Search Results

Search found 2025 results on 81 pages for 'hough transform'.

Page 17/81 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • New CATransform3DMakeRotation deletes old transformation?!

    - by david
    I added a CATransform3DMakeRotation to a layer. When I add another one it deletes the old one? The first one: [UIView beginAnimations:@"rotaty" context:nil]; [UIView setAnimationDuration:0.5]; [UIView setAnimationDelegate:self]; CGAffineTransform transform = CGAffineTransformMakeRotation(-3.14); kuvert.transform = CGAffineTransformRotate(transform, DegreesToRadians(134)); kuvert.center = CGPointMake(kuvert.center.x-70, kuvert.center.y+100); [UIView commitAnimations]; and the second one: CABasicAnimation *topAnim = [CABasicAnimation animationWithKeyPath:@"transform"]; topAnim.duration=1; topAnim.repeatCount=0; topAnim.fromValue = [NSValue valueWithCATransform3D:CATransform3DMakeRotation(0.0, 0, 0, 0)]; float f = DegreesToRadians(180); // -M_PI/1; topAnim.toValue=[NSValue valueWithCATransform3D:CATransform3DMakeRotation(f, 0,1, 0)]; topAnim.delegate = self; topAnim.removedOnCompletion = NO; topAnim.fillMode = kCAFillModeBoth; [topAnim setValue:@"flippy" forKey:@"AnimationName"]; [[KuvertLasche layer] addAnimation:topAnim forKey:@"flippy"]; The second one resets the view and applies itself after that. How do I fix this??

    Read the article

  • 3D Animation Rotating and Translating simultaneously in WPF

    - by sklitzz
    Hi, I have ModelVisual3D of a cube. I want to translate and rotate it at the same time. I wish the center of rotation to be in the middle of the cube(the cube rotates around its own axis). But when I try to do this applying both transformations the effect is not what you would expect. Since the object is translating the center of rotation is different thus making it move and rotate in a strange way. How do I get the desired effect? Transform3DGroup transGroup = new Transform3DGroup(); DoubleAnimation cardAnimation = new DoubleAnimation(); cardAnimation.From = 0; cardAnimation.To = 3; cardAnimation.Duration = new Duration(TimeSpan.FromSeconds(2)); Transform3D transform = new TranslateTransform3D(0,0,0); transGroup.Children.Add(transform); RotateTransform3D rotateTransform = new RotateTransform3D(); AxisAngleRotation3D rotateAxis = new AxisAngleRotation3D(new Vector3D(0, 1, 0), 180); Rotation3DAnimation rotateAnimation = new Rotation3DAnimation(rotateAxis, TimeSpan.FromSeconds(2)); rotateAnimation.DecelerationRatio = 0.8; transGroup.Children.Add(rotateTransform); Model.Transform = transGroup; transform.BeginAnimation(TranslateTransform3D.OffsetXProperty, cardAnimation); rotateTransform.BeginAnimation(RotateTransform3D.RotationProperty, rotateAnimation);

    Read the article

  • shouldAutorotateToInterfaceOrientation is not working in iOS 6

    - by Saif
    In iOS 6 shouldAutorotateToInterfaceOrientation is not working but it work fine in iOS 5.0 or 5.1. What should i need to change in ios 6. Here is my code - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { if([[[SampleApplicationAppDelegate instance].callInfoDictionary valueForKey:IS_CHAT] isEqualToString:NO_RESPONSE]) { int nAngle = 0; BOOL bRet = NO; switch (interfaceOrientation) { case UIInterfaceOrientationPortrait: nAngle = 90; bRet = YES; NSLog(@".......Preview = %f %f",_previewCamera.frame.size.width,_previewCamera.frame.size.height); _previewCamera.transform = CGAffineTransformMakeRotation(M_PI*1.5); NSLog(@"Preview = %f %f",_previewCamera.frame.size.width,_previewCamera.frame.size.height); break; case UIInterfaceOrientationPortraitUpsideDown: nAngle = 270; bRet = YES; _previewCamera.transform = CGAffineTransformMakeRotation(M_PI_2); break; case UIInterfaceOrientationLandscapeLeft: nAngle = 0; bRet = YES; //_previewCamera.transform = CGAffineTransformMakeRotation(M_PI*1.5); break; case UIInterfaceOrientationLandscapeRight: nAngle = 180; bRet = YES; //_previewCamera.transform = CGAffineTransformMakeRotation(M_PI_2); break; default: break; } return bRet; } if(interfaceOrientation == UIInterfaceOrientationPortrait || interfaceOrientation == UIInterfaceOrientationPortraitUpsideDown) return YES; return NO; } when i search for this orientation problem i found all this 1 2 but nothing work for me :( Please help .....

    Read the article

  • C++ Iterator Pipelining Designs

    - by Kirakun
    Suppose we want to apply a series of transformations, int f1(int), int f2(int), int f3(int), to a list of objects. A naive way would be SourceContainer source; TempContainer1 temp1; transform(source.begin(), source.end(), back_inserter(temp1), f1); TempContainer2 temp2; transform(temp1.begin(), temp1.end(), back_inserter(temp2), f2); TargetContainer target; transform(temp2.begin(), temp2.end(), back_inserter(target), f3); This first solution is not optimal because of the extra space requirement with temp1 and temp2. So, let's get smarter with this: int f123(int n) { return f3(f2(f1(n))); } ... SourceContainer source; TargetContainer target; transform(source.begin(), source.end(), back_inserter(target), f123); This second solution is much better because not only the code is simpler but more importantly there is less space requirement without the intermediate calculations. However, the composition f123 must be determined at compile time and thus is fixed at run time. How would I try to do this efficiently if the composition is to be determined at run time? For example, if this code was in a RPC service and the actual composition--which can be any permutation of f1, f2, and f3--is based on arguments from the RPC call.

    Read the article

  • SVG text - total length changes depending on zoom

    - by skco
    In SVG (for web-browsers), if i add a <text>-element and add some text to it the total rendered width of the text string will change depending on the scale of the text. Lets say i add "mmmmmmmmmmmmmmmmmmmmmmmmmmA" as text, then i want to draw a vertical line(or other exactly positioned element) intersecting the very last character. Works fine but if i zoom out the text will become shorter or longer and the line will not intersect the text in the right place anymore. The error can be as much as +/- 5 characters width which is unacceptable. The error is also unpredictable, 150% and 160% zoom can add 3 characters length while 155% is 2 charlengths shorter. My zoom is implemented as a scale-transform on the root element of my canvas which is a <g>. I have tried to multiply the font-size with 1000x and scale down equally on the zoom-transform and vice versa in case it was a floating point error but the result is the same. I found the textLength-attribute[1] which is supposed to adjust the total length so the text always end where i choose but it only works in Webkit. Firefox and Opera seems to not care at all about this value (haven't tried in IE9 yet). Is there any way to render text exactly positioned without resorting to homemade filling of font-outlines? [1] http://www.w3.org/TR/SVG11/text.html#TextElementTextLengthAttribute Update Snippet of the structure i'm using <svg> <g transform="scale(1)"> <!--This is the root, i'm changing the scale of this element to zoom --> <g transform="scale(0.014)"> <!--This is a wrapper for multi-line text, scaling, other grouping etc --> <text font-size="1000" textLength="40000">ABDCDEFGHIJKLMNOPQRSTUVXYZÅÄÖabcdefghijklmnopqrstxyzåäö1234567890</text> </g> </g>

    Read the article

  • JBox2D Polygon Collisions Acting Strange

    - by andy
    I have been playing around with JBox2D and Slick2D and made a little demo with a ground object, a box object, and two different polygons. The problem I am facing is that the collision-detection for the polygons seems to be off (see picture below), but the box's collision works fine. My Code: Main Class package main; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.BodyType; import org.jbox2d.dynamics.World; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.state.BasicGameState; import org.newdawn.slick.state.StateBasedGame; import shapes.Box; import shapes.Polygon; public class State1 extends BasicGameState{ World world; int velocityIterations; int positionIterations; float pixelsPerMeter; int state; Box ground; Box box1; Polygon poly1; Polygon poly2; Renderer renderer; public State1(int state) { this.state = state; } @Override public void init(GameContainer gc, StateBasedGame game) throws SlickException { velocityIterations = 10; positionIterations = 10; pixelsPerMeter = 1f; world = new World(new Vec2(0.f, -9.8f)); renderer = new Renderer(gc, gc.getGraphics(), pixelsPerMeter, world); box1 = new Box(-100f, 200f, 40, 50, BodyType.DYNAMIC, world); ground = new Box(-14, -275, 50, 900, BodyType.STATIC, world); poly1 = new Polygon(50f, 10f, new Vec2[] { new Vec2(-6f, -14f), new Vec2(0f, -20f), new Vec2(6f, -14f), new Vec2(10f, 10f), new Vec2(-10f, 10f) }, BodyType.DYNAMIC, world); poly2 = new Polygon(0f, 10f, new Vec2[] { new Vec2(10f, 0f), new Vec2(20f, 0f), new Vec2(30f, 10f), new Vec2(30f, 20f), new Vec2(20f, 30f), new Vec2(10f, 30f), new Vec2(0f, 20f), new Vec2(0f, 10f) }, BodyType.DYNAMIC, world); } @Override public void update(GameContainer gc, StateBasedGame game, int delta) throws SlickException { world.step((float)delta / 180f, velocityIterations, positionIterations); } @Override public void render(GameContainer gc, StateBasedGame game, Graphics g) throws SlickException { renderer.render(); } @Override public int getID() { return this.state; } } Polygon Class package shapes; import org.jbox2d.collision.shapes.PolygonShape; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.Body; import org.jbox2d.dynamics.BodyDef; import org.jbox2d.dynamics.BodyType; import org.jbox2d.dynamics.FixtureDef; import org.jbox2d.dynamics.World; import org.newdawn.slick.Color; public class Polygon { public float x, y; public Color color; public BodyType bodyType; org.newdawn.slick.geom.Polygon poly; BodyDef def; PolygonShape ps; FixtureDef fd; Body body; World world; Vec2[] verts; public Polygon(float x, float y, Vec2[] verts, BodyType bodyType, World world) { this.verts = verts; this.x = x; this.y = y; this.bodyType = bodyType; this.world = world; init(); } public void init() { def = new BodyDef(); def.type = bodyType; def.position.set(x, y); ps = new PolygonShape(); ps.set(verts, verts.length); fd = new FixtureDef(); fd.shape = ps; fd.density = 2.0f; fd.friction = 0.7f; fd.restitution = 0.5f; body = world.createBody(def); body.createFixture(fd); } } Rendering Class package main; import org.jbox2d.collision.shapes.PolygonShape; import org.jbox2d.collision.shapes.ShapeType; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.Body; import org.jbox2d.dynamics.Fixture; import org.jbox2d.dynamics.World; import org.newdawn.slick.Color; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.geom.Polygon; import org.newdawn.slick.geom.Transform; public class Renderer { World world; float pixelsPerMeter; GameContainer gc; Graphics g; public Renderer(GameContainer gc, Graphics g, float ppm, World world) { this.world = world; this.pixelsPerMeter = ppm; this.g = g; this.gc = gc; } public void render() { Body current = world.getBodyList(); Vec2 center = current.getLocalCenter(); while(current != null) { Vec2 pos = current.getPosition(); g.pushTransform(); g.translate(pos.x * pixelsPerMeter + (0.5f * gc.getWidth()), -pos.y * pixelsPerMeter + (0.5f * gc.getHeight())); Fixture f = current.getFixtureList(); while(f != null) { ShapeType type = f.getType(); g.setColor(getColor(current)); switch(type) { case POLYGON: { PolygonShape shape = (PolygonShape)f.getShape(); Vec2[] verts = shape.getVertices(); int count = shape.getVertexCount(); Polygon p = new Polygon(); for(int i = 0; i < count; i++) { p.addPoint(verts[i].x, verts[i].y); } p.setCenterX(center.x); p.setCenterY(center.y); p = (Polygon)p.transform(Transform.createRotateTransform(current.getAngle() + MathUtils.PI, center.x, center.y)); p = (Polygon)p.transform(Transform.createScaleTransform(pixelsPerMeter, pixelsPerMeter)); g.draw(p); break; } case CIRCLE: { f.getShape(); } default: } f = f.getNext(); } g.popTransform(); current = current.getNext(); } } public Color getColor(Body b) { Color c = new Color(1f, 1f, 1f); switch(b.m_type) { case DYNAMIC: if(b.isActive()) { c = new Color(255, 123, 0); } else { c = new Color(99, 99, 99); } break; case KINEMATIC: break; case STATIC: c = new Color(111, 111, 111); break; default: break; } return c; } } Any help with fixing the collisions would be greatly appreciated, and if you need any other code snippets I would be happy to provide them.

    Read the article

  • Configuring varnish and django (apache/modwsgi)

    - by Hedde
    I am trying to work out why my application keeps hitting the database while I have setup varnish infront of apache. I think I am missing some vital configuration, any tips are welcome This is my curl result: HTTP/1.1 200 OK Server: Apache/2.2.16 (Debian) Content-Language: en-us Vary: Accept,Accept-Encoding,Accept-Language,Cookie Cache-Control: s-maxage=60, no-transform, max-age=60 Content-Type: application/json; charset=utf-8 Date: Sat, 15 Sep 2012 08:19:17 GMT Connection: keep-alive My varnishlog: 13 BackendClose - apache 13 BackendOpen b apache 127.0.0.1 47665 127.0.0.1 8000 13 TxRequest b GET 13 TxURL b /api/v1/events/?format=json 13 TxProtocol b HTTP/1.1 13 TxHeader b User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8r zlib/1.2.3 13 TxHeader b Host: foobar.com 13 TxHeader b Accept: */* 13 TxHeader b X-Forwarded-For: 92.64.200.145 13 TxHeader b X-Varnish: 979305817 13 TxHeader b Accept-Encoding: gzip 13 RxProtocol b HTTP/1.1 13 RxStatus b 200 13 RxResponse b OK 13 RxHeader b Date: Sat, 15 Sep 2012 08:21:28 GMT 13 RxHeader b Server: Apache/2.2.16 (Debian) 13 RxHeader b Content-Language: en-us 13 RxHeader b Content-Encoding: gzip 13 RxHeader b Vary: Accept,Accept-Encoding,Accept-Language,Cookie 13 RxHeader b Cache-Control: s-maxage=60, no-transform, max-age=60 13 RxHeader b Content-Length: 6399 13 RxHeader b Content-Type: application/json; charset=utf-8 13 Fetch_Body b 4(length) cls 0 mklen 1 13 Length b 6399 13 BackendReuse b apache 11 SessionOpen c 92.64.200.145 53236 :80 11 ReqStart c 92.64.200.145 53236 979305817 11 RxRequest c HEAD 11 RxURL c /api/v1/events/?format=json 11 RxProtocol c HTTP/1.1 11 RxHeader c User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8r zlib/1.2.3 11 RxHeader c Host: foobar.com 11 RxHeader c Accept: */* 11 VCL_call c recv lookup 11 VCL_call c hash 11 Hash c /api/v1/events/?format=json 11 Hash c foobar.com 11 VCL_return c hash 11 VCL_call c miss fetch 11 Backend c 13 apache apache 11 TTL c 979305817 RFC 60 -1 -1 1347697289 0 1347697288 0 60 11 VCL_call c fetch deliver 11 ObjProtocol c HTTP/1.1 11 ObjResponse c OK 11 ObjHeader c Date: Sat, 15 Sep 2012 08:21:28 GMT 11 ObjHeader c Server: Apache/2.2.16 (Debian) 11 ObjHeader c Content-Language: en-us 11 ObjHeader c Content-Encoding: gzip 11 ObjHeader c Vary: Accept,Accept-Encoding,Accept-Language,Cookie 11 ObjHeader c Cache-Control: s-maxage=60, no-transform, max-age=60 11 ObjHeader c Content-Type: application/json; charset=utf-8 11 Gzip c u F - 6399 69865 80 80 51128 11 VCL_call c deliver deliver 11 TxProtocol c HTTP/1.1 11 TxStatus c 200 11 TxResponse c OK 11 TxHeader c Server: Apache/2.2.16 (Debian) 11 TxHeader c Content-Language: en-us 11 TxHeader c Vary: Accept,Accept-Encoding,Accept-Language,Cookie 11 TxHeader c Cache-Control: s-maxage=60, no-transform, max-age=60 11 TxHeader c Content-Type: application/json; charset=utf-8 11 TxHeader c Date: Sat, 15 Sep 2012 08:21:29 GMT 11 TxHeader c Connection: keep-alive 11 Length c 0 11 ReqEnd c 979305817 1347697288.292612076 1347697289.456128597 0.000086784 1.163468122 0.000048399

    Read the article

  • Building a better mouse-trap &ndash; Improving the creation of XML Message Requests using Reflection, XML &amp; XSLT

    - by paulschapman
    Introduction The way I previously created messages to send to the GovTalk service I used the XMLDocument to create the request. While this worked it left a number of problems; not least that for every message a special function would need to created. This is OK for the short term but the biggest cost in any software project is maintenance and this would be a headache to maintain. So the following is a somewhat better way of achieving the same thing. For the purposes of this article I am going to be using the CompanyNumberSearch request of the GovTalk service – although this technique would work for any service that accepted XML. The C# functions which send and receive the messages remain the same. The magic sauce in this is the XSLT which defines the structure of the request, and the use of objects in conjunction with reflection to provide the content. It is a bit like Sweet Chilli Sauce added to Chicken on a bed of rice. So on to the Sweet Chilli Sauce The Sweet Chilli Sauce The request to search for a company based on it’s number is as follows; <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID>1</TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID>????????????????????????????????</SenderID> <Authentication> <Method>CHMD5</Method> <Value>????????????????????????????????</Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber>99999999</PartialCompanyNumber> <DataSet>LIVE</DataSet> <SearchRows>1</SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> This is the XML that we send to the GovTalk Service and we get back a list of companies that match the criteria passed A message is structured in two parts; The envelope which identifies the person sending the request, with the name of the request, and the body which gives the detail of the company we are looking for. The Chilli What makes it possible is the use of XSLT to define the message – and serialization to convert each request object into XML. To start we need to create an object which will represent the contents of the message we are sending. However there is a common properties in all the messages that we send to Companies House. These properties are as follows SenderId – the id of the person sending the message SenderPassword – the password associated with Id TransactionId – Unique identifier for the message AuthenticationValue – authenticates the request Because these properties are unique to the Companies House message, and because they are shared with all messages they are perfect candidates for a base class. The class is as follows; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Security.Cryptography; using System.Text; using System.Text.RegularExpressions; using Microsoft.WindowsAzure.ServiceRuntime; namespace CompanyHub.Services { public class GovTalkRequest { public GovTalkRequest() { try { SenderID = RoleEnvironment.GetConfigurationSettingValue("SenderId"); SenderPassword = RoleEnvironment.GetConfigurationSettingValue("SenderPassword"); TransactionId = DateTime.Now.Ticks.ToString(); AuthenticationValue = EncodePassword(String.Format("{0}{1}{2}", SenderID, SenderPassword, TransactionId)); } catch (System.Exception ex) { throw ex; } } /// <summary> /// returns the Sender ID to be used when communicating with the GovTalk Service /// </summary> public String SenderID { get; set; } /// <summary> /// return the password to be used when communicating with the GovTalk Service /// </summary> public String SenderPassword { get; set; } // end SenderPassword /// <summary> /// Transaction Id - uses the Time and Date converted to Ticks /// </summary> public String TransactionId { get; set; } // end TransactionId /// <summary> /// calculate the authentication value that will be used when /// communicating with /// </summary> public String AuthenticationValue { get; set; } // end AuthenticationValue property /// <summary> /// encodes password(s) using MD5 /// </summary> /// <param name="clearPassword"></param> /// <returns></returns> public static String EncodePassword(String clearPassword) { MD5CryptoServiceProvider md5Hasher = new MD5CryptoServiceProvider(); byte[] hashedBytes; UTF32Encoding encoder = new UTF32Encoding(); hashedBytes = md5Hasher.ComputeHash(ASCIIEncoding.Default.GetBytes(clearPassword)); String result = Regex.Replace(BitConverter.ToString(hashedBytes), "-", "").ToLower(); return result; } } } There is nothing particularly clever here, except for the EncodePassword method which hashes the value made up of the SenderId, Password and Transaction id. Each message inherits from this object. So for the Company Number Search in addition to the properties above we need a partial number, which dataset to search – for the purposes of the project we only need to search the LIVE set so this can be set in the constructor and the SearchRows. Again all are set as properties. With the SearchRows and DataSet initialized in the constructor. public class CompanyNumberSearchRequest : GovTalkRequest, IDisposable { /// <summary> /// /// </summary> public CompanyNumberSearchRequest() : base() { DataSet = "LIVE"; SearchRows = 1; } /// <summary> /// Company Number to search against /// </summary> public String PartialCompanyNumber { get; set; } /// <summary> /// What DataSet should be searched for the company /// </summary> public String DataSet { get; set; } /// <summary> /// How many rows should be returned /// </summary> public int SearchRows { get; set; } public void Dispose() { DataSet = String.Empty; PartialCompanyNumber = String.Empty; DataSet = "LIVE"; SearchRows = 1; } } As well as inheriting from our base class, I have also inherited from IDisposable – not just because it is just plain good practice to dispose of objects when coding, but it gives also gives us more versatility when using the object. There are four stages in making a request and this is reflected in the four methods we execute in making a call to the Companies House service; Create a request Send a request Check the status If OK then get the results of the request I’ve implemented each of these stages within a static class called Toolbox – which also means I don’t need to create an instance of the class to use it. When making a request there are three stages; Get the template for the message Serialize the object representing the message Transform the serialized object using a predefined XSLT file. Each of my templates I have defined as an embedded resource. When retrieving a resource of this kind we have to include the full namespace to the resource. In making the code re-usable as much as possible I defined the full ‘path’ within the GetRequest method. requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); So we now have the full path of the file within the assembly. Now all we need do is retrieve the assembly and get the resource. asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); Once retrieved  So this can be returned to the calling function and we now have a stream of XSLT to define the message. Time now to serialize the request to create the other side of this message. // Serialize object containing Request, Load into XML Document t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); First off we need the type of the object so we make a call to the GetType method of the object containing the Message properties. Next we need a MemoryStream, XmlSerializer and an XMLTextWriter so these can be initialized. The object is serialized by making the call to the Serialize method of the serializer object. The result of that is then converted into a MemoryStream. That MemoryStream is then converted into a string. ConvertByteArrayToString This is a fairly simple function which uses an ASCIIEncoding object found within the System.Text namespace to convert an array of bytes into a string. public static String ConvertByteArrayToString(byte[] bytes) { System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); return enc.GetString(bytes); } I only put it into a function because I will be using this in various places. The Sauce When adding support for other messages outside of creating a new object to store the properties of the message, the C# components do not need to change. It is in the XSLT file that the versatility of the technique lies. The XSLT file determines the format of the message. For the CompanyNumberSearch the XSLT file is as follows; <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID> <xsl:value-of select="CompanyNumberSearchRequest/TransactionId"/> </TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID><xsl:value-of select="CompanyNumberSearchRequest/SenderID"/></SenderID> <Authentication> <Method>CHMD5</Method> <Value> <xsl:value-of select="CompanyNumberSearchRequest/AuthenticationValue"/> </Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber> <xsl:value-of select="CompanyNumberSearchRequest/PartialCompanyNumber"/> </PartialCompanyNumber> <DataSet> <xsl:value-of select="CompanyNumberSearchRequest/DataSet"/> </DataSet> <SearchRows> <xsl:value-of select="CompanyNumberSearchRequest/SearchRows"/> </SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> </xsl:template> </xsl:stylesheet> The outer two tags define that this is a XSLT stylesheet and the root tag from which the nodes are searched for. The GovTalkMessage is the format of the message that will be sent to Companies House. We first set up the XslCompiledTransform object which will transform the XSLT template and the serialized object into the request to Companies House. xslt = new XslCompiledTransform(); resultStream = new MemoryStream(); writer = new XmlTextWriter(resultStream, Encoding.ASCII); doc = new XmlDocument(); The Serialize method require XmlTextWriter to write the XML (writer) and a stream to place the transferred object into (writer). The XML will be loaded into an XMLDocument object (doc) prior to the transformation. // create XSLT Template xslTemplate = Toolbox.GetRequest(Template); xslTemplate.Seek(0, SeekOrigin.Begin); templateReader = XmlReader.Create(xslTemplate); xslt.Load(templateReader); I have stored all the templates as a series of Embedded Resources and the GetRequestCall takes the name of the template and extracts the relevent XSLT file. /// <summary> /// Gets the framwork XML which makes the request /// </summary> /// <param name="RequestFile"></param> /// <returns></returns> public static Stream GetRequest(String RequestFile) { String requestFile = String.Empty; Stream sr = null; Assembly asm = null; try { requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); } catch (Exception) { throw; } finally { asm = null; } return sr; } // end private static stream GetRequest We first take the template name and expand it to include the full namespace to the Embedded Resource I like to keep all my schemas in the same directory and so the namespace reflects this. The rest is the default namespace for the project. Then we get the currently executing assembly (which will contain the resources with the call to GetExecutingAssembly() ) Finally we get a stream which contains the XSLT file. We use this stream and then load an XmlReader with the contents of the template, and that is in turn loaded into the XslCompiledTransform object. We convert the object containing the message properties into Xml by serializing it; calling the Serialize() method of the XmlSerializer object. To set up the object we do the following; t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); We first determine the type of the object being transferred by calling GetType() We create an XmlSerializer object by passing the type of the object being serialized. The serializer writes to a memory stream and that is linked to an XmlTextWriter. Next job is to serialize the object and load it into an XmlDocument. serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; xmlRequest = new XmlTextReader(ms); GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); doc.LoadXml(GovTalkRequest); Time to transform the XML to construct the full request. xslt.Transform(doc, writer); resultStream.Seek(0, SeekOrigin.Begin); request = Toolbox.ConvertByteArrayToString(resultStream.ToArray()); So that creates the full request to be sent  to Companies House. Sending the request So far we have a string with a request for the Companies House service. Now we need to send the request to the Companies House Service. Configuration within an Azure project There are entire blog entries written about configuration within an Azure project – most of this is out of scope for this article but the following is a summary. Configuration is defined in two files within the parent project *.csdef which contains the definition of configuration setting. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WebRole name="CompanyHub.Host"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="80" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="DataConnectionString" /> </ConfigurationSettings> </WebRole> <WebRole name="CompanyHub.Services"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="8080" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="SenderId"/> <Setting name="SenderPassword" /> <Setting name="GovTalkUrl"/> </ConfigurationSettings> </WebRole> <WorkerRole name="CompanyHub.Worker"> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> </ConfigurationSettings> </WorkerRole> </ServiceDefinition>   Above is the configuration definition from the project. What we are interested in however is the ConfigurationSettings tag of the CompanyHub.Services WebRole. There are four configuration settings here, but at the moment we are interested in the second to forth settings; SenderId, SenderPassword and GovTalkUrl The value of these settings are defined in the ServiceDefinition.cscfg file; <?xml version="1.0"?> <ServiceConfiguration serviceName="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration"> <Role name="CompanyHub.Host"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="DataConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> <Role name="CompanyHub.Services"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="SenderId" value="UserID"/> <Setting name="SenderPassword" value="Password"/> <Setting name="GovTalkUrl" value="http://xmlgw.companieshouse.gov.uk/v1-0/xmlgw/Gateway"/> </ConfigurationSettings> </Role> <Role name="CompanyHub.Worker"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> </ServiceConfiguration>   Look for the Role tag that contains our project name (CompanyHub.Services). Having configured the parameters we can now transmit the request. This is done by ‘POST’ing a stream of XML to the Companies House servers. govTalkUrl = RoleEnvironment.GetConfigurationSettingValue("GovTalkUrl"); request = WebRequest.Create(govTalkUrl); request.Method = "POST"; request.ContentType = "text/xml"; writer = new StreamWriter(request.GetRequestStream()); writer.WriteLine(RequestMessage); writer.Close(); We use the WebRequest object to send the object. Set the method of sending to ‘POST’ and the type of data as text/xml. Once set up all we do is write the request to the writer – this sends the request to Companies House. Did the Request Work Part I – Getting the response Having sent a request – we now need the result of that request. response = request.GetResponse(); reader = response.GetResponseStream(); result = Toolbox.ConvertByteArrayToString(Toolbox.ReadFully(reader));   The WebRequest object has a GetResponse() method which allows us to get the response sent back. Like many of these calls the results come in the form of a stream which we convert into a string. Did the Request Work Part II – Translating the Response Much like XSLT and XML were used to create the original request, so it can be used to extract the response and by deserializing the result we create an object that contains the response. Did it work? It would be really great if everything worked all the time. Of course if it did then I don’t suppose people would pay me and others the big bucks so that our programmes do not a) Collapse in a heap (this is an area of memory) b) Blow every fuse in the place in a shower of sparks (this will probably not happen this being real life and not a Hollywood movie, but it was possible to blow the sound system of a BBC Model B with a poorly coded setting) c) Go nuts and trap everyone outside the airlock (this was from a movie, and unless NASA get a manned moon/mars mission set up unlikely to happen) d) Go nuts and take over the world (this was also from a movie, but please note life has a habit of being of exceeding the wildest imaginations of Hollywood writers (note writers – Hollywood executives have no imagination and judging by recent output of that town have turned plagiarism into an art form). e) Freeze in total confusion because the cleaner pulled the plug to the internet router (this has happened) So anyway – we need to check to see if our request actually worked. Within the GovTalk response there is a section that details the status of the message and a description of what went wrong (if anything did). I have defined an XSLT template which will extract these into an XML document. <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <xsl:template match="/"> <GovTalkStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Status> <xsl:value-of select="ev:GovTalkMessage/ev:Header/ev:MessageDetails/ev:Qualifier"/> </Status> <Text> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Text"/> </Text> <Location> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Location"/> </Location> <Number> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Number"/> </Number> <Type> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Type"/> </Type> </GovTalkStatus> </xsl:template> </xsl:stylesheet>   Only thing different about previous XSL files is the references to two namespaces ev & gt. These are defined in the GovTalk response at the top of the response; xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" If we do not put these references into the XSLT template then  the XslCompiledTransform object will not be able to find the relevant tags. Deserialization is a fairly simple activity. encoder = new ASCIIEncoding(); ms = new MemoryStream(encoder.GetBytes(statusXML)); serializer = new XmlSerializer(typeof(GovTalkStatus)); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); messageStatus = (GovTalkStatus)serializer.Deserialize(ms);   We set up a serialization object using the object type containing the error state and pass to it the results of a transformation between the XSLT above and the GovTalk response. Now we have an object containing any error state, and the error message. All we need to do is check the status. If there is an error then we can flag an error. If not then  we extract the results and pass that as an object back to the calling function. We go this by guess what – defining an XSLT template for the result and using that to create an Xml Stream which can be deserialized into a .Net object. In this instance the XSLT to create the result of a Company Number Search is; <?xml version="1.0" encoding="us-ascii"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:sch="http://xmlgw.companieshouse.gov.uk/v1-0/schema" exclude-result-prefixes="ev"> <xsl:template match="/"> <CompanySearchResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <CompanyNumber> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyNumber"/> </CompanyNumber> <CompanyName> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyName"/> </CompanyName> </CompanySearchResult> </xsl:template> </xsl:stylesheet> and the object definition is; using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace CompanyHub.Services { public class CompanySearchResult { public CompanySearchResult() { CompanyNumber = String.Empty; CompanyName = String.Empty; } public String CompanyNumber { get; set; } public String CompanyName { get; set; } } } Our entire code to make calls to send a request, and interpret the results are; String request = String.Empty; String response = String.Empty; GovTalkStatus status = null; fault = null; try { using (CompanyNumberSearchRequest requestObj = new CompanyNumberSearchRequest()) { requestObj.PartialCompanyNumber = CompanyNumber; request = Toolbox.CreateRequest(requestObj, "CompanyNumberSearch.xsl"); response = Toolbox.SendGovTalkRequest(request); status = Toolbox.GetMessageStatus(response); if (status.Status.ToLower() == "error") { fault = new HubFault() { Message = status.Text }; } else { Object obj = Toolbox.GetGovTalkResponse(response, "CompanyNumberSearchResult.xsl", typeof(CompanySearchResult)); } } } catch (FaultException<ArgumentException> ex) { fault = new HubFault() { FaultType = ex.Detail.GetType().FullName, Message = ex.Detail.Message }; } catch (System.Exception ex) { fault = new HubFault() { FaultType = ex.GetType().FullName, Message = ex.Message }; } finally { } Wrap up So there we have it – a reusable set of functions to send and interpret XML results from an internet based service. The code is reusable with a little change with any service which uses XML as a transport mechanism – and as for the Companies House GovTalk service all I need to do is create various objects for the result and message sent and the relevent XSLT files. I might need minor changes for other services but something like 70-90% will be exactly the same.

    Read the article

  • Error when using TransformToAncestor: "The specified Visual is not an ancestor of this Visual."

    - by Brian Sullivan
    I'm trying to get the offset of a control relative to the top of its window, but I'm running into trouble when using the TransformToAncestor method of the control. Note: this code is in a value converter which will convert from a control to its relative Y position in relation to the window. public object Convert(object value, Type targetType, object parameter, CultureInfo culture) { var ctrl = (Control) value; var win = Window.GetWindow(ctrl); var transform = ctrl.TransformToAncestor(win); // Exception thrown here. var pt = transform.Transform(new Point(0, 0)); return pt.Y; } The call to Window.GetWindow works just fine, and returns the correct window object inside which the control resides. Am I misunderstanding what WPF thinks of as an "ancestor"? I would think that given the result of GetWindow, that window would be an ancestor of the control. Are there certain nesting patters that would cause the line of ancestry to be cut off at a certain point?

    Read the article

  • Trouble using Loader, can't access properties of loaded swf

    - by anne
    May not have asked question correctly so I’m asking again. I’m using Flash AS3 with code in actions layer. Main movieclip onstage is : design_mc. Within it is a movieclip already in place onstage with an instance name clipart_mc. Now I’m also loading a ListBox to the stage and each time a selection is made from listbox myLoader9 is used to load selected .swf into design_mc.clipArt_mc. Now within each of the .swf files loaded into design_mc.clipArt_mc there is a mc I’d like to color transform called color_mc. So now the listbox is onstage and I make a selection that places heart.swf inside of design_mc.clipArt_mc. I want to access heart.swf so I did this: var child:DisplayObject = myLoader9.content.contentLoaderInfo.content.color_mc; var colorTrans3:ColorTransform = new ColorTransform(); var trans3:Transform = new Transform(child); I still can not get to heart.swf. Can anyone help please? Anne

    Read the article

  • Writing JSON with XSLT

    - by JP
    Hi, I'm trying to write XSLT to transform a specific web page to JSON. The following code demonstrates how Ruby would do this conversion, but the XSLT doesn't generate valid JSON (there's one too many commas inside the array) - anyone know how to write XSLT to generate valid JSON? require 'rubygems' require 'nokogiri' require 'open-uri' doc = Nokogiri::HTML(open('http://bbc.co.uk/radio1/playlist')) xslt = Nokogiri::XSLT(DATA.read) puts out = xslt.transform(doc) # Now follows the XSLT __END__ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns="http://www.w3.org/1999/xhtml"> <xsl:output method="text" encoding="UTF-8" media-type="text/plain"/> <xsl:template match="/"> [ <xsl:for-each select="//*[@id='playlist_a']//div[@class='artists_and_songs']//ul[@class='clearme']"> {'artist':'<xsl:value-of select="li[@class='artist']" />','track':'<xsl:value-of select="li[@class='song']" />'}, </xsl:for-each> ] </xsl:template> </xsl:stylesheet>

    Read the article

  • XSL-stylesheet URI using JAX-WS and Glassfish v3.

    - by Tony
    Hi there. I'm trying to use XSL-stylesheets in order to transform some generated XML-data to HTML-output. The architecture that I'm using is as follows: [Client Side] Web-Browser = [Server Side: Glassfish v3] JSP-pages - Web-Services. My web service generates some XML-data, then I want to format it with XSL-stylesheet, pass the result to JSP-page and show to user. I'm using JAXP for XSL-transformations and I want to create a javax.xml.transform.stream.StreamSource object with XSL-file stream for the javax.xml.transform.Transformer object, but I'm having a difficulty with specifying the path/URL for the XSL-file. So the question is: where should I put my XSL-stylesheets in a project and how should I access them from code? I'm using Glassfish v3 and NetBeans 6.8. Thanks.

    Read the article

  • FileReference and HttpService Browse Image Modify it then Upload it

    - by user177787
    Hello, I am trying to do an image uploader, user can: - browse local file with button.browse - select one and save it as a FileReference. - then we do FileReference.load() then bind the data to our image control. - after we make a rotation on it and change the data of image. - and to finish we upload it to a server. To change the data of image i get the matrix of the displayed image and transform it then i re-use the new matrix and bind it to my old image: private function TurnImage():void { //Turn it var m:Matrix = _img.transform.matrix; rotateImage(m); _img.transform.matrix = m; } Now the mater is that i really don't know how to send the data as a file to my server cause its not stored in the FileReference and data inside FileReference is readOnly so we can't change it or create a new, so i can't use .upload();. Then i tried HttpService.send but i can't figure out how you send a file and not a mxml.

    Read the article

  • C++ boost or STL `y += f(x)` type algorithm

    - by aaa
    hello. I know I can do this y[i] += f(x[i]) using transform with two input iterators. however it seems somewhat counterintuitive and more complicated than for loop. Is there a more natural way to do so using existing algorithm in boost or Stl. I could not find clean equivalent. here is transform (y = y + a*x): using boost::lambda; transform(y.begin(), y.end(), x.begin(), y.begin(), (_1 + scale*_2); // I thought something may exist: transform2(x.begin(), x.end(), y.begin(), (_2 + scale*_1); // it does not, so no biggie. I will write wrapper Thanks

    Read the article

  • Are CMAttitude and CATransform3D related by rotational matrices?

    - by Alex Stone
    I'm looking at the core motion class CMAttitude, it can express the device's orientation as a 3x3 rotational matrix. At the same time I've taken a look at the CATransform3D, which encapsulates the view's attitude, as well as scaling. The CATransform3D is a 4x4 matrix. I've seen that the OpenGL rotational matrix is 4x4 and is simply 0001 padded in the 4th row and column. I'm wandering if the CMAttitude's rotational matrix is related to CATransform's matrix? Can I use the device's rotation in space obtained via a rotational matrix to transform a UIView using CATransform3D? My intention is to let the user move the phone and apply the same transform to a UIView on the screen. Bonus question: if they are related, how do I transform a CMAttitude's rotational matrix to CATransform3D?

    Read the article

  • CALayer Sublayers Flipping

    - by user128647
    Hello All, How to Flip CALayer Sublayer. i have tried : CGFloat timeOffset = 0; CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:@"transform"]; CATransform3D transform = CATransform3DMakeRotation(M_PI/2, 0, 1, 0); animation.timingFunction = [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseIn]; animation.toValue = [NSValue valueWithCATransform3D:transform]; animation.duration = 0.2; animation.beginTime = CACurrentMediaTime() + timeOffset; animation.fillMode = kCAFillModeBoth; animation.removedOnCompletion = NO; [selectedLayer addAnimation:animation forKey:nil]; timeOffset += 0.1; in this code selected layer is not flipping properly, Give me some suggestions. Thank you

    Read the article

  • How to determine path to project folder in .Net?

    - by paul
    I have a project folder called XSL which contains xsl files used for transforming xml. I use the following code to fetch an xsl file: string html = @"c:\temp\export.html"; XslCompiledTransform transform = new XslCompiledTransform(); Uri uri = new Uri(@"XSL\ToHtml.xsl", UriKind.Relative); transform.Transform(CurrentXmlFile, html); System.Diagnostics.Process.Start(html); This works ok when debugging but when I deploy using clickonce and install it, I get an error - 'Could not find part of the path {my user path}\XSL\ToHtml.xsl' What must I do to correctly reference this path?

    Read the article

  • C++ template parameter/class ambiguity

    - by aaa
    hello. while testing with different version of g++, the following problem came up template<class bra> struct Transform<bra, void> : kernel::Eri::Transform::bra { static const size_t ni = bra::A::size; bra::A is interpreted as kernel::Eri::Transform::bra::A, rather than template argument by g++ 4.1.2. on the other hand, g++ 4.3 gets it right. what should be correct behavior according to standard? Meanwhile, I refactor slightly to make problem go away.

    Read the article

  • Transforming large Xml files

    - by Chad
    I was using this extension method to transform very large xml files with an xslt. Unfortunately, I get an OutOfMemoryException on the source.ToString() line. I realize there must be a better way, I'm just not sure what that would be? public static XElement Transform(this XElement source, string xslPath, XsltArgumentList arguments) { var doc = new XmlDocument(); doc.LoadXml(source.ToString()); var xsl = new XslCompiledTransform(); xsl.Load(xslPath); using (var swDocument = new StringWriter(System.Globalization.CultureInfo.InvariantCulture)) { using (var xtw = new XmlTextWriter(swDocument)) { xsl.Transform((doc.CreateNavigator()), arguments, xtw); xtw.Flush(); return XElement.Parse(swDocument.ToString()); } } } Thoughts? Solutions? Etc.

    Read the article

  • UIRotationGestureRecognizer changes with CGAffineTransformMakeScale

    - by user523234
    A view is flipped using this: self.transform = CGAffineTransformMakeScale(-1, 1); // self is an UIView To rotate this view: -(void)handleRotate:(UIRotationGestureRecognizer *)recognizer { recognizer.view.transform = CGAffineTransformRotate(recognizer.view.transform, recognizer.rotation); recognizer.rotation = 0; } The issue is that after the view is flipped so is the rotation's direction. Any solution how to fix this? Edit: My current solution is using a boolean and negate the recognizer.rotation value in handleRotate method. But I am still looking for the technical solution.

    Read the article

  • Cisco ASA 5505 - L2TP over IPsec

    - by xraminx
    I have followed this document on cisco site to set up the L2TP over IPsec connection. When I try to establish a VPN to ASA 5505 from my Windows XP, after I click on "connect" button, the "Connecting ...." dialog box appears and after a while I get this error message: Error 800: Unable to establish VPN connection. The VPN server may be unreachable, or security parameters may not be configured properly for this connection. ASA version 7.2(4) ASDM version 5.2(4) Windows XP SP3 Windows XP and ASA 5505 are on the same LAN for test purposes. Edit 1: There are two VLANs defined on the cisco device (the standard setup on cisco ASA5505). - port 0 is on VLAN2, outside; - and ports 1 to 7 on VLAN1, inside. I run a cable from my linksys home router (10.50.10.1) to the cisco ASA5505 router on port 0 (outside). Port 0 have IP 192.168.1.1 used internally by cisco and I have also assigned the external IP 10.50.10.206 to port 0 (outside). I run a cable from Windows XP to Cisco router on port 1 (inside). Port 1 is assigned an IP from Cisco router 192.168.1.2. The Windows XP is also connected to my linksys home router via wireless (10.50.10.141). Edit 2: When I try to establish vpn, the Cisco device real time Log viewer shows 7 entries like this: Severity:5 Date:Sep 15 2009 Time: 14:51:29 SyslogID: 713904 Destination IP = 10.50.10.141, Decription: No crypto map bound to interface... dropping pkt Edit 3: This is the setup on the router right now. Result of the command: "show run" : Saved : ASA Version 7.2(4) ! hostname ciscoasa domain-name default.domain.invalid enable password HGFHGFGHFHGHGFHGF encrypted passwd NMMNMNMNMNMNMN encrypted names name 192.168.1.200 WebServer1 name 10.50.10.206 external-ip-address ! interface Vlan1 nameif inside security-level 100 ip address 192.168.1.1 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address external-ip-address 255.0.0.0 ! interface Vlan3 no nameif security-level 50 no ip address ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive dns server-group DefaultDNS domain-name default.domain.invalid object-group service l2tp udp port-object eq 1701 access-list outside_access_in remark Allow incoming tcp/http access-list outside_access_in extended permit tcp any host WebServer1 eq www access-list outside_access_in extended permit udp any any eq 1701 access-list inside_nat0_outbound extended permit ip any 192.168.1.208 255.255.255.240 access-list inside_cryptomap_1 extended permit ip interface outside interface inside pager lines 24 logging enable logging asdm informational mtu inside 1500 mtu outside 1500 ip local pool PPTP-VPN 192.168.1.210-192.168.1.220 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-524.bin no asdm history enable arp timeout 14400 global (outside) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface www WebServer1 www netmask 255.255.255.255 access-group outside_access_in in interface outside timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute http server enable http 192.168.1.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set TRANS_ESP_3DES_SHA esp-3des esp-sha-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA mode transport crypto ipsec transform-set TRANS_ESP_3DES_MD5 esp-3des esp-md5-hmac crypto ipsec transform-set TRANS_ESP_3DES_MD5 mode transport crypto map outside_map 1 match address inside_cryptomap_1 crypto map outside_map 1 set transform-set TRANS_ESP_3DES_MD5 crypto map outside_map interface inside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash md5 group 2 lifetime 86400 telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd auto_config outside ! dhcpd address 192.168.1.2-192.168.1.33 inside dhcpd enable inside ! group-policy DefaultRAGroup internal group-policy DefaultRAGroup attributes dns-server value 192.168.1.1 vpn-tunnel-protocol IPSec l2tp-ipsec username myusername password FGHFGHFHGFHGFGFHF nt-encrypted tunnel-group DefaultRAGroup general-attributes address-pool PPTP-VPN default-group-policy DefaultRAGroup tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key * tunnel-group DefaultRAGroup ppp-attributes no authentication chap authentication ms-chap-v2 ! ! prompt hostname context Cryptochecksum:a9331e84064f27e6220a8667bf5076c1 : end

    Read the article

  • Unity AddExplosionForce not doing anything

    - by Zero
    Recently I've started learning Unity3D. I'm working on a game as an exercise in which you control a space ship and have to dodge asteroids. If you feel like it's getting a bit too much you can hit the space bar, emitting a blast in all directions that repulses nearby asteroids. To create this blast I have the following code: public class PlayerBlastScript : MonoBehaviour { public ParticleSystem BlastEffect; // Update is called once per frame void Update () { if (Input.GetKeyUp(KeyCode.Space)) { Fire(); } } public void Fire() { ParticleEmitter effect = (ParticleEmitter) Instantiate (BlastEffect, transform.position, Quaternion.identity); effect.Emit(); Vector3 explosionPos = transform.position; Collider[] colliders = Physics.OverlapSphere(explosionPos, 25.0f); foreach(Collider hit in colliders) { if (!hit) { continue; } if (hit.rigidbody) { hit.rigidbody.AddExplosionForce(5000.0f, explosionPos, 100.0f); } } } } Even though the blast effect appears, the asteroids are not affected at all. The asteroids are all rigid bodies so what's the problem?

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • BizTalk 2009 - Naming Guidelines

    - by StuartBrierley
    The following is effectively a repost of the BizTalk 2004 naming guidlines that I have previously detailed.  I have posted these again for completeness under BizTalk 2009 and to allow an element of separation in case I find some reason to amend these for BizTalk 2009. These guidlines should be universal across any version of BizTalk you may wish to apply them to. General Rules All names should be named with a Pascal convention. Project Namespaces For message schemas: [CompanyName].XML.Schemas.[FunctionalName]* Examples:  ABC.XML.Schemas.Underwriting DEF.XML.Schemas.MarshmellowTradingExchange * Donates potential for multiple levels of functional name, such as Underwriting.Dictionary.Valuation For web services: [CompanyName].Web.Services.[FunctionalName] Examples: ABC.Web.Services.OrderJellyBeans For the main BizTalk Projects: [CompanyName].BizTalk.[AssemblyType].[FunctionalName]* Examples: ABC.BizTalk.Mappings.Underwriting ABC.BizTalk.Orchestrations.Underwriting * Donates potential for multiple levels of functional name, such as Mappings.Underwriting.Valuations Assemblies BizTalk Assembly names should match the associated Project Namespace, such as ABC.BizTalk.Mappings.Underwriting. This pertains to the formal assembly name and the DLL name. The Solution name should take the name of the main project within the solution, and also therefore the namespace for that project. Although long names such as this can be unwieldy to work with, the benefits of having the full scope available when the assemblies are installed on the target server are generally judged to outweigh this inconvenience. Messaging Artifacts Artifact Standard Notes Example Schema <DescriptiveName>.xsd   .NET Type name should match, without file extension.    .NET Namespace will likely match assembly name. PurchaseOrderAcknowledge_FF.xsd  or FNMA100330_FF.xsd Property Schema <DescriptiveName>.xsd Should be named to reflect possible common usage across multiple schemas  IspecMessagePropertySchema.xsd UnderwritingOrchestrationKeys.xsd Map <SourceSchema>2<DestinationSchema>.btm Exceptions to this may be made where the source and destination schemas share the majority of the name, such as in mainframe web service maps InstructionResponse2CustomEmailRequest.btm (exception example) AccountCustomerAddressSummaryRequest2MainframeRequest.btm Orchestration <DescriptiveName>.odx   GetValuationReports.odx SendMTEDecisionResponse.odx Send/Receive Pipeline <DescriptiveName>.btp   ValidatingXMLReceivePipeline.btp FlatFileAssembler.btp Receive Port A plainly worded phrase that will clearly explain the function.    FraudPreventionServices LetterProcessing   Receive Location A plainly worded phrase that will clearly explain the function.  ? Do we want to include the transport type here ? Arrears Web Service Send Port Group A plainly worded phrase that will clearly explain the function.   Customer Updates Send Port A plainly worded phrase that will clearly explain the function.    ABCProductUpdater LogLendingPolicyOutput Parties A meaningful name for a Trading Partner. If dealing with multiple entities within a Trading Partner organization, the Organization name could be used as a prefix.   Roles A meaningful name for the role that a Trading Partner plays.     Orchestration Workflow Shapes Shape Standard Notes Example Scopes <DescriptionOfContainedWork> or <DescOfcontainedWork><TxType>   Including info about transaction type may be appropriate in some situations where it adds significant documentation value to the diagram. HandleReportResponse         Receive Receive<MessageName> Typically, MessageName will be the same as the name of the message variable that is being received “into”. ReceiveReportResponse Send Send<MessageName> Typically, MessageName will be the same as the name of the message variable that is being sent. SendValuationDetailsRequest Expression <DescriptionOfEffect> Expression shapes should be named to describe the net effect of the expression, similar to naming a method.  The exception to this is the case where the expression is interacting with an external .NET component to perform a function that overlaps with existing BizTalk functionality – use closest BizTalk shape for this case. CreatePrintXML Decide <DescriptionOfDecision> A description of what will be decided in the “if” branch Report Type? Perform MF Save? If-Branch <DescriptionOfDecision> A (potentially abbreviated) description of what is being decided Mortgage Valuation Yes Else-Branch Else Else-branch shapes should always be named “Else” Else Construct Message (Assign) Create<Message> (for Construct)     <ExpressionDescription> (for expression) If a Construct shape contains a message assignment, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.    The actual message assignment shape contained should be named to describe the expression that is contained. CreateReportDataMV   which contains expression: ExtractReportData Construct Message (Transform) Create<Message> (for Construct)   <SourceSchema>2<DestSchema> (for transform) If a Construct shape contains a message transform, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.   The actual message transform shape contained should generally be named the same as the called map.  CreateReportDataMV   which contains transform: ReportDataMV2ReportDataMV                 Construct Message (containing multiple shapes)   If a Construct Message shape uses multiple assignments or transforms, the overall shape should be named to communicate the net effect, using no prefix.     Call/Start Orchestration Call<OrchestrationName>   Start<OrchestrationName>     Throw Throw<ExceptionType> The corresponding variable name for the exception type should (often) be the same name as the exception type, only camel-cased. ThrowRuleException, which references the “ruleException” variable.     Parallel <DescriptionOfParallelWork> Parallel shapes should be named by a description of what work will be done in parallel   Delay <DescriptionOfWhatWaitingFor> Delay shapes should be named by a description of what is being waited for.  POAcknowledgeTimeout Listen <DescriptionOfOutcomes> Listen shapes should be named by a description that captures (to the degree possible) all the branches of the Listen shape POAckOrTimeout FirstShippingBid Loop <DescriptionOfLoop> A (potentially abbreviated) description of what the loop is. ForEachValuationReport WhileErrorFlagTrue Role Link   See “Roles” in messaging naming conventions above.   Suspend <ReasonDescription> Describe what action an administrator must take to resume the orchestration.  More detail can be passed to error property – and should include what should be done by the administrator before resuming the orchestration. ReEstablishCreditLink Terminate <ReasonDescription> Describe why the orchestration terminated.  More detail can be passed to error property. TimeoutsExpired Call Rules Call<PolicyName> The policy name may need to be abbreviated. CallLendingPolicy Compensate Compensate or Compensate<TxName> If the shape compensates nested transactions, names should be suffixed with the name of the nested transaction – otherwise it should simple be Compensate. CompensateTransferFunds Orchestration Types Type Standard Notes Example Multi-Part Message Types <LogicalDocumentType>   Multi-part types encapsulate multiple parts.  The WSDL spec indicates “parts are a flexible mechanism for describing the logical abstract content of a message.”  The name of the multi-part type should correspond to the “logical” document type, i.e. what the sum of the parts describes. InvoiceReceipt   (which might encapsulate an invoice acknowledgement and a payment voucher.) Multi-Part Messsage Part <SchemaNameOfPart> Should be named (most often) simply for the schema (or simple type) associated with the part. InvoiceHeader Messages <SchemaName> or <MuliPartMessageTypeName> Should be named based on the corresponding schema type or multi-part message type.  If there is more than one variable of a type, name for its use within the orchestration. ReportDataMV UpdatedReportDataMV Variables <DescriptiveName>   TargetFilePath StringProcessor Port Types <FunctionDescription>PortType Should be named to suggest the nature of an endpoint, with pascal casing and suffixed with “PortType”.   If there will be more than one Port for a Port Type, the Port Type should be named according to the abstract service supplied.   The WSDL spec indicates port types are “a named set of abstract operations and the abstract messages involved” that also encapsulates the message pattern (i.e. one-way, request-response, solicit-response) that all operations on the port type adhere to. ReceiveReportResponsePortType  or CallEAEPortType (This is a two way port, so Receove or Send alone would not be appropriate.  Could have been ProcessEAERequestPortType etc....) Ports <FunctionDescription>Port Should be named to suggest a grouping of functionality, with pascal casing and suffixed with “Port.”  ReceiveReportResponsePort CallEAEPort Correlation types <DescriptiveName> Should be named based on the logical name of what is being used to correlate.  PurchaseOrderNumber Correlation sets <DescriptiveName> Should be named based on the corresponding correlation type.  If there is more than one, it should be named to reflect its specific purpose within the orchestration.   PurchaseOrderNumber Orchestration parameters <DescriptiveName> Should be named to match the caller’s names for the corresponding variables where appropriate.

    Read the article

  • BoundingBox created from mesh to origin, making it bigger

    - by Gunnar Södergren
    I'm working on a level-based survival game and I want to design my scenes in Maya and export them as a single model (with multiple meshes) into XNA. My problem is that when I try to create Bounding Boxes(for Collision purposes) for each of the meshes, the are calculated from origin to the far-end of the current mesh, so to speak. I'm thinking that it might have something to do with the position each mesh brings from Maya and that it's interpreted wrongly... or something. Here's the code for when I create the boxes: private static BoundingBox CreateBoundingBox(Model model, ModelMesh mesh) { Matrix[] boneTransforms = new Matrix[model.Bones.Count]; model.CopyAbsoluteBoneTransformsTo(boneTransforms); BoundingBox result = new BoundingBox(); foreach (ModelMeshPart meshPart in mesh.MeshParts) { BoundingBox? meshPartBoundingBox = GetBoundingBox(meshPart, boneTransforms[mesh.ParentBone.Index]); if (meshPartBoundingBox != null) result = BoundingBox.CreateMerged(result, meshPartBoundingBox.Value); } result = new BoundingBox(result.Min, result.Max); return result; } private static BoundingBox? GetBoundingBox(ModelMeshPart meshPart, Matrix transform) { if (meshPart.VertexBuffer == null) return null; Vector3[] positions = VertexElementExtractor.GetVertexElement(meshPart, VertexElementUsage.Position); if (positions == null) return null; Vector3[] transformedPositions = new Vector3[positions.Length]; Vector3.Transform(positions, ref transform, transformedPositions); for (int i = 0; i < transformedPositions.Length; i++) { Console.WriteLine(" " + transformedPositions[i]); } return BoundingBox.CreateFromPoints(transformedPositions); } public static class VertexElementExtractor { public static Vector3[] GetVertexElement(ModelMeshPart meshPart, VertexElementUsage usage) { VertexDeclaration vd = meshPart.VertexBuffer.VertexDeclaration; VertexElement[] elements = vd.GetVertexElements(); Func<VertexElement, bool> elementPredicate = ve => ve.VertexElementUsage == usage && ve.VertexElementFormat == VertexElementFormat.Vector3; if (!elements.Any(elementPredicate)) return null; VertexElement element = elements.First(elementPredicate); Vector3[] vertexData = new Vector3[meshPart.NumVertices]; meshPart.VertexBuffer.GetData((meshPart.VertexOffset * vd.VertexStride) + element.Offset, vertexData, 0, vertexData.Length, vd.VertexStride); return vertexData; } } Here's a link to the picture of the mesh(The model holds six meshes, but I'm only rendering one and it's bounding box to make it clearer: http://www.gsodergren.se/portfolio/wp-content/uploads/2011/10/Screen-shot-2011-10-24-at-1.16.37-AM.png The mesh that I'm refering to is the Cubelike one. The cylinder is a completely different model and not part of any bounding box calculation. I've double- (and tripple-)-checked that this mesh corresponds to this bounding box. Any thoughts on what I'm doing wrong?

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >