Search Results

Search found 1234 results on 50 pages for 'enum'.

Page 17/50 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • enums in C# - assignment

    - by Zka
    How does one do this in c#? Let's say that myclass has : private enum Days{}; 1) How does one add data to the enum inside the myclass with the help of the constructor? As in : myclass my = new myclass(Monday,Friday); so that the enum inside the class gets the "Monday, Friday" properties. 2) Can one also make a property for an enume inside the class once it is initialized ? For example : my.Days = new enum Days(Tuesday); //where the old settings are replaced.

    Read the article

  • Java: Local Enums

    - by bruno conde
    Today, I found myself coding something like this ... public class LocalEnums { public LocalEnums() { } public void foo() { enum LocalEnum { A,B,C }; // .... // class LocalClass { } } } and I was kind of surprised when the compiler reported an error on the local enum: The member enum LocalEnum cannot be local Why can't enums be declared local like classes? I found this very useful in certain situations. In the case I was working, the rest of the code didn't need to know anything about the enum. Is there any structural/design conflict that explains why this is not possible or could this be a future feature of Java?

    Read the article

  • How to use DLL reference with an ActiveX <object> via JavaScript

    - by John Factorial
    My question: how can I set an ActiveX object's property via JavaScript to an enum value found in a non-ActiveX DLL? Problem description: I am instantiating an ActiveX object with the following object tag: <object classid="clsid:F338193D-2491-4D7B-80CE-03487041A278" id="VideoCapture1" width="500" height="500"></object> (This is the guid for the 3rd party ActiveX I'm using, "VisioForge_Video_Capture_4.VFVideoCapture4X") I have example C# code for using this ActiveX, which I am porting to JavaScript. Code like this works just fine: VideoCapture1.Debug_Mode = true; var devcount = VideoCapture1.Video_CaptureDevices_GetCount(); var devs = []; for (var i =0; i < devcount; ++i) { devs[devs.length] = VideoCapture1.Video_CaptureDevices_GetItem(i); } ... etc ... However, VideoCapture1 has some settings which refer to a DLL enum, like so (C# code): VideoCapture1.Mode = VisioForge_Video_Capture_4.TxVFMode.Mode_Video_Preview; I can see in Visual Web Developer that TxVFMode.Mode_Video_Preview is value 1 in the enum. However, the following JS does not appear to set the Mode properly: VideoCapture1.Mode = 1; Does anyone know how I can set VideoCapture1.Mode to the enum value found in the TxVFMode? PS: In Visual Web Developer, when I "Go to definition" on TxVFMode, I get the Guid for the enum. I thought I could create an with this Guid or instantiate a VisioForge_Video_Capture_4.TxVFMode in JS, but neither gives me a usable object.

    Read the article

  • Is there a way to make `enum` type to be unsigned?

    - by Kirill V. Lyadvinsky
    Is there a way to make enum type to be unsigned? The following code gives me a warning about signed/unsigned comparison. enum EEE { X1 = 1 }; int main() { size_t x = 2; EEE t = X1; if ( t < x ) std::cout << "ok" << std::endl; return 0; } I've tried to force compiler to use unsigned underlying type for enum with the following: enum EEE { X1 = 1, XN = 18446744073709551615LL }; But that still gives the warning.

    Read the article

  • Extending Enums, Overkill?

    - by CkH
    I have an object that needs to be serialized to an EDI format. For this example we'll say it's a car. A car might not be the best example b/c options change over time, but for the real object the Enums will never change. I have many Enums like the following with custom attributes applied. public enum RoofStyle { [DisplayText("Glass Top")] [StringValue("GTR")] Glass, [DisplayText("Convertible Soft Top")] [StringValue("CST")] ConvertibleSoft, [DisplayText("Hard Top")] [StringValue("HT ")] HardTop, [DisplayText("Targa Top")] [StringValue("TT ")] Targa, } The Attributes are accessed via Extension methods: public static string GetStringValue(this Enum value) { // Get the type Type type = value.GetType(); // Get fieldinfo for this type FieldInfo fieldInfo = type.GetField(value.ToString()); // Get the stringvalue attributes StringValueAttribute[] attribs = fieldInfo.GetCustomAttributes( typeof(StringValueAttribute), false) as StringValueAttribute[]; // Return the first if there was a match. return attribs.Length > 0 ? attribs[0].StringValue : null; } public static string GetDisplayText(this Enum value) { // Get the type Type type = value.GetType(); // Get fieldinfo for this type FieldInfo fieldInfo = type.GetField(value.ToString()); // Get the DisplayText attributes DisplayTextAttribute[] attribs = fieldInfo.GetCustomAttributes( typeof(DisplayTextAttribute), false) as DisplayTextAttribute[]; // Return the first if there was a match. return attribs.Length > 0 ? attribs[0].DisplayText : value.ToString(); } There is a custom EDI serializer that serializes based on the StringValue attributes like so: StringBuilder sb = new StringBuilder(); sb.Append(car.RoofStyle.GetStringValue()); sb.Append(car.TireSize.GetStringValue()); sb.Append(car.Model.GetStringValue()); ... There is another method that can get Enum Value from StringValue for Deserialization: car.RoofStyle = Enums.GetCode<RoofStyle>(EDIString.Substring(4, 3)) Defined as: public static class Enums { public static T GetCode<T>(string value) { foreach (object o in System.Enum.GetValues(typeof(T))) { if (((Enum)o).GetStringValue() == value.ToUpper()) return (T)o; } throw new ArgumentException("No code exists for type " + typeof(T).ToString() + " corresponding to value of " + value); } } And Finally, for the UI, the GetDisplayText() is used to show the user friendly text. What do you think? Overkill? Is there a better way? or Goldie Locks (just right)? Just want to get feedback before I intergrate it into my personal framework permanently. Thanks.

    Read the article

  • Checked equivalent to IllegalArgumentException?

    - by jv1975oid
    I have a method that takes an enum as a parameter and returns some information dependent on that parameter. However, that enum contains some values which should not be handled, and should raise an error condition. Currently the method throws an IllegalArgumentException but I would like this to be a checked exception to force callers to catch it (and return gracefully, logging an error). Is there something suitable or should I create my own Exception subclass? I'm open to other patterns as well. A reasonable reaction would be that all values of the enum should be handled, but that isn't the case. When a new value is added to the enum, I want to make sure that this method does the right thing - alerting a human is preferable to using some default return value in this case. Thanks for any advice.

    Read the article

  • Bitfield With 3 States...?

    - by TheCloudlessSky
    I'm trying to create an authorization scheme for my ASP.NET MVC application where an Enum is used to set permissions. For example: [Flags] enum Permissions { ReadAppointments = 1, WriteAppointments = 2 | ReadAppointments, ReadPatients = 4, WritePatients = 8 | ReadPatients, ReadInvoices = 16, WriteInvoices = 32 | ReadInvoices ... } But I don't really like that because it really doesn't make it clear that Write always includes Read. I then realized that a requirement would be that a user might have NO access to, for example, Appointments. Essentially, I'd want a "bitfield" with 3 states: none, readonly, full (read/write). I'd like to still use an enum bitfield since it's easy to store in a DB (as an int). Also it's very easy to see if a permission is set. Does anyone have any idea how this could be easily accomplished using an Enum... or am I going in the completely wrong direction?

    Read the article

  • Using JAXB to customise the generation of java enums

    - by belltower
    I'm using an external bindings file when using jaxb against an XML schema. I'm mostly using the bindings file to map from the XML schema primitives to my own types. This is a snippet of the bindings file <jxb:bindings version="1.0" xmlns:jxb="http://java.sun.com/xml/ns/jaxb" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ai="http://java.sun.com/xml/ns/jaxb/xjc" extensionBindingPrefixes="ai"> <jxb:bindings schemaLocation="xsdurl" node="xs:schema"> <jxb:globalBindings> <jxb:javaType name="com.companyname.StringType" xmlType="xs:string" parseMethod="parse" printMethod="print" hasNsContext="true"> </jxb:javaType> </jxb:globalBindings> </jxb:bindings> </jxb:bindings> So whenever a xs:string is encountered, the com.companyname.StringType the methods print / parse are called for marshalling/unmarshalling etc. Now if JAXB encounters an xs:enumeration it will generate a java enum. For example: <xs:simpleType name="Address"> <xs:restriction base="xs:string"> <xs:enumeration value="ADDR"/> <xs:enumeration value="PBOX"/> </xs:restriction> </xs:simpleType> public enum Address { ADDR, PBOX, public String value() { return name(); } public static Address fromValue(String v) { return valueOf(v); } } Does anyone know if it is possible to customise the creation of an enum like it is for a primitive? I would like to be able to: Add a standard member variable / other methods to every enum generated by jaxb. Specify the static method used to create the enum.

    Read the article

  • Binding ComboBoxes to enums... in Silverlight!

    - by Domenic
    So, the web, and StackOverflow, have plenty of nice answers for how to bind a combobox to an enum property in WPF. But Silverlight is missing all of the features that make this possible :(. For example: You can't use a generic EnumDisplayer-style IValueConverter that accepts a type parameter, since Silverlight doesn't support x:Type. You can't use ObjectDataProvider, like in this approach, since it doesn't exist in Silverlight. You can't use a custom markup extension like in the comments on the link from #2, since markup extensions don't exist in Silverlight. You can't do a version of #1 using generics instead of Type properties of the object, since generics aren't supported in XAML (and the hacks to make them work all depend on markup extensions, not supported in Silverlight). Massive fail! As I see it, the only way to make this work is to either Cheat and bind to a string property in my ViewModel, whose setter/getter does the conversion, loading values into the ComboBox using code-behind in the View. Make a custom IValueConverter for every enum I want to bind to. Are there any alternatives that are more generic, i.e. don't involve writing the same code over and over for every enum I want? I suppose I could do solution #2 using a generic class accepting the enum as a type parameter, and then create new classes for every enum I want that are simply class MyEnumConverter : GenericEnumConverter<MyEnum> {} What are your thoughts, guys?

    Read the article

  • How to easily map c++ enums to strings

    - by Roddy
    I have a bunch of enum types in some library header files that I'm using, and I want to have a way of converting enum values to user strings - and vice-versa. RTTI won't do it for me, because the 'user strings' need to be a bit more readable than the enumerations. A brute force solution would be a bunch of functions like this, but I feel that's a bit too C-like. enum MyEnum {VAL1, VAL2,VAL3}; String getStringFromEnum(MyEnum e) { switch e { case VAL1: return "Value 1"; case VAL2: return "Value 2"; case VAL1: return "Value 3"; default: throw Exception("Bad MyEnum"); } } I have a gut feeling that there's an elegant solution using templates, but I can't quite get my head round it yet. UPDATE: Thanks for suggestions - I should have made clear that the enums are defined in a third-party library header, so I don't want to have to change the definition of them. My gut feeling now is to avoid templates and do something like this: char * MyGetValue(int v, char *tmp); // implementation is trivial #define ENUM_MAP(type, strings) char * getStringValue(const type &T) \ { \ return MyGetValue((int)T, strings); \ } ; enum eee {AA,BB,CC}; - exists in library header file ; enum fff {DD,GG,HH}; ENUM_MAP(eee,"AA|BB|CC") ENUM_MAP(fff,"DD|GG|HH") // To use... eee e; fff f; std::cout<< getStringValue(e); std::cout<< getStringValue(f);

    Read the article

  • Is there an alternative to Microsoft.SqlServer.Management.Smo.SqlDataType that includes a value for

    - by Daniel Schaffer
    The Microsoft.SqlServer.Management.Smo.SqlDataType enum has a value for the timestamp type but not rowversion. I'm looking for an updated version of the assembly or an alternate enum type that supports it. The existing enum has a value for Timestamp, but according to the rowversion documentation, timestamp is "deprecated and will be removed in a future version". I prefer to avoid using deprecated things :)

    Read the article

  • Duplicate C# web service proxy classes generated for Java types

    - by Sergey
    My question is about integration between a Java web service and a C# .NET client. Service: CXF 2.2.3 with Aegis databinding Client: C#, .NET 3.5 SP1 For some reason Visual Studio generates two C# proxy enums for each Java enum. The generated C# classes do not compile. For example, this Java enum: public enum SqlDialect { GENERIC, SYBASE, SQL_SERVER, ORACLE; } Produces this WSDL: <xsd:simpleType name="SqlDialect"> <xsd:restriction base="xsd:string"> <xsd:enumeration value="GENERIC" /> <xsd:enumeration value="SYBASE" /> <xsd:enumeration value="SQL_SERVER" /> <xsd:enumeration value="ORACLE" /> </xsd:restriction> </xsd:simpleType> For this WSDL Visual Studio generates two partial C# classes (generated comments removed): [System.CodeDom.Compiler.GeneratedCodeAttribute("System.Runtime.Serialization", "3.0.0.0")] [System.Runtime.Serialization.DataContractAttribute(Name="SqlDialect", Namespace="http://somenamespace")] public enum SqlDialect : int { [System.Runtime.Serialization.EnumMemberAttribute()] GENERIC = 0, [System.Runtime.Serialization.EnumMemberAttribute()] SYBASE = 1, [System.Runtime.Serialization.EnumMemberAttribute()] SQL_SERVER = 2, [System.Runtime.Serialization.EnumMemberAttribute()] ORACLE = 3, } [System.CodeDom.Compiler.GeneratedCodeAttribute("System.Xml", "2.0.50727.3082")] [System.SerializableAttribute()] [System.Xml.Serialization.XmlTypeAttribute(Namespace="http://somenamespace")] public enum SqlDialect { GENERIC, SYBASE, SQL_SERVER, ORACLE, } The resulting C# code does not compile: The namespace 'somenamespace' already contains a definition for 'SqlDialect' I will appreciate any ideas...

    Read the article

  • Can I add and remove elements of enumeration at runtime in Java

    - by Brabster
    It is possible to add and remove elements from an enum in Java at runtime? For example, could I read in the labels and constructor arguments of an enum from a file? @saua, it's just a question of whether it can be done out of interest really. I was hoping there'd be some neat way of altering the running bytecode, maybe using BCEL or something. I've also followed up with this question because I realised I wasn't totally sure when an enum should be used. I'm pretty convinced that the right answer would be to use a collection that ensured uniqueness instead of an enum if I want to be able to alter the contents safely at runtime.

    Read the article

  • Constant template parameter class manages to link externally

    - by the_drow
    I have a class foo with an enum template parameter and for some reason it links to two versions of the ctor in the cpp file. enum Enum { bar, baz }; template <Enum version = bar> class foo { public: foo(); }; // CPP File #include "foo.hpp" foo<bar>::foo() { cout << "bar"; } foo<baz>::foo() { cout << "baz"; } I'm using msvc 2008, is this the standard behavior? Are only type template parameters cannot be linked to cpp files?

    Read the article

  • How to write function where argument is type but not typed value?

    - by ssp
    I want to convert a string representations of few dozen enum types to enum values. It's easy to convert string to concrete type: Enum.Parse(typeof<FontStyle>,"Bold") |> unbox<FontStyle> but for now i want to write function where type and string are parameters. The best one i can write is: > let s2e (_: 'a) s = Enum.Parse(typeof<'a>,s) |> unbox<'a>;; val s2e : 'a -> string -> 'a > s2e FontStyle.Regular "Bold";; val it : FontStyle = Bold Is there any option to write something like this but with type itself as first argument?

    Read the article

  • Using enums in Java across multiple classes

    - by Richard Mar.
    I have the following class: public class Card { public enum Suit { SPACES, HEARTS, DIAMONDS, CLUBS }; public Card(Suit nsuit, int nrank) { suit = nsuit; rank = nrank; } private Suit suit; private int rank; } I want to instantiate it in another class, but that class doesn't understand the Suit enum. Where should I put the enum to make it publicly visible?

    Read the article

  • how can we set the property of Viewstate?

    - by subodh
    I am using a enum public enum WatchUsageMode { Watch = 1, EmailPreferences = 2 } i want to set the property of that enum in my view state in such a way that whenever view state is null return Watch else EmailPreference.how can i set the property?

    Read the article

  • generating random enums

    - by null_radix
    How do I randomly select a value for an enum type in C++? I would like to do something like this. enum my_type(A,B,C,D,E,F,G,h,J,V); my_type test(rand() % 10); But this is illegal... there is not an implicit conversion from int to an enum type.

    Read the article

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • Azure WNS to Win8 - Push Notifications for Metro Apps

    - by JoshReuben
    Background The Windows Azure Toolkit for Windows 8 allows you to build a Windows Azure Cloud Service that can send Push Notifications to registered Metro apps via Windows Notification Service (WNS). Some configuration is required - you need to: Register the Metro app for Windows Live Application Management Provide Package SID & Client Secret to WNS Modify the Azure Cloud App cscfg file and the Metro app package.appxmanifest file to contain matching Metro package name, SID and client secret. The Mechanism: These notifications take the form of XAML Tile, Toast, Raw or Badge UI notifications. The core engine is provided via the WNS nuget recipe, which exposes an API for constructing payloads and posting notifications to WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, A WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references. Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. The package contains the NotificationSendUtils class for submitting notifications. The Windows Azure Toolkit for Windows 8 (WAT) provides the PNWorker sample pair of solutions - The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Further background resources: http://watwindows8.codeplex.com/ - Windows Azure Toolkit for Windows 8 http://watwindows8.codeplex.com/wikipage?title=Push%20Notification%20Worker%20Sample - WAT WNS sample setup http://watwindows8.codeplex.com/wikipage?title=Using%20the%20Windows%208%20Cloud%20Application%20Services%20Application – using Windows 8 with Cloud Application Services A bit of Configuration Register the Metro apps for Windows Live Application Management From the current app manifest of your metro app Publish tab, copy the Package Display Name and the Publisher From: https://manage.dev.live.com/Build/ Package name: <-- we need to change this Client secret: keep this Package Security Identifier (SID): keep this Verify the app here: https://manage.dev.live.com/Applications/Index - so this step is done "If you wish to send push notifications in your application, provide your Package Security Identifier (SID) and client secret to WNS." Provide Package SID & Client Secret to WNS http://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx - How to authenticate with WNS https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/PurchaseSubscription - register app with dashboard - need registration code or register a new account & pay $170 shekels http://msdn.microsoft.com/en-us/library/windows/apps/hh868184.aspx - Registering for a Windows Store developer account http://msdn.microsoft.com/en-us/library/windows/apps/hh868187.aspx - Picking a Microsoft account for the Windows Store The WNS Nuget Recipe The WNS Recipe is a nuget package that provides an API for authenticating against WNS, constructing payloads and posting notifications to WNS. After installing this package, a WnsRecipe assembly is added to project references. To send notifications using WNS, first register the application at the Windows Push Notifications & Live Connect portal to obtain Package Security Identifier (SID) and a secret key that your cloud service uses to authenticate with WNS. An application receives push notifications by requesting a notification channel from WNS, which returns a channel URI that the application then registers with a cloud service. In the cloud service, the WnsAccessTokenProvider authenticates with WNS by providing its credentials, the package SID and secret key, and receives in return an access token that the provider caches and can reuse for multiple notification requests. The cloud service constructs a notification request by filling out a template class that contains the information that will be sent with the notification, including text and image references.Using the channel URI of a registered client, the cloud service can then send a notification whenever it has an update for the user. var provider = new WnsAccessTokenProvider(clientId, clientSecret); var notification = new ToastNotification(provider) {     ToastType = ToastType.ToastText02,     Text = new List<string> { "blah"} }; notification.Send(channelUri); the WNS Recipe is instrumented to write trace information via a trace listener – configuratively or programmatically from Application_Start(): WnsDiagnostics.Enable(); WnsDiagnostics.TraceSource.Listeners.Add(new DiagnosticMonitorTraceListener()); WnsDiagnostics.TraceSource.Switch.Level = SourceLevels.Verbose; The WAT PNWorker Sample The Azure server side contains a WebRole & a WorkerRole. The WebRole allows submission of new push notifications into an Azure Queue which the WorkerRole extracts and processes. Overview of Push Notification Worker Sample The toolkit includes a sample application based on the same solution structure as the one created by theWindows 8 Cloud Application Services project template. The sample demonstrates how to off-load the job of sending Windows Push Notifications using a Windows Azure worker role. You can find the source code in theSamples\PNWorker folder. This folder contains a full version of the sample application showing how to use Windows Push Notifications using ASP.NET Membership as the authentication mechanism. The sample contains two different solution files: WATWindows.Azure.sln: This solution must be opened with Visual Studio 2010 and contains the projects related to the Windows Azure web and worker roles. WATWindows.Client.sln: This solution must be opened with Visual Studio 11 and contains the Windows Metro style application project. Only Visual Studio 2010 supports Windows Azure cloud projects so you currently need to use this edition to launch the server application. This will change in a future release of the Windows Azure tools when support for Visual Studio 11 is enabled. Important: Setting up the PNWorker Sample Before running the PNWorker sample, you need to register the application and configure it: 1. Register the app: To register your application, go to the Windows Live Application Management site for Metro style apps at https://manage.dev.live.com/build and sign in with your Windows Live ID. In the Windows Push Notifications & Live Connect page, enter the following information. Package Display Name PNWorker.Sample Publisher CN=127.0.0.1, O=TESTING ONLY, OU=Windows Azure DevFabric 2. 3. Once you register the application, make a note of the values shown in the portal for Client Secret,Package Name and Package SID. 4. Configure the app - double-click the SetupSample.cmd file located inside the Samples\PNWorker folder to launch a tool that will guide you through the process of configuring the sample. setup runs a PowerShell script that requires running with administration privileges to allow the scripts to execute in your machine. When prompted, enter the Client Secret, Package Name, and Package Security Identifier you obtained previously and wait until the tool finishes configuring your sample. Running the PNWorker Sample To run this sample, you must run both the client and the server application projects. 1. Open Visual Studio 2010 as an administrator. Open the WATWindows.Azure.sln solution. Set the start-up project of the solution as the cloud project. Run the app in the dev fabric to test. 2. Open Visual Studio 11 and open the WATWindows.Client.sln solution. Run the Metro client application. In the client application, click Reopen channel and send to server. à the application opens the channel and registers it with the cloud application, & the Output area shows the channel URI. 3. Refresh the WebRole's Push Notifications page to see the UI list the newly registered client. 4. Send notifications to the client application by clicking the Send Notification button. Setup 3 command files + 1 powershell script: SetupSample.cmd –> SetupWPNS.vbs –> SetupWPNS.cmd –> SetupWPNS.UpdateWPNSCredentialsInServiceConfiguration.ps1 appears to set PackageName – from manifest Client Id package security id (SID) – from registration Client Secret – from registration The following configs are modified: WATWindows\ServiceConfiguration.Cloud.cscfg WATWindows\ServiceConfiguration.Local.cscfg WATWindows.Client\package.appxmanifest WatWindows.Notifications A class library – it references the following WNS DLL: C:\WorkDev\CountdownValue\AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\WnsRecipe.dll NotificationJobRequest A DataContract for triggering notifications:     using System.Runtime.Serialization; using Microsoft.Windows.Samples.Notifications;     [DataContract]     [KnownType(typeof(WnsAccessTokenProvider))] public class NotificationJobRequest     {               [DataMember] public bool ProcessAsync { get; set; }          [DataMember] public string Payload { get; set; }         [DataMember] public string ChannelUrl { get; set; }         [DataMember] public NotificationType NotificationType { get; set; }         [DataMember] public IAccessTokenProvider AccessTokenProvider { get; set; }         [DataMember] public NotificationSendOptions NotificationSendOptions{ get; set; }     } Investigated these types: WnsAccessTokenProvider – a DataContract that contains the client Id and client secret NotificationType – an enum that can be: Tile, Toast, badge, Raw IAccessTokenProvider – get or reset the access token NotificationSendOptions – SecondsTTL, NotificationPriority (enum), isCache, isRequestForStatus, Tag   There is also a NotificationJobSerializer class which basically wraps a DataContractSerializer serialization / deserialization of NotificationJobRequest The WNSNotificationJobProcessor class This class wraps the NotificationSendUtils API – it periodically extracts any NotificationJobRequest objects from a CloudQueue and submits them to WNS. The ProcessJobMessageRequest method – this is the punchline: it will deserialize a CloudQueueMessage into a NotificationJobRequest & send pass its contents to NotificationUtils to SendAsynchronously / SendSynchronously, (and then dequeue the message).     public override void ProcessJobMessageRequest(CloudQueueMessage notificationJobMessageRequest)         { Trace.WriteLine("Processing a new Notification Job Request", "Information"); NotificationJobRequest pushNotificationJob =                 NotificationJobSerializer.Deserialize(notificationJobMessageRequest.AsString); if (pushNotificationJob != null)             { if (pushNotificationJob.ProcessAsync)                 { Trace.WriteLine("Sending the notification asynchronously", "Information"); NotificationSendUtils.SendAsynchronously( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         result => this.ProcessSendResult(pushNotificationJob, result),                         result => this.ProcessSendResultError(pushNotificationJob, result),                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions);                 } else                 { Trace.WriteLine("Sending the notification synchronously", "Information"); NotificationSendResult result = NotificationSendUtils.Send( new Uri(pushNotificationJob.ChannelUrl),                         pushNotificationJob.AccessTokenProvider,                         pushNotificationJob.Payload,                         pushNotificationJob.NotificationType,                         pushNotificationJob.NotificationSendOptions); this.ProcessSendResult(pushNotificationJob, result);                 }             } else             { Trace.WriteLine("Could not deserialize the notification job", "Error");             } this.queue.DeleteMessage(notificationJobMessageRequest);         } Investigation of NotificationSendUtils class - This is the engine – it exposes Send and a SendAsyncronously overloads that take the following params from the NotificationJobRequest: Channel Uri AccessTokenProvider Payload NotificationType NotificationSendOptions WebRole WebRole is a large MVC project – it references WatWindows.Notifications as well as the following WNS DLL: \AzureToolkits\WATWindows8\Samples\PNWorker\packages\WnsRecipe.0.0.3.0\lib\net40\NotificationsExtensions.dll Controllers\PushNotificationController.cs Notification related namespaces:     using Notifications;     using NotificationsExtensions;     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent;     using Windows.Samples.Notifications; TokenProvider – initialized from the Azure RoleEnvironment:   IAccessTokenProvider tokenProvider = new WnsAccessTokenProvider(         RoleEnvironment.GetConfigurationSettingValue("WNSPackageSID"),         RoleEnvironment.GetConfigurationSettingValue("WNSClientSecret")); SendNotification method – calls QueuePushMessage method to create and serialize a NotificationJobRequest and enqueue it in a CloudQueue [HttpPost]         public ActionResult SendNotification(             [ModelBinder(typeof(NotificationTemplateModelBinder))] INotificationContent notification,             string channelUrl,             NotificationPriority priority = NotificationPriority.Normal)         {             var payload = notification.GetContent();             var options = new NotificationSendOptions()             {                 Priority = priority             };             var notificationType =                 notification is IBadgeNotificationContent ? NotificationType.Badge :                 notification is IRawNotificationContent ? NotificationType.Raw :                 notification is ITileNotificationContent ? NotificationType.Tile :                 NotificationType.Toast;             this.QueuePushMessage(payload, channelUrl, notificationType, options);             object response = new             {                 Status = "Queued for delivery to WNS"             };             return this.Json(response);         } GetSendTemplate method: Create the cshtml partial rendering based on the notification type     [HttpPost]         public ActionResult GetSendTemplate(NotificationTemplateViewModel templateOptions)         {             PartialViewResult result = null;             switch (templateOptions.NotificationType)             {                 case "Badge":                     templateOptions.BadgeGlyphValueContent = Enum.GetNames(typeof( GlyphValue));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Raw":                     ViewBag.ViewData = templateOptions;                     result = PartialView("_Raw");                     break;                 case "Toast":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     templateOptions.ToastAudioContent = Enum.GetNames(typeof( ToastAudioContent));                     templateOptions.Priorities = Enum.GetNames(typeof( NotificationPriority));                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;                 case "Tile":                     templateOptions.TileImages = this.blobClient.GetAllBlobsInContainer(ConfigReader.GetConfigValue("TileImagesContainer")).OrderBy(i => i.FileName).ToList();                     ViewBag.ViewData = templateOptions;                     result = PartialView("_" + templateOptions.NotificationTemplateType);                     break;             }             return result;         } Investigated these types: ToastAudioContent – an enum of different Win8 sound effects for toast notifications GlyphValue – an enum of different Win8 icons for badge notifications · Infrastructure\NotificationTemplateModelBinder.cs WNS Namespace references     using NotificationsExtensions.BadgeContent;     using NotificationsExtensions.RawContent;     using NotificationsExtensions.TileContent;     using NotificationsExtensions.ToastContent; Various NotificationFactory derived types can server as bindable models in MVC for creating INotificationContent types. Default values are also set for IWideTileNotificationContent & IToastNotificationContent. Type factoryType = null;             switch (notificationType)             {                 case "Badge":                     factoryType = typeof(BadgeContentFactory);                     break;                 case "Tile":                     factoryType = typeof(TileContentFactory);                     break;                 case "Toast":                     factoryType = typeof(ToastContentFactory);                     break;                 case "Raw":                     factoryType = typeof(RawContentFactory);                     break;             } Investigated these types: BadgeContentFactory – CreateBadgeGlyph, CreateBadgeNumeric (???) TileContentFactory – many notification content creation methods , apparently one for every tile layout type ToastContentFactory – many notification content creation methods , apparently one for every toast layout type RawContentFactory – passing strings WorkerRole WNS Namespace references using Notifications; using Notifications.WNS; using Windows.Samples.Notifications; OnStart() Method – on Worker Role startup, initialize the NotificationJobSerializer, the CloudQueue, and the WNSNotificationJobProcessor _notificationJobSerializer = new NotificationJobSerializer(); _cloudQueueClient = this.account.CreateCloudQueueClient(); _pushNotificationRequestsQueue = _cloudQueueClient.GetQueueReference(ConfigReader.GetConfigValue("RequestQueueName")); _processor = new WNSNotificationJobProcessor(_notificationJobSerializer, _pushNotificationRequestsQueue); Run() Method – poll the Azure Queue for NotificationJobRequest messages & process them:   while (true)             { Trace.WriteLine("Checking for Messages", "Information"); try                 { Parallel.ForEach( this.pushNotificationRequestsQueue.GetMessages(this.batchSize), this.processor.ProcessJobMessageRequest);                 } catch (Exception e)                 { Trace.WriteLine(e.ToString(), "Error");                 } Trace.WriteLine(string.Format("Sleeping for {0} seconds", this.pollIntervalMiliseconds / 1000)); Thread.Sleep(this.pollIntervalMiliseconds);                                            } How I learned to appreciate Win8 There is really only one application architecture for Windows 8 apps: Metro client side and Azure backend – and that is a good thing. With WNS, tier integration is so automated that you don’t even have to leverage a HTTP push API such as SignalR. This is a pretty powerful development paradigm, and has changed the way I look at Windows 8 for RAD business apps. When I originally looked at Win8 and the WinRT API, my first opinion on Win8 dev was as follows – GOOD:WinRT, WRL, C++/CX, WinJS, XAML (& ease of Direct3D integration); BAD: low projected market penetration,.NET lobotomized (Only 8% of .NET 4.5 classes can be used in Win8 non-desktop apps - http://bit.ly/HRuJr7); UGLY:Metro pascal tiles! Perhaps my 80s teenage years gave me a punk reactionary sense of revulsion towards the Partridge Family 70s style that Metro UX seems to have appropriated: On second thought though, it simplifies UI dev to a single paradigm (although UX guys will need to change career) – you will not find an easier app dev environment. Speculation: If LightSwitch is going to support HTML5 client app generation, then its a safe guess to say that vnext will support Win8 Metro XAML - a much easier port from Silverlight XAML. Given the VS2012 LightSwitch integration as a thumbs up from the powers that be at MS, and given that Win8 C#/XAML Metro apps tend towards a streamlined 'golden straight-jacket' cookie cutter app dev style with an Azure back-end supporting Win8 push notifications... --> its easy to extrapolate than LightSwitch vnext could well be the Win8 Metro XAML to Azure RAD tool of choice! The hook is already there - :) Why else have the space next to the HTML Client box? This high level of application development abstraction will facilitate rapid app cookie-cutter architecture-infrastructure frameworks for wrapping any app. This will allow me to avoid too much XAML code-monkeying around & focus on my area of interest: Technical Computing.

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >