone tackled this issue. Are we overthinking here?

    Read the article

  • Any examples of fair mmo games with quick completion

    - by Keith Player
    I'm looking for some example games for inspiration that allow from 10 to a large number of players at a time and can be completed in 10 to 30 minutes. I'm looking for something that would have extremely low bandwidth and not be dependent on chance or luck (i.e one player can't gain an unfair advantage because the computer put them in a better position). Realized on the way home that more clarifications might have been helpful. I'm looking to develop a pay-to-play competition that would allow a large number of players to compete in a relatively short period of time. One way would be to have an mmo that can be completed in 30 minutes, another way would be if you could have 10 person games that finish in under 5 minutes and then have the winners compete against each other until a winner is decided. I'm interested in any genre that would make for a fun/interesting game that doesn't depend on luck, so all players should have the same choice/availability of activities/resources and follow the same rules. Some possible games that could possibly be modified into what I want, would be bztanks (too easy to create a bot), diplomacy (takes too long), risk, some chess like game. I was just wondering if there are other game types to the ones I have been considering.

    Read the article

  • How can I make smoother upwards/downwards controls in pygame?

    - by Zolani13
    This is a loop I use to interpret key events in a python game. # Event Loop for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_a: my_speed = -10; if event.key == pygame.K_d: my_speed = 10; if event.type == pygame.KEYUP: if event.key == pygame.K_a: my_speed = 0; if event.key == pygame.K_d: my_speed = 0; The 'A' key represents up, while the 'D' key represents down. I use this loop within a larger drawing loop, that moves the sprite using this: Paddle1.rect.y += my_speed; I'm just making a simple pong game (as my first real code/non-gamemaker game) but there's a problem between moving upwards <= downwards. Essentially, if I hold a button upwards (or downwards), and then press downwards (or upwards), now holding both buttons, the direction will change, which is a good thing. But if I then release the upward button, then the sprite will stop. It won't continue in the direction of my second input. This kind of key pressing is actually common with WASD users, when changing directions quickly. Few people remember to let go of the first button before pressing the second. But my program doesn't accommodate the habit. I think I understand the reason, which is that when I let go of my first key, the KEYUP event still triggers, setting the speed to 0. I need to make sure that if a key is released, it only sets the speed to 0 if another key isn't being pressed. But the interpreter will only go through one event at a time, I think, so I can't check if a key has been pressed if it's only interpreting the commands for a released key. This is my dilemma. I want set the key controls so that a player doesn't have to press one button at a time to move upwards <= downwards, making it smoother. How can I do that?

    Read the article

  • List<T>.AddRange is causing a brief Update/Draw delay

    - by Justin Skiles
    I have a list of entities which implement an ICollidable interface. This interface is used to resolve collisions between entities. My entities are thus: Players Enemies Projectiles Items Tiles On each game update (about 60 t/s), I am clearing the list and adding the current entities based on the game state. I am accomplishing this via: collidableEntities.Clear(); collidableEntities.AddRange(players); collidableEntities.AddRange(enemies); collidableEntities.AddRange(projectiles); collidableEntities.AddRange(items); collidableEntities.AddRange(camera.VisibleTiles); Everything works fine until I add the visible tiles to the list. The first ~1-2 seconds of running the game loop causes a visible hiccup that delays drawing (so I can see a jitter in the rendering). I can literally remove/add the line that adds the tiles and see the jitter occur and not occur, so I have narrowed it down to that line. My question is, why? The list of VisibleTiles is about 450-500 tiles, so it's really not that much data. Each tile contains a Texture2D (image) and a Vector2 (position) to determine what is rendered and where. I'm going to keep looking, but from the top of my head, I can't understand why only the first 1-2 seconds hiccups but is then smooth from there on out. Any advice is appreciated.

    Read the article

  • Entity communication: Message queue vs Publish/Subscribe vs Signal/Slots

    - by deft_code
    How do game engine entities communicate? Two use cases: How would entity_A send a take-damage message to entity_B? How would entity_A query entity_B's HP? Here's what I've encountered so far: Message queue entity_A creates a take-damage message and posts it to entity_B's message queue. entity_A creates a query-hp message and posts it to entity_B. entity_B in return creates an response-hp message and posts it to entity_A. Publish/Subscribe entity_B subscribes to take-damage messages (possibly with some preemptive filtering so only relevant message are delivered). entity_A produces take-damage message that references entity_B. entity_A subscribes to update-hp messages (possibly filtered). Every frame entity_B broadcasts update-hp messages. Signal/Slots ??? entity_A connects an update-hp slot to entity_B's update-hp signal. Something better? Do I have a correct understanding of how these communication schemes would tie into a game engine's entity system? How do entities in commercial game engines communicate?

    Read the article

  • Generating random tunnels

    - by IVlad
    What methods could we use to generate a random tunnel, similar to the one in this classic helicopter game? Other than that it should be smooth and allow you to navigate through it, while looking as natural as possible (not too symmetric but not overly distorted either), it should also: Most importantly - be infinite and allow me to control its thickness in time - make it narrower or wider as I see fit, when I see fit; Ideally, it should be possible to efficiently generate it with smooth curves, not rectangles as in the above game; I should be able to know in advance what its bounds are, so I can detect collisions and generate powerups inside the tunnel; Any other properties that let you have more control over it or offer optimization possibilities are welcome. Note: I'm not asking for which is best or what that game uses, which could spark extended discussion and would be subjective, I'm just asking for some methods that others know about or have used before or even think they might work. That is all, I can take it from there. Also asked on stackoverflow, where someone suggested I should ask here too. I think it fits in both places, since it's as much an algorithm question as it is a gamedev question, IMO.

    Read the article

  • Crash when trying to detect touch

    - by iQue
    I've got a character in a 2D game using surfaceView that I want to be able to move using a button (eventually a joystick), but my game crashes as soon as I try to move my sprite. This is my onTouch-method for my steering button: public void handleActionDown(int eventX, int eventY) { if (eventX >= (x - bitmap.getWidth() / 2) && (eventX <= (x + bitmap.getWidth()/2))) { if (eventY >= (y - bitmap.getHeight() / 2) && (y <= (y + bitmap.getHeight() / 2))) { setTouched(true); } else { setTouched(false); } } else { setTouched(false); } And if I try to put this in my update-method: public void update() { x += (speed.getXv() * speed.getxDirection()); y += (speed.getYv() * speed.getyDirection()); } The sprite moves on its own just fine, but as soon as I add: public void update() { if(steering.isTouched()){ x += (speed.getXv() * speed.getxDirection()); y += (speed.getYv() * speed.getyDirection()); } the game crashes. Does anyone know why this is or how to fix it? I cannot figure it out. I'm using MotionEvent.ACTION_DOWN to check if the user if pressing the screen.

    Read the article

  • What are the advantages to use vector-based fonts over bitmap fonts in (2d) games?

    - by jmp97
    I know that many games are using bitmap fonts. Which are the advantages for vector-based font rendering / manipulation when compared to bitmap fonts and in which scenarios would they matter the most? Prefer a focus on 2d games when answering this question. If relevant, please include examples for games using either approach. Some factors you might consider: amount of text used in the game scaling of text overlaying glyphs and anti-aliasing general rendering quality font colors and styling user interface requirements localisation / unicode text wrapping and formatting cross-platform deployment 2d vs 3d Background: I am developing a simple falling blocks game in 2d, targeted for pc. I would like to add text labels for level, score, and menu buttons. I am using SFML which uses FreeType internally, so vector-based features are easily available for my project. In my view, font sizes in simple games often don't vary, and bitmap fonts should be easier for cross-platform concerns (font-formats and font rendering quality). But I am unsure if I am missing some important points here, especially since I want to polish the looks of the final game.

    Read the article

  • Cannot create a neutral unit with a trigger

    - by Xitcod13
    I've been playing around with the starcraft UMS (Use map settings) for a while and usually i figure things out pretty quickly when im stuck. Alas not this time. I'm trying to place a neutral unit (player 12) using a trigger. It refuses to work. I'm using Scmdraft 2.0 as my editor (but i cant get it to work in other editors either) (all neutral units placed before the game starts are visible and all other triggers work fine. Also i created a text msg and it does displays it in-game so the trigger triggers ) For testing I created a trigger that looks like this: Player: neutral (i tried neutral players player 1 and all players as well) Condition: -always Action: -Create *1 Terran Medic* at '*location 022*' for *Neutral* (also tried neutral players) When I start the game nothing happens. Here is what I tried: I tried placing a start location for neutral player (player 12) I tried changing the owner under map properties of player 12 to neutral and computer from unused which was the default. Although it seems like it should be a common enough problem, I don't see it in any FAQ and I cant find anything about it when I Google it. Thanks in advance.

    Read the article

  • Resume Button error

    - by user3178359
    i have two class. if i press button pause it can show button resume, retry,menu and the game time is paused. but when i press the resume the game time still paused. help me plase how to continue the game time ?? code for button pause : using UnityEngine; using System.Collections; public class pause : MonoBehaviour { public GUITexture showMenu; public GUITexture btnResume; public bool gamePaused = false; void OnMouseDown() { gamePaused = true; Time.timeScale = 0; showMenu.pixelInset = new Rect(220, 200, showMenu.pixelInset.width, showMenu.pixelInset.height); btnResume.pixelInset = new Rect(300, 300, btnResume.pixelInset.width, btnResume.pixelInset.height); code for button resume : using UnityEngine; using System.Collections; public class btResume : pause { //public GUITexture shoe; void onMouseDown() { base.gamePaused = false; Time.timeScale = 1; btnResume.pixelInset = new Rect(300, -300, btnResume.pixelInset.width, btnResume.pixelInset.height); showMenu.pixelInset = new Rect(220, -200, showMenu.pixelInset.width, showMenu.pixelInset.height); } }

    Read the article

  • Can anyone point me to some open source directX rendering engines or frameworks? [on hold]

    - by Jim
    I'm completely new to graphics API programmming, but not at all new to the theory and principle operation of game engines and rendering engines. That being said, I want to do some experiments of rendering very dense geometry scenes in a basic rendering engine or game engine. I don't need a lot of bells and whistles. What I need is enough control that I can implement my own scene graph algorithms and control the rendering pipeline very specifically. My ideal candidate engine would be either a rendering engine or game engine with a modular design that might be ready to go out of the box but would be simple enough in case I need to rip out some of the guts in the rendering management and implement my own. It's a tough call because I'm right at the level where it's almost better to go from scratch, but there's no sense in having to build every single basic thing such as heirarchical transforms, etc. I just want to work with rendering optimization to push dense geometry for maximum FPS. Does anyone have a suggestion for an engine or basic framework to use? I requested DirectX in my title because I figured it would likely be better supported and less likely for me to run into some obscure less-documented problem. But OpenGL might be acceptable if the recommended framework was definitely better than my other options. EDIT: I should add that I really want GPU tessellation support (part of adding to the density of geometry detail).

    Read the article

  • XNA 2D vehicle wall collisions

    - by mike
    I am attempting to implement collisions for my truck game, where the truck can drive around the world and hit walls surrounding the level and various randomly placed walls within the level. I am able to get direct collisions working correctly. However, it is getting very complicated and tricky very quickly. I am trying to accommodate various other collisions such as when a truck is against the wall then turns an adjacent direction or when they reverse into a wall. Both of these result in a slight collision as the image of the truck flips around to the direction the player wants to move. All of this has resulted in a whole lot of if statements to check how I should be fixing the collision. This in turn makes the player jump to random locations and "teleport" around corners, etc. The rest of my game is fine, I am not completely new to game development or C# for that matter. It's just the logic of collisions. Any ideas on how I can approach this? Image of the collisions I am trying to resolve: http://tinypic.com/r/2qtflvq/6

    Read the article

  • Rendering 8 bit graphics

    - by Matjaz Muhic
    I have a strong programming background just not from game development. I only made some pong and snake in high school and I did some OpenGL in college. I want to make my own game engine. Nothing fancy just a simple 2D game engine. But because I'm kinda old school and feeling retro. I want graphics to look like old 8 bit games (megaman, contra, super mario, ...). So how were the old games made back then? I want the simplest approach. Were they also using assets (images) like newer engines now do? How do you achieve this kind of rendering using OpenGL? Keep in mind. Simplest solution. I want to know how it was made back then and how I can replicate that. Doesn't even have to be OpenGL. I can draw on window canvas. I do want to make it from scratch basically.

    Read the article

  • C++ Database vs Reading Files

    - by Ohmages
    Ive been programing a C++ game/server for the past year. I have been using MYSQL for character logins, items, monsters, etc, etc. (im on windows). My question is, what are some of the databases that some big time developers use. IE. Battle.net, Diablo II, Diablo III, mythos, hellgate , etc, etc, etc. Do they have their own database they built? Or do they use an existing framework for logins, and character transfers. I do know that in diablo II, they use character files to to transfer characters into the game world. But what about the login into battle.net. Would it be wiser for me to stick with MYSQL, or is there something out there faster and more stable, or should I create a login type of system that looks through a file to see if you provided the correct password. Can't wait to get some replies. Thanks! PS. Currently the framework is much like battle.net, where you login into a lobby, create, and join games. The game server/lobby server are different servers too. So im just wondering about the lobby server for logins because I'm expecting several hundred thousand connections/logins.

    Read the article

  • knowing all available entity types

    - by plofplof
    I'm making a game where at some point the game will create enemies of random types. Each type of enemy available is defined on its own class derived from an enemy superclass. To do this, obviously the different types of enemies should be known. This is what I have thought of: Just make a list manually. Very simple to do, but I don't like it because I'll be adding more enemy types over time, so any time I add a new class I have to remember to update this (same if I remove an enemy). I would like some kind of auto-updating list. A completely component based system. There are no different classes for each enemy, but definitions of enemies in some file where all enemy types can be found. I really don't need that level of complexity for my game. I'm still using a component based model to some degree, but each Enemy type gets defined on its own class. Java Annotation processing. Give each enemy subclass an annotation like @EnemyType("whatever"), then code an annotation processor that writes in a file all available enemy types. Any time a new class is added the file gets updated after compilation.This gives me a feeling of failure even if its a good solution, it's very dependant on Java, so it means I cant think of a general design good for any kind of language. Also I think that this would be too much work for something so simple. I would like to see comments on these ideas and other possible solutions Thanks

    Read the article

  • How to set text in Y-axis, instead of numbers, in a RadChart component from Telerik with Bar-type

    - by radbyx
    Hi, I have made an bar RadChart with "SeriesOrientation="Horizontal"". I have the text showing at the end for each bars, but instead I would like that text to be listet in the y-axis, instead of the 1,2,3.. numbers. It seems like i'm not allow to set any text in the y-axis, is there a property I can set? Here is my code snippes: === .ascx === <asp:UpdatePanel ID="UpdatePanel1" runat="server"> <ContentTemplate> <telerik:RadChart ID="RadChart1" runat="server" Skin="WebBlue" AutoLayout="true" Height="350px" Width="680px" SeriesOrientation="Horizontal"> <Series> <telerik:ChartSeries DataYColumn="UnitPrice" Name="Product Unit Price"> </telerik:ChartSeries> </Series> <PlotArea> <YAxis> <Appearance> <TextAppearance TextProperties-Font="Verdana, 8.25pt, style=Bold" /> </Appearance> </YAxis> <XAxis DataLabelsColumn="TenMostExpensiveProducts"> </XAxis> </PlotArea> <ChartTitle> <TextBlock Text="Ten Most Expensive Products" /> </ChartTitle> </telerik:RadChart> </ContentTemplate> </asp:UpdatePanel> ========================= === .ascx === protected void Page_Load(object sender, EventArgs e) { RadChart1.AutoLayout = false; RadChart1.Legend.Visible = false; // Create a ChartSeries and assign its name and chart type ChartSeries chartSeries = new ChartSeries(); chartSeries.Name = "Name"; chartSeries.Type = ChartSeriesType.Bar; // add new items to the series, // passing a value and a label string chartSeries.AddItem(98, "Product1"); chartSeries.AddItem(95, "Product2"); chartSeries.AddItem(100, "Product3"); chartSeries.AddItem(75, "Product4"); chartSeries.AddItem(1, "Product5"); // add the series to the RadChart Series collection RadChart1.Series.Add(chartSeries); // add the RadChart to the page. // this.Page.Controls.Add(RadChart1); // RadChart1.Series[0].Appearance.LegendDisplayMode = ChartSeriesLegendDisplayMode.Nothing; // RadChart1.Series[0].DataYColumn = "Uptime"; RadChart1.PlotArea.XAxis.DataLabelsColumn = "Name"; RadChart1.PlotArea.XAxis.Appearance.TextAppearance.TextProperties.Font = new System.Drawing.Font("Verdana", 8); RadChart1.BackColor = System.Drawing.Color.White; RadChart1.Height = 350; RadChart1.Width = 570; RadChart1.DataBind(); } I want to have the text: "Product1", "Product2", ect in the y-axis, can anyone help? Thx.

    Read the article

  • Dynamic Regions

    - by raghu.yadav
    In this blog you can see simple usecase to display employees, departments tables using dynamic region component. However first bunch of thanks to andre blogging examples related to dynamic regions and you can find more related examples in andre blog andre-examples. Here is the simple dynamic region sample screen shots. Here is the impl steps. dep.jsff with dep table in it emp.jsff with emp table in it dep.xml ( dep taskflow ) emp.xml ( emp taskflow ) main.jspx ( with pannelsplitter first component having 2 commandmenuItems or commandlinks (emp and dep ) with action set to there respective taskflows (emp.xml and dep.xml) and second component having dynamic region component of department taskflow (default render). DynamicRegionBacking Bean - add department and employee taskflow code as shown in screen shot. set PartialTriggers on region in main.jspx to emp and dep commandmenuitems or links. that's it.

    Read the article

  • New security options in UCM Patch Set 3

    - by kyle.hatlestad
    While the Patch Set 3 (PS3) release was mostly focused on bug fixes and such, some new features sneaked in there. One of those new features is to the security options. In 10gR3 and prior versions, UCM had a component called Collaboration Manager which allowed for project folders to be created and groups of users assigned as members to collaborate on documents. With this component came access control lists (ACL) for content and folders. Users could assign specific security rights on each and every document and folder within a project. And it was even possible to enable these ACL's without having the Collaboration Manager component enabled (see technote# 603148.1). When 11g came out, Collaboration Manager was no longer available. But the configuration settings to turn on ACLs were still there. Well, in PS3 they're implemented slightly differently. And there is a new component available which adds an additional dimension to define security on the object, Roles. So now instead of selecting individual users or groups of users (defined as an Alias in User Admin), you can select a particular role. And if a user has that role, they are granted that level of access. This can allow for a much more flexible and manageable security model instead of trying to manage with just user and group access as people come and go in the organization. The way that it is enabled is still through configuration entries. First log in as an administrator and go to Administration -> Admin Server. On the Component Manager page, click the 'advanced component manager' link in the description paragraph at the top. In the list of Disabled Components, enable the RoleEntityACL component. Then click the General Configuration link on the left. In the Additional Configuration Variables text area, enter the new configuration values: UseEntitySecurity=true SpecialAuthGroups=<comma separated list of Security Groups to honor ACLs> The SpecialAuthGroups should be a list of Security Groups that honor the ACL fields. If an ACL is applied to a content item with a Security Group outside this list, it will be ignored. Save the settings and restart the instance. Upon restart, three new metadata fields will be created: xClbraUserList, xClbraAliasList, xClbraRoleList. If you are using OracleTextSearch as the search indexer, be sure to run a Fast Rebuild on the collection. On the Check In, Search, and Update pages, values are added by simply typing in the value and getting a type-ahead list of possible values. Select the value, click Add and then set the level of access (Read, Write, Delete, or Admin). If all of the fields are blank, then it simply falls back to just Security Group and Account access. For Users and Groups, these values are automatically picked up from the corresponding database tables. In the case of Roles, this is an explicitly defined list of choices that are made available. These values must match the role that is being defined from WebLogic Server or you LDAP/AD repository. To add these values, go to Administration -> Admin Applets -> Configuration Manager. On the Views tab, edit the values for the ExternalRolesView. By default, 'guest' and 'authenticated' are added. Once added to through the view, they will be available to select from for the Roles Access List. As for how they are stored in the metadata fields, each entry starts with it's identifier: ampersand (&) symbol for users, "at" (@) symbol for groups, and colon (:) for roles. Following that is the entity name. And at the end is the level of access in paranthesis. e.g. (RWDA). And each entry is separated by a comma. So if you were populating values through batch loader or an external source, the values would be defined this way. Detailed information on Access Control Lists can be found in the Oracle Fusion Middleware System Administrator's Guide for Oracle Content Server.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >