Search Results

Search found 988 results on 40 pages for 'lambda dusk'.

Page 17/40 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • Creating a sort function for a generic list

    - by Andrey
    I have a method for sorting generic lists by the object fields: public static IQueryable<T> SortTable<T>(IQueryable<T> q, string sortfield, bool ascending) { var p = Expression.Parameter(typeof(T), "p"); if (typeof(T).GetProperty(sortfield).PropertyType == typeof(int?)) { var x = Expression.Lambda<Func<T, int?>>(Expression.Property(p, sortfield), p); if (ascending) q = q.OrderBy(x); else q = q.OrderByDescending(x); } else if (typeof(T).GetProperty(sortfield).PropertyType == typeof(int)) { var x = Expression.Lambda<Func<T, int>>(Expression.Property(p, sortfield), p); if (ascending) q = q.OrderBy(x); else q = q.OrderByDescending(x); } else if (typeof(T).GetProperty(sortfield).PropertyType == typeof(DateTime)) { var x = Expression.Lambda<Func<T, DateTime>>(Expression.Property(p, sortfield), p); if (ascending) q = q.OrderBy(x); else q = q.OrderByDescending(x); } // many more for every type return q; } Is there any way I can collapse those ifs to a single generic statement? The main problem is that for the part Expression.Lambda<Func<T, int>> I am not sure how to write it generically.

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • To call SelectMany dynamically in the way of System.Linq.Dynamic

    - by user341127
    In System.Linq.Dynamic, there are a few methods to form Select, Where and other Linq statements dynamically. But there is no for SelectMany. The method for Select is as the following: public static IQueryable Select(this IQueryable source, string selector, params object[] values) { if (source == null) throw new ArgumentNullException("source"); if (selector == null) throw new ArgumentNullException("selector"); LambdaExpression lambda = DynamicExpression.ParseLambda(source.ElementType, null, selector, values); IQueryable result = source.Provider.CreateQuery( Expression.Call( typeof(Queryable), "Select", new Type[] { source.ElementType, lambda.Body.Type }, source.Expression, Expression.Quote(lambda))); return result; } I tried to modify the above code, after hours working, I couldn't find a way out. Any suggestions are welcome. Ying

    Read the article

  • What does this xkcd code do?

    - by cobbal
    On the xkcd site today, the following appeared as a joke in a <script language="scheme"> tag so what does the following code do / represent? (define (eval exp env) (cond ((self-evaluating? exp) exp) ((variable? exp) (lookup-variable-value exp env)) ((quoted? exp) (text-of-quotation exp)) ((assignment? exp) (eval-assignment exp env)) ((definition? exp) (eval-definition exp env)) ((if? exp) (eval-if exp env)) ((lambda? exp) (make-procedure (lambda-parameters exp) (lambda-body exp) env)) ((begin? exp) (eval-sequence (begin-actions exp) env)) ((cond? exp) (eval (cond->if exp) env)) ((application? exp) (apply (eval (operator exp) env) (list-of-values (operands exp) env))) (else (error "Common Lisp or Netscape Navigator 4.0+ Required" exp))))

    Read the article

  • The Definition of Regular Languages

    - by AraK
    Good Day, I have tried, and burned my brain to understand the definition of Regular Languages in Discrete Mathematics and its Applications(Rosen) without reaching the goal of understanding why the definition is like that in this book. On page(789), I am rephrasing the definition: Type 3 grammars are defined as: w1 --> w2 Where w1 is a non-terminal, and w2 is of the form: w2 = aB w2 = a Where B is a non-terminal, and a is a terminal. A special case is when w1 is the starting symbol and w2 is lambda(the empty string): w1 = S S --> lambda Two questions I couldn't find an answer for. First, Why can't w2 be of the form Ba. Second, Why lambda is only allowed for the starting symbol only. The book states that, regular languages are equivalent to Finite State Automaton, and we can easily see that a we can build FSA for both cases. I took a look at other resources, and these restrictions don't exist in these resources. Thanks,

    Read the article

  • DEADLOCK_WRAP error when using Berkeley Db in python (bsddb)

    - by JiminyCricket
    I am using a berkdb to store a huge list of key-value pairs but for some reason when i try to access some of the data later i get this error: try: key = 'scrape011201-590652' contenttext = contentdict[key] except: print the error <type 'exceptions.KeyError'> 'scrape011201-590652' in contenttext = contentdict[key]\n', ' File "/usr/lib64/python2.5/bsddb/__init__.py", line 223, in __getitem__\n return _DeadlockWrap(lambda: self.db[key]) # self.db[key]\n', 'File "/usr/lib64/python2.5/bsddb/dbutils.py", line 62, in DeadlockWrap\n return function(*_args, **_kwargs)\n', ' File "/usr/lib64/python2.5/bsddb/__init__.py", line 223, in <lambda>\n return _DeadlockWrap(lambda: self.db[key]) # self.db[key]\n'] I am not sure what DeadlockWrap is but there isnt any other program or process accessing the berkdb or writing to it (as far as i know,) so not sure how we could get a deadlock, if its referring to that. Is it possible that I am trying to access the data to rapidly? I have this function call in a loop, so something like for i in hugelist: #try to get a value from the berkdb #do something with it I am running this with multiple datasets and this error only occurs with one of them, the largest one, not the others.

    Read the article

  • Java creation of new set too slow

    - by Mgccl
    I have this program where it have some recursive function similar to this: lambda(HashSet<Integer> s){ for(int i=0;i<w;i++){ HashSet<Integer> p = (HashSet) s.clone(); p.addAll(get_next_set()); lambda(p); } } What I'm doing is union every set with the set s. And run lambda on each one of the union. I run a profiler and found the c.clone() operation took 100% of the time of my code. Are there any way to speed this up considerably?

    Read the article

  • I'm confused with block in ruby, compared to smalltalk.

    - by weakish
    What does block in ruby mean? It looks similar with smalltalk, but you can't send messages to it. For example, in smalltalk: [:x | x + 3] value: 3 returns 6. But in ruby: {|x| x + 3}.call 3 will cause SyntaxError. Well, you can pass messages to lambda in ruby, though: irb(main):025:0> ->(x){x+3}.call 3 => 6 So in ruby, block is not a block, but lambda is a block? Is this true? I mean, are there any differences between ruby lambda and smalltalk block? If this is true, then what is ruby block?

    Read the article

  • read angles in radian and convert them in degrees/minutes/seconds

    - by Amadou
    n=0; disp('This program performs an angle conversion'); disp('input data set to a straight line. Enter the name'); disp('of the file containing the input Lambda in radian: '); filename = input(' ','s'); [fid,msg] = fopen(filename,'rt'); if fid < 0 disp(msg); else A=textscan(fid, '%g',1); while ~feof(fid) Lambda = A(1); n = n + 1; A = textscan(fid, '%f',1); end fclose(fid); end Alpha=Lambda*180/pi; fprintf('Angle converted from radian to degree/minutes/seconds:\n'); fprintf('Alpha =%12d\n',Alpha); fprintf('No of angles =%12d\n',n);

    Read the article

  • How to select rows from data.frame with 2 conditions

    - by Peter Smit
    I have an aggregated table: > aggdata[1:4,] Group.1 Group.2 x 1 4 0.05 0.9214660 2 6 0.05 0.9315789 3 8 0.05 0.9526316 4 10 0.05 0.9684211 How can I select the x value when I have values for Group.1 and Group.2? I tried: aggdata[aggdata[,"Group.1"]==l && aggdata[,"Group.2"]==lamda,"x"] but that replies all x's. More info: I want to use this like this: table = data.frame(); for(l in unique(aggdata[,"Group.1"])) { for(lambda in unique(aggdata[,"Group.2"])) { table[l,lambda] = aggdata[aggdata[,"Group.1"]==l & aggdata[,"Group.2"]==lambda,"x"] } } Any suggestions that are even easier and giving this result I appreciate!

    Read the article

  • Convert Dynamic to Type and convert Type to Dynamic

    - by Jon Canning
    public static class DynamicExtensions     {         public static T FromDynamic<T>(this IDictionary<string, object> dictionary)         {             var bindings = new List<MemberBinding>();             foreach (var sourceProperty in typeof(T).GetProperties().Where(x => x.CanWrite))             {                 var key = dictionary.Keys.SingleOrDefault(x => x.Equals(sourceProperty.Name, StringComparison.OrdinalIgnoreCase));                 if (string.IsNullOrEmpty(key)) continue;                 var propertyValue = dictionary[key];                 bindings.Add(Expression.Bind(sourceProperty, Expression.Constant(propertyValue)));             }             Expression memberInit = Expression.MemberInit(Expression.New(typeof(T)), bindings);             return Expression.Lambda<Func<T>>(memberInit).Compile().Invoke();         }         public static dynamic ToDynamic<T>(this T obj)         {             IDictionary<string, object> expando = new ExpandoObject();             foreach (var propertyInfo in typeof(T).GetProperties())             {                 var propertyExpression = Expression.Property(Expression.Constant(obj), propertyInfo);                 var currentValue = Expression.Lambda<Func<string>>(propertyExpression).Compile().Invoke();                 expando.Add(propertyInfo.Name.ToLower(), currentValue);             }             return expando as ExpandoObject;         }     }

    Read the article

  • [News] Utiliser le framework de bouchon Moq

    Moq est un framework permettant de mettre en oeuvre les mock-objets destin?es aux phases de tests. Cet excellent article illustre le principe : " (...) it is intended to be straightforward and easy to use mocking framework that doesn?t require any prior knowledge of the mocking concepts. So, it doesn't requires deep learning curve from the developers. It takes full advantage of the .NET 3.5 expression trees and the lambda expressions. Any of the methods and properties of the mock object can be easily represented in the lambda expressions."

    Read the article

  • A Trio of Presentations: Little Wonders, StyleCop, and LINQ/Lambdas

    - by James Michael Hare
    This week is a busy week for me.  First of all I’m giving another presentation on a LINQ/Lambda primer for the rest of the developers in my company.  Of Lambdas and LINQ View more presentations from BlackRabbitCoder Then this Saturday the 25th of June I’ll be reprising my Little Wonders presentation for the Kansas City Developers Camp.  If you are in the area I highly recommend attending and seeing the other great presentations as well.  Their link is here. Little Wonders View more presentations from BlackRabbitCoder Finally, this Monday the 27th I’ll be speaking at the Saint Louis .NET Users group, giving my Automating Code Standards Using StyleCop and FxCop presentation.  If you are in the Saint Louis area stop by!  There’s two other simultaneous presentations as well if they’re more suited to your interests.  The link for the SLDNUG is here. Automating C# Coding Standards using StyleCop and FxCop View more presentations from BlackRabbitCoder Tweet Technorati Tags: C#,.NET,LINQ,Lambda,StyleCop,FxCop,Little Wonders

    Read the article

  • A programming language that does not allow IO. Haskell is not a pure language

    - by TheIronKnuckle
    (I asked this on Stack Overflow and it got closed as off-topic, I was a bit confused until I read the FAQ, which discouraged subjective theoratical debate style questions. The FAQ here doesn't seem to have a problem with it and it sounds like this is a more appropriate place to post. If this gets closed again, forgive me, I'm not trying to troll) Are there any 100% pure languages (as I describe in the Stack Overflow post) out there already and if so, could they feasibly be used to actually do stuff? i.e. do they have an implementation? I'm not looking for raw maths on paper/Pure lambda calculus. However Pure lambda calculus with a compiler or a runtime system attached is something I'd be interested in hearing about.

    Read the article

  • Oracle At QCon SF 2012

    - by Cassandra Clark - OTN
    Oracle Technology Network is a Platinum sponsor at QCon San Francisco.  (qconsf.com).  Don’t miss these great developer focused sessions: Shay ShmeltzerHow we simplified Web, Mobile and Cloud development for our own developers? - the Oracle StoryOver the past several years, Oracle has beendeveloping a new set of enterprise applications in what is probably one of thelargest Java based development project in the world. How do you take 3000 developers and make them productive? How do you insure the delivery of cutting edge UIs for both Mobile and Web channels? How do you enable Cloud baseddevelopment and deployment?  Come and learn how we did it at Oracle, and see how the same technologies and methodologies can apply to your development efforts. Dan SmithProject Lambda in Java 8Java SE 8 will include major enhancements to the Java Programming Language and its core libraries.  This suite of new features, known as Project Lambda in the OpenJDK community, includes lambda expressions, default methods, and parallel collections (and much more!).  The result will be a next-generation Java programming experience with more flexibility and better abstractions.   This talk will introduce the new Java features and offer a behind-the-scenes view of how they evolved and why they work the way that they do. Arun GuptaJSR 356: Building HTML5 WebSocket Applications in JavaThe family of HTML5 technologies has pushed the pendulum away from rich client technologies and toward ever-more-capable Web clients running on today’s browsers. In particular, WebSocket brings new opportunities for efficient peer-to-peer communication, providing the basis for a new generation of interactive and “live” Web applications. This session examines the efforts under way to support WebSocket in the Java programming model, from its base-level integration in the Java Servlet and Java EE containers to a new, easy-to-use API and toolset that are destined to become part of the standard Java platform. The full conference schedule is here: http://qconsf.com/sf2012/schedule/wednesday.jsp But wait, there’s more!  At the Oracle booth, we’ll also be covering: ·         Oracle ADF Mobile·         Oracle Developer Cloud Service·         Oracle ADF Essentials·         NetBeans Project Easel Lastly we’ll share the results of a short cloud survey at QConSF ater this week.  If you attended this year's Oracle OpenWorld and JavaOne conferences, it would be hard not to notice that Oracle is clearly "all-in" when it comes to the Cloud.  With Cloud computing being such a hot topic on many OTN members' minds, we'd like to know what you're doing in the cloud and invite you to take this short cloud survey.

    Read the article

  • C# 5: At last, async without the pain

    - by Alex.Davies
    For me, the best feature in Visual Studio 11 is the async and await keywords that come with C# 5. I am a big fan of asynchronous programming: it frees up resources, in particular the thread that a piece of code needs to run in. That lets that thread run something else, while waiting for your long-running operation to complete. That's really important if that thread is the UI thread, or if it's holding a lock because it accesses some data structure. Before C# 5, I think I was about the only person in the world who really cared about asynchronous programming. The trouble was that you had to go to extreme lengths to make code asynchronous. I would forever be writing methods that, instead of returning a value, accepted an extra argument that is a "continuation". Then, when calling the method, I'd have to pass a lambda in to it, which contained all the stuff that needed to happen after the method finished. Here is a real snippet of code that is in .NET Demon: m_BuildControl.FilterEnabledForBuilding(     projects,     enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(         enabledProjects,         newDirtyProjects =         {             // Mark any currently broken projects as dirty             newDirtyProjects.UnionWith(m_BrokenProjects);             // Copy what we found into the set of dirty things             m_DirtyProjects = newDirtyProjects;             RunSomeBuilds();         })); It's just obtuse. Who puts a lambda inside a lambda like that? Well, me obviously. But surely enabledProjects should just be the return value of FilterEnabledForBuilding? And newDirtyProjects should just be the return value of FilterNeedsBuilding? C# 5 async/await lets you write asynchronous code without it looking so stupid. Here's what I plan to change that code to, once we upgrade to VS 11: var enabledProjects = await m_BuildControl.FilterEnabledForBuilding(projects); var newDirtyProjects = await m_OutOfDateProjectFinder.FilterNeedsBuilding(enabledProjects); // Mark any currently broken projects as dirty newDirtyProjects.UnionWith(m_BrokenProjects); // Copy what we found into the set of dirty things m_DirtyProjects = newDirtyProjects; RunSomeBuilds(); Much easier to read! But how is this the same code? If we were on the UI thread, doesn't the UI thread have to block while FilterEnabledForBuilding runs? No, it doesn't, and that's the magic of the await keyword! It cuts your method up into its constituent pieces, much like I did manually with lambdas before. When you run it, only the piece up to the first await actually runs. The rest is passed to FilterEnabledForBuilding as a continuation, which will get called back whenever that method is finished. In the meantime, our thread returns, and can go back to making the UI responsive, or whatever else threads do in their spare time. This is actually a massive simplification, and if you're interested in all the gory details, and speed hacks that the await keyword actually does for you, I recommend Jon Skeet's blog posts about it.

    Read the article

  • Quel est votre "obscure" langage de programmation préféré ? Unlambda, Fractran, Befung, le plus comp

    Quel est votre "obscure" langage de programmation préféré ? Unlambda, Fractran, Befung, le plus compliqué du monde, un autre ? Unlambda, vous connaissez ? Non ?!? C'est "un langage minimal de programmation fonctionnelle inventé par David Madore qui est fondé sur le principe de la logique combinatoire, une version du lambda-calcul qui omet l'opérateur lambda"... Et Fractran ? Non plus ? Pourtant c'est un langage "ésotérique" et Turing-complet - qui permet donc de "représenter toutes les fonctions calculables au sens de Turing et Church (nonobstant la finitude de la mémoire des ordinateurs)"

    Read the article

  • Java 8???????????????

    - by OTN-J Master
    ???????????Java Developer Newsletter(US?)9????????????????OTN?????Java Community Lead?Tori Wieldt?????????????????Oracle?Java?????????Jim Weaver???????????????????? Normal 0 0 2 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0mm 5.4pt 0mm 5.4pt; mso-para-margin:0mm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century","serif"; mso-ascii-font-family:Century; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"MS ??"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Century; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} ? Java Developer Newsletter (US?)9?????  ??JDK 8????????????????????OpenJDK??????????????????????????????????????????"????"(???????)?????????????????Project Lambda??????Early Access????????·????????????????????????????Java 8?????????????????Project Jigsaw??????????????????????????????Project Lambda?Early Access??????·????·??????????????????Java?????????Jim Weaver????????????????????????????????????????????????????Weaver??????????????—Oracle Technology Network Team?Tori Wieldt James Weaver?????Jim Weaver’s Rich-Client Java Blog ?????????? Java 8??????????????? "?????????????????????????????????????????"- Robert FrostJDK 8???????????????????????????????????????????????????????????????¦ ?????????? ??1??JDK 8????????????????????????Web?????????????????????????????????????????OpenJDK????JDK 8????????????¦ ?????????? ??2Project Jigsaw?????????????????????????????????????????????????????????????·????·???????????????????·????????????????????????Project Jigsaw?????JDK 8?Early Access????????????????????¦ ?????????? ??3????(??????????)??JavaFX????·?????????????????????OpenJDK????Project Lambda???????????????????Early Access????????·????????????????????JDK???????????????????????????? James Weaver ?OTN Japan??????? Java Magazine???????????????????????????????????Java???????????Java?????????????????????????????????? Java Developer Newsletter????????????????????????????! (???1000????Java&Duke??????????????????) >> ?????????????

    Read the article

  • Reason for perpetual dynamic DNS updates?

    - by mad_vs
    I'm using dynamic DNS (the "adult" version from RFC 2136, not à la DynDNS), and for a while now I've been seeing my laptops with MacOS 10.6.x churning out updates about every 10 seconds. And seemingly redundant updates at that, as the IP is more or less stable (consumer broadband). I don't remember seeing that frequency in the (distant...) past. The lowest time-to-live that MacOS pushes on the entries is 2 minutes, so I have no clue what's going on. ... Jan 12 13:17:18 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': deleting rrset at 'rCosinus._afpovertcp._tcp.dynamic.foldr.org' SRV Jan 12 13:17:18 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': adding an RR at 'rCosinus._afpovertcp._tcp.dynamic.foldr.org' SRV Jan 12 13:17:26 lambda named[18683]: info: client 84.208.X.X#48715: updating zone 'dynamic.foldr.org/IN': deleting rrset at 'rcosinus.dynamic.foldr.org' AAAA ... Additionally, I can't find out what triggers the updates on the laptop-side. Is this a known problem, and how would I go about debugging it? One of the machines is freshly purchased and installed. The only "major" change was installation of the Miredo client for IPv6/Teredo, but even disabling it didn't make a change (except that AAAA records are no longer published).

    Read the article

  • How can I sort just part of a list using vb .net?

    - by Eyal
    In VB .Net, the Generics Lists have a sort function that accepts IComparer or Comparison. I'd like to sort just part of list. Hopefully I can specify the start index, count of elements to sort, and a lambda function. It looks like you can only use lambda functions to do this if you're sorting the entire list. Is that right or did I miss something?

    Read the article

  • What exactly are administrative redexes after CPS conversion?

    - by eljenso
    In the context of Scheme and CPS conversion, I'm having a little trouble deciding what administrative redexes (lambdas) exactly are: all the lambda expressions that are introduced by the CPS conversion only the lambda expressions that are introduced by the CPS conversion but you wouldn't have written if you did the conversion "by hand" or through a smarter CPS-converter If possible, a good reference would be welcome.

    Read the article

  • Trying to understand the usage of class_eval

    - by eMxyzptlk
    Hello everyone, I'm using the rails-settings gem, and I'm trying to understand how you add functions to ActiveRecord classes (I'm building my own library for card games), and I noticed that this gem uses one of the Meta-programming techniques to add the function to the ActiveRecord::Base class (I'm far from Meta-programming master in ruby, but I'm trying to learn it) module RailsSettings class Railtie < Rails::Railtie initializer 'rails_settings.initialize', :after => :after_initialize do Railtie.extend_active_record end end class Railtie def self.extend_active_record ActiveRecord::Base.class_eval do def self.has_settings class_eval do def settings RailsSettings::ScopedSettings.for_thing(self) end scope :with_settings, :joins => "JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}')", :select => "DISTINCT #{self.table_name}.*" scope :with_settings_for, lambda { |var| { :joins => "JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}') AND settings.var = '#{var}'" } } scope :without_settings, :joins => "LEFT JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}')", :conditions => 'settings.id IS NULL' scope :without_settings_for, lambda { |var| { :joins => "LEFT JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}') AND settings.var = '#{var}'", :conditions => 'settings.id IS NULL' } } end end end end end end What I don't understand is why he uses class_eval on ActiveRecord::Base, wasn't it easier if he just open the ActiveRecord::Base class and define the functions? Specially that there's nothing dynamic in the block (What I mean by dynamic is when you do class_eval or instance_eval on a string containing variables) something like this: module ActiveRecord class Base def self.has_settings class_eval do def settings RailsSettings::ScopedSettings.for_thing(self) end scope :with_settings, :joins => "JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}')", :select => "DISTINCT #{self.table_name}.*" scope :with_settings_for, lambda { |var| { :joins => "JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}') AND settings.var = '#{var}'" } } scope :without_settings, :joins => "LEFT JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}')", :conditions => 'settings.id IS NULL' scope :without_settings_for, lambda { |var| { :joins => "LEFT JOIN settings ON (settings.thing_id = #{self.table_name}.#{self.primary_key} AND settings.thing_type = '#{self.base_class.name}') AND settings.var = '#{var}'", :conditions => 'settings.id IS NULL' } } end end end end I understand the second class_eval (before the def settings) is to define functions on the fly on every class that 'has_settings' right ? Same question here, I think he could use "def self.settings" instead of "class_eval.... def settings", no ?

    Read the article

  • Make: how make all hidden files in the current makefile?

    - by HH
    It traverses to bottom dirs for some unknown reason: Errorsome /bin/sh: .??*: not found make[23]: Entering directory `/m/user/files/dir' make clean Makefile all: make clean #The wildcard is the bug. I want to make all hidden files in the current makefile. #It should match .<some char><some char><any char arbitrary times> make $$(.??*) #I want to replace below-like-tihngs with a wildcard above # make .lambda # make .lambda_t clean: -rm .??* .lambda: #do something .lambda_t:

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >