Search Results

Search found 1273 results on 51 pages for 'vertex shader'.

Page 17/51 | < Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >

  • problem with loading in .FBX meshes in DirectX 10

    - by N0xus
    I'm trying to load in meshes into DirectX 10. I've created a bunch of classes that handle it and allow me to call in a mesh with only a single line of code in my main game class. How ever, when I run the program this is what renders: In the debug output window the following errors keep appearing: D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that Semantic 'TEXCOORD' is defined for mismatched hardware registers between the output stage and input stage. [ EXECUTION ERROR #343: DEVICE_SHADER_LINKAGE_REGISTERINDEX ] D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that the input stage requires Semantic/Index (POSITION,0) as input, but it is not provided by the output stage. [ EXECUTION ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND ] The thing is, I've no idea how to fix this. The code I'm using does work and I've simply brought all of that code into a new project of mine. There are no build errors and this only appears when the game is running The .fx file is as follows: float4x4 matWorld; float4x4 matView; float4x4 matProjection; struct VS_INPUT { float4 Pos:POSITION; float2 TexCoord:TEXCOORD; }; struct PS_INPUT { float4 Pos:SV_POSITION; float2 TexCoord:TEXCOORD; }; Texture2D diffuseTexture; SamplerState diffuseSampler { Filter = MIN_MAG_MIP_POINT; AddressU = WRAP; AddressV = WRAP; }; // // Vertex Shader // PS_INPUT VS( VS_INPUT input ) { PS_INPUT output=(PS_INPUT)0; float4x4 viewProjection=mul(matView,matProjection); float4x4 worldViewProjection=mul(matWorld,viewProjection); output.Pos=mul(input.Pos,worldViewProjection); output.TexCoord=input.TexCoord; return output; } // // Pixel Shader // float4 PS(PS_INPUT input ) : SV_Target { return diffuseTexture.Sample(diffuseSampler,input.TexCoord); //return float4(1.0f,1.0f,1.0f,1.0f); } RasterizerState NoCulling { FILLMODE=SOLID; CULLMODE=NONE; }; technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); SetRasterizerState(NoCulling); } } In my game, the .fx file and model are called and set as follows: Loading in shader file //Set the shader flags - BMD DWORD dwShaderFlags = D3D10_SHADER_ENABLE_STRICTNESS; #if defined( DEBUG ) || defined( _DEBUG ) dwShaderFlags |= D3D10_SHADER_DEBUG; #endif ID3D10Blob * pErrorBuffer=NULL; if( FAILED( D3DX10CreateEffectFromFile( TEXT("TransformedTexture.fx" ), NULL, NULL, "fx_4_0", dwShaderFlags, 0, md3dDevice, NULL, NULL, &m_pEffect, &pErrorBuffer, NULL ) ) ) { char * pErrorStr = ( char* )pErrorBuffer->GetBufferPointer(); //If the creation of the Effect fails then a message box will be shown MessageBoxA( NULL, pErrorStr, "Error", MB_OK ); return false; } //Get the technique called Render from the effect, we need this for rendering later on m_pTechnique=m_pEffect->GetTechniqueByName("Render"); //Number of elements in the layout UINT numElements = TexturedLitVertex::layoutSize; //Get the Pass description, we need this to bind the vertex to the pipeline D3D10_PASS_DESC PassDesc; m_pTechnique->GetPassByIndex( 0 )->GetDesc( &PassDesc ); //Create Input layout to describe the incoming buffer to the input assembler if (FAILED(md3dDevice->CreateInputLayout( TexturedLitVertex::layout, numElements,PassDesc.pIAInputSignature, PassDesc.IAInputSignatureSize, &m_pVertexLayout ) ) ) { return false; } model loading: m_pTestRenderable=new CRenderable(); //m_pTestRenderable->create<TexturedVertex>(md3dDevice,8,6,vertices,indices); m_pModelLoader = new CModelLoader(); m_pTestRenderable = m_pModelLoader->loadModelFromFile( md3dDevice,"armoredrecon.fbx" ); m_pGameObjectTest = new CGameObject(); m_pGameObjectTest->setRenderable( m_pTestRenderable ); // Set primitive topology, how are we going to interpet the vertices in the vertex buffer md3dDevice->IASetPrimitiveTopology( D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); if ( FAILED( D3DX10CreateShaderResourceViewFromFile( md3dDevice, TEXT( "armoredrecon_diff.png" ), NULL, NULL, &m_pTextureShaderResource, NULL ) ) ) { MessageBox( NULL, TEXT( "Can't load Texture" ), TEXT( "Error" ), MB_OK ); return false; } m_pDiffuseTextureVariable = m_pEffect->GetVariableByName( "diffuseTexture" )->AsShaderResource(); m_pDiffuseTextureVariable->SetResource( m_pTextureShaderResource ); Finally, the draw function code: //All drawing will occur between the clear and present m_pViewMatrixVariable->SetMatrix( ( float* )m_matView ); m_pWorldMatrixVariable->SetMatrix( ( float* )m_pGameObjectTest->getWorld() ); //Get the stride(size) of the a vertex, we need this to tell the pipeline the size of one vertex UINT stride = m_pTestRenderable->getStride(); //The offset from start of the buffer to where our vertices are located UINT offset = m_pTestRenderable->getOffset(); ID3D10Buffer * pVB=m_pTestRenderable->getVB(); //Bind the vertex buffer to input assembler stage - md3dDevice->IASetVertexBuffers( 0, 1, &pVB, &stride, &offset ); md3dDevice->IASetIndexBuffer( m_pTestRenderable->getIB(), DXGI_FORMAT_R32_UINT, 0 ); //Get the Description of the technique, we need this in order to loop through each pass in the technique D3D10_TECHNIQUE_DESC techDesc; m_pTechnique->GetDesc( &techDesc ); //Loop through the passes in the technique for( UINT p = 0; p < techDesc.Passes; ++p ) { //Get a pass at current index and apply it m_pTechnique->GetPassByIndex( p )->Apply( 0 ); //Draw call md3dDevice->DrawIndexed(m_pTestRenderable->getNumOfIndices(),0,0); //m_pD3D10Device->Draw(m_pTestRenderable->getNumOfVerts(),0); } Is there anything I've clearly done wrong or are missing? Spent 2 weeks trying to workout what on earth I've done wrong to no avail. Any insight a fresh pair eyes could give on this would be great.

    Read the article

  • OpenGL Tessellation makes point

    - by urza57
    A little problem with my tessellation shader. I try to implement a simple tessellation shader but it only makes points. Here's my vertex shader : out vec4 ecPosition; out vec3 ecNormal; void main( void ) { vec4 position = gl_Vertex; gl_Position = gl_ModelViewProjectionMatrix * position; ecPosition = gl_ModelViewMatrix * position; ecNormal = normalize(gl_NormalMatrix * gl_Normal); } My tessellation control shader : layout(vertices = 3) out; out vec4 ecPosition3[]; in vec3 ecNormal[]; in vec4 ecPosition[]; out vec3 myNormal[]; void main() { gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; myNormal[gl_InvocationID] = ecNormal[gl_InvocationID]; ecPosition3[gl_InvocationID] = ecPosition[gl_InvocationID]; gl_TessLevelOuter[0] = float(4.0); gl_TessLevelOuter[1] = float(4.0); gl_TessLevelOuter[2] = float(4.0); gl_TessLevelInner[0] = float(4.0); } And my Tessellation Evaluation shader: layout(triangles, equal_spacing, ccw) in; in vec3 myNormal[]; in vec4 ecPosition3[]; out vec3 ecNormal; out vec4 ecPosition; void main() { float u = gl_TessCoord.x; float v = gl_TessCoord.y; float w = gl_TessCoord.z; vec3 position = vec4(gl_in[0].gl_Position.xyz * u + gl_in[1].gl_Position.xyz * v + gl_in[2].gl_Position.xyz * w ); vec3 position2 = vec4(ecPosition3[0].xyz * u + ecPosition3[1].xyz * v + ecPosition3[2].xyz * w ); vec3 normal = myNormal[0] * u + myNormal[1] * v + myNormal[2] * w ); ecNormal = normal; gl_Position = vec4(position, 1.0); ecPosition = vec4(position2, 1.0); } Thank you !

    Read the article

  • The practical cost of swapping effects

    - by sebf
    I use XNA for my projects and on those forums I sometimes see references to the fact that swapping an effect for a mesh has a relatively high cost, which surprises me as I thought to swap an effect was simply a case of copying the replacement shader program to the GPU along with appropriate parameters. I wondered if someone could explain exactly what is costly about this process? And put, if possible, 'relatively' into context? For example say I wanted to use a short shader to help with picking, I would: Change the effect on every object, calculting a unique color to identify it and providing it to the shader. Draw all the objects to a render target in memory. Get the color from the target and use it to look up the selected object. What portion of the total time taken to complete that process would be spent swapping the shaders? My instincts would say that rendering the scene again, no matter how simple the shader, would be an order of magnitude slower than any other part of the process so why all the concern over effects?

    Read the article

  • geomipmapping using displacement mapping (and glVertexAttribDivisor)

    - by Will
    I wake up with a clear vision, but sadly my laptop card doesn't do displacement mapping nor glVertexAttribDivisor so I can't test it out; I'm left sharing here: With geomipmapping, the grid at any factor is transposable - if you pass in an offset - say as a uniform - you can reuse the same vertex and index array again and again. If you also pass in the offset into the heightmap as a uniform, the vertex shader can do displacement mapping. If the displacement map is mipmapped, you get the advantages of trilinear filtering for distant maps. And, if the scenery is closer, rather than exposing that the you have a world made out of quads, you can use your transposable grid vertex array and indices to do vertex-shader interpolation (fancy splines) to do super-smooth infinite zoom? So I have some questions: does it work? In theory, in practice? does anyone do it? Does this technique have a name? Papers, demos, anything I can look at? does glVertexAttribDivisor mean that you can have a single glMultiDrawElementsEXT or similar approach to draw all your terrain tiles in one call rather than setting up the uniforms and emitting each tile? Would this offer any noticeable gains? does a heightmap that is GL_LUMINANCE take just one byte per pixel(=vertex)? (On mainstream cards, obviously. Does storage vary in practice?) Does going to the effort of reusing the same vertices and indices mean that you can basically fill the GPU RAM with heightmap and not a lot else, giving you either bigger landscapes or more detailed landscapes/meshes for the same bang? is mipmapping the displacement map going to work? On future cards? Is it going to introduce unsurmountable inaccuracies if it is enabled?

    Read the article

  • GLSL billboard move center of rotation

    - by Jacob Kofoed
    I have successfully set up a billboard shader that works, it can take in a quad and rotate it so it always points toward the screen. I am using this vertex-shader: void main(){ vec4 tmpPos = (MVP * bufferMatrix * vec4(0.0, 0.0, 0.0, 1.0)) + (MV * vec4( vertexPosition.x * 1.0 * bufferMatrix[0][0], vertexPosition.y * 1.0 * bufferMatrix[1][1], vertexPosition.z * 1.0 * bufferMatrix[2][2], 0.0) ); UV = UVOffset + vertexUV * UVScale; gl_Position = tmpPos; BufferMatrix is the model-matrix, it is an attribute to support Instance-drawing. The problem is best explained through pictures: This is the start position of the camera: And this is the position, looking in from 45 degree to the right: Obviously, as each character is it's own quad, the shader rotates each one around their own center towards the camera. What I in fact want is for them to rotate around a shared center, how would I do this? What I have been trying to do this far is: mat4 translation = mat4(1.0); translation = glm::translate(translation, vec3(pos)*1.f * 2.f); translation = glm::scale(translation, vec3(scale, 1.f)); translation = glm::translate(translation, vec3(anchorPoint - pos) / vec3(scale, 1.f)); Where the translation is the bufferMatrix sent to the shader. What I am trying to do is offset the center, but this might not be possible with a single matrix..? I am interested in a solution that doesn't require CPU calculations each frame, but rather set it up once and then let the shader do the billboard rotation. I realize there's many different solutions, like merging all the quads together, but I would first like to know if the approach with offsetting the center is possible. If it all seems a bit confusing, it's because I'm a little confused myself.

    Read the article

  • The practical cost of swapping effects

    - by sebf
    Hello, I use XNA for my projects and on those forums I sometimes see references to the fact that swapping an effect for a mesh has a relatively high cost, which surprises me as I thought to swap an effect was simply a case of copying the replacement shader program to the GPU along with appropriate parameters. I wondered if someone could explain exactly what is costly about this process? And put, if possible, 'relatively' into context? For example say I wanted to use a short shader to help with picking, I would: Change the effect on every object, calculting a unique color to identify it and providing it to the shader. Draw all the objects to a render target in memory. Get the color from the target and use it to look up the selected object. What portion of the total time taken to complete that process would be spent swapping the shaders? My instincts would say that rendering the scene again, no matter how simple the shader, would be an order of magnitude slower than any other part of the process so why all the concern over effects?

    Read the article

  • OpenGL sprites and point size limitation

    - by Srdan
    I'm developing a simple particle system that should be able to perform on mobile devices (iOS, Andorid). My plan was to use GL_POINT_SPRITE/GL_PROGRAM_POINT_SIZE method because of it's efficiency (GL_POINTS are enough), but after some experimenting, I found myself in a trouble. Sprite size is limited (to usually 64 pixels). I'm calculating size using this formula gl_PointSize = in_point_size * some_factor / distance_to_camera to make particle sizes proportional to distance to camera. But at some point, when camera is close enough, problem with size limitation emerges and whole system starts looking unrealistic. Is there a way to avoid this problem? If no, what's alternative? I was thinking of manually generating billboard quad for each particle. Now, I have some questions about that approach. I guess minimum geometry data would be four vertices per particle and index array to make quads from these vertices (with GL_TRIANGLE_STRIP). Additionally, for each vertex I need a color and texture coordinate. I would put all that in an interleaved vertex array. But as you can see, there is much redundancy. All vertices of same particle share same color value, and four texture coordinates are same for all particles. Because of how glDrawArrays/Elements works, I see no way to optimise this. Do you know of a better approach on how to organise per-particle data? Should I use buffers or vertex arrays, or there is no difference because each time I have to update all particles' data. About particles simulation... Where to do it? On CPU or on a vertex processors? Something tells me that mobile's CPU would do it faster than it's vertex unit (at least today in 2012 :). So, any advice on how to make a simple and efficient particle system without particle size limitation, for mobile device, would be appreciated. (animation of camera passing through particles should be realistic)

    Read the article

  • Parenting Opengl with Groups in LibGDX

    - by Rudy_TM
    I am trying to make an object child of a Group, but this object has a draw method that calls opengl to draw in the screen. Its class its this public class OpenGLSquare extends Actor { private static final ImmediateModeRenderer renderer = new ImmediateModeRenderer10(); private static Matrix4 matrix = null; private static Vector2 temp = new Vector2(); public static void setMatrix4(Matrix4 mat) { matrix = mat; } @Override public void draw(SpriteBatch batch, float arg1) { // TODO Auto-generated method stub renderer.begin(matrix, GL10.GL_TRIANGLES); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y0, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y1, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x1, y0, 0f); renderer.color(color.r, color.g, color.b, color.a); renderer.vertex(x0, y0, 0f); renderer.end(); } } In my screen class I have this, i call it in the constructor MyGroupClass spriteLab = new MyGroupClass(spriteSheetLab); OpenGLSquare square = new OpenGLSquare(); square.setX0(100); square.setY0(200); square.setX1(400); square.setY1(280); square.color.set(Color.BLUE); square.setSize(); //spriteLab.addActorAt(0, clock); spriteLab.addActor(square); stage.addActor(spriteLab); And the render in the screen I have @Override public void render(float arg0) { this.gl.glClear(GL10.GL_COLOR_BUFFER_BIT |GL10.GL_DEPTH_BUFFER_BIT); stage.draw(); stage.act(Gdx.graphics.getDeltaTime()); } The problem its that when i use opengl with parent, it resets all the other chldren to position 0,0 and the opengl renderer paints the square in the exact position of the screen and not relative to the parent. I tried using batch.enableBlending() and batch.disableBlending() that fixes the position problem of the other children, but not the relative position of the opengl drawing and it also puts alpha to the glDrawing. What am i doing wrong?:/

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • Handling cameras in a large scale game engine

    - by Hannesh
    What is the correct, or most elegant, way to manage cameras in large game engines? Or should I ask, how does everybody else do it? The methods I can think of are: Binding cameras straight to the engine; if someone needs to render something, they bind their own camera to the graphics engine which is in use until another camera is bound. A camera stack; a small task can push its own camera onto the stack, and pop it off at the end to return to the "main" camera. Attaching a camera to a shader; Every shader has exactly one camera bound to it, and when the shader is used, that camera is set by the engine when the shader is in use. This allows me to implement a bunch of optimizations on the engine side. Are there other ways to do it?

    Read the article

  • How does opengl-es 2 assemble primitives?

    - by stephelton
    Two things I'm quite confused about. 1) OpenGL ES 2.0 creates primitives before the vertex shader is invoked. Why, then, does it not automatically provide the vertex shader the position of the vertex? 2) OpenGL ES 2.0 supports glDrawElements(), but it does not support glEnableClientState() or GL_VERTEX_ARRAY, so how can this call possibly be used to construct primitives? NOTE: this is OpenGL ES 2.0, NOT normal OpenGL! Thanks!

    Read the article

  • Questions before I revamp my rendering engine to use shaders (GLSL)

    - by stephelton
    I've written a fairly robust rendering engine using OpenGL ES 1.1 (fixed-function.) I've been looking into revamping the engine to use OpenGL ES 2.0, which necessitates that I use shaders. I've been absorbing information all day long and still have some questions. Firstly, lighting. The fixed-function pipeline is guaranteed to have at least 8 lights available. My current engine finds lights that are "close" to the primitives being drawn and enables them; I don't know how many lights are going to be enabled until I draw a given model. Nothing is dynamically allocated in GLSL, so I have to define in a shader some number of lights to be used, right? So if I want to stick with 8, should I write my general purpose shader to have 8 lights and then use uniforms to tell it how many / which lights to use? Which brings me to another question: should I be concerned with the amount of data I'm allocating in a shader? Recent video cards have hundreds of "stream processors." If I've got a fragment shader being used on some number of fragments in a given triangle, I assume they must each have their own stack to work on. Are read-only variables copied here, or read when needed? My initial goal is to rework my code so that it is virtually identical to the current implementation. What I have in mind is to create my own matrix stack so that I can implement something along the lines of push/popMatrix and apply all my translations, rotations, and scales to this matrix, then provide the matrix to the vertex shader so that it can make very quick vertex translations. Is this approach sound? Edit: My original intention was to ask if there was a tutorial that would explain the bare minimum necessary to jump from fixed-function to using shaders. Thanks!

    Read the article

  • Best way to mask 2D sprites in XNA?

    - by electroflame
    I currently am trying to mask some sprites. Rather than explaining it in words, I've made up some example pictures: The area to mask (in white) Now, the red sprite that needs to be cropped. The final result. Now, I'm aware that in XNA you can do two things to accomplish this: Use the Stencil Buffer. Use a Pixel Shader. I have tried to do a pixel shader, which essentially did this: float4 main(float2 texCoord : TEXCOORD0) : COLOR0 { float4 tex = tex2D(BaseTexture, texCoord); float4 bitMask = tex2D(MaskTexture, texCoord); if (bitMask.a > 0) { return float4(tex.r, tex.g, tex.b, tex.a); } else { return float4(0, 0, 0, 0); } } This seems to crop the images (albeit, not correct once the image starts to move), but my problem is that the images are constantly moving (they aren't static), so this cropping needs to be dynamic. Is there a way I could alter the shader code to take into account it's position? Alternatively, I've read about using the Stencil Buffer, but most of the samples seem to hinge on using a rendertarget, which I really don't want to do. (I'm already using 3 or 4 for the rest of the game, and adding another one on top of it seems overkill) The only tutorial I've found that doesn't use Rendertargets is one from Shawn Hargreaves' blog over here. The issue with that one, though is that it's for XNA 3.1, and doesn't seem to translate well to XNA 4.0. It seems to me that the pixel shader is the way to go, but I'm unsure of how to get the positioning correct. I believe I would have to change my onscreen coordinates (something like 500, 500) to be between 0 and 1 for the shader coordinates. My only problem is trying to work out how to correctly use the transformed coordinates. Thanks in advance for any help!

    Read the article

  • Why does unity obj import flip my x coordinate?

    - by milkplus
    When I import my wavefront obj model into unity and then draw lines over it with the same coordinates in the obj file, the x coordinate is negated. I don't see any option in the importer that might be doing that. And I'm using the same localToWorldMatrix and the same coordinate data in the .obj file. Hmmm GL.PushMatrix(); GL.MultMatrix(transform.localToWorldMatrix); CreateMaterial(); lineMaterial.SetPass(0); GL.Color(new Color(0, 1, 0)); GL.Begin(GL.LINES); GL.Vertex(p1); GL.Vertex(p2); GL.Vertex(p2); GL.Vertex(p3); //... GL.End(); GL.PopMatrix();

    Read the article

  • Developing GLSL Shaders?

    - by skln
    I want to create shaders but I need a tool to create and see the visual result before I put them into my game. As to determine if there is something wrong with my game or if it's something with the shader I created. I've looked at some like Render Monkey and OpenGL Shader Designer from what I recall of Render Monkey it had a way to define your own attributes (now as "in" for vertex shaders = 330) easily though I can't remember to what extent. Shader Designer requires a plugin that I didn't even bother to look at creating cause it's an external process and plugin. Are there any tools out there that support a scripting language and I could easily provide specific input such as float movement = sin(elapsedTime()); and then define in float movement; in the vertex shader ? It'd be cool if anyone could share how they develop shaders, if they just code away and then plug it into their game hoping to get the result they wanted.

    Read the article

  • FBO rendering different result between Glaxay S2 and S3

    - by BruceJones
    I'm working on a pong game and have recently set up FBO rendering so that I can apply some post-processing shaders. This proceeds as so: Bind texture A to framebuffer Draw balls Bind texture B to framebuffer Draw texture A using fade shader on fullscreen quad Bind screen to framebuffer Draw texture B using normal textured quad shader Neither texture A or B are cleared at any point, this way the balls leave trails on screen, see below for the fade shader. Fade Shader private final String fragmentShaderCode = "precision highp float;" + "uniform sampler2D u_Texture;" + "varying vec2 v_TexCoordinate;" + "vec4 color;" + "void main(void)" + "{" + " color = texture2D(u_Texture, v_TexCoordinate);" + " color.a *= 0.8;" + " gl_FragColor = color;" + "}"; This works fine with the Samsung Galaxy S3/ Note2, but cause a strange effect doesnt work on Galaxy S2 or Note1. See pictures: Galaxy S3/Note2 Galaxy S3/Note2 Galaxy S2/Note Galaxy S2/Note Can anyone explain the difference?

    Read the article

  • FBO rendering different result between Galaxy S2 and S3

    - by BruceJones
    I'm working on a pong game and have recently set up FBO rendering so that I can apply some post-processing shaders. This proceeds as so: Bind texture A to framebuffer Draw balls Bind texture B to framebuffer Draw texture A using fade shader on fullscreen quad Bind screen to framebuffer Draw texture B using normal textured quad shader Neither texture A or B are cleared at any point, this way the balls leave trails on screen, see below for the fade shader. Fade Shader private final String fragmentShaderCode = "precision highp float;" + "uniform sampler2D u_Texture;" + "varying vec2 v_TexCoordinate;" + "vec4 color;" + "void main(void)" + "{" + " color = texture2D(u_Texture, v_TexCoordinate);" + " color.a *= 0.8;" + " gl_FragColor = color;" + "}"; This works fine with the Samsung Galaxy S3/ Note2, but cause a strange effect doesnt work on Galaxy S2 or Note1. See pictures: Galaxy S3/Note2 Galaxy S3/Note2 Galaxy S2/Note Galaxy S2/Note Can anyone explain the difference?

    Read the article

  • How to make other semantics behave like SV_Position?

    - by object
    I'm having a lot of trouble with shadow mapping, and I believe I've found the problem. When passing vectors from the vertex shader to the pixel shader, does the hardware automatically change any of the values based on the semantic? I've compiled a barebones pair of shaders which should illustrate the problem. Vertex shader : struct Vertex { float3 position : POSITION; }; struct Pixel { float4 position : SV_Position; float4 light_position : POSITION; }; cbuffer Matrices { matrix projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), projection); output.light_position = output.position; // We simply pass the same vector in screenspace through different semantics. return output; } And a simple pixel shader to go along with it: struct Pixel { float4 position : SV_Position; float4 light_position : POSITION; }; float4 RenderPixelShader(Pixel input) : SV_Target { // At this point, (input.position.z / input.position.w) is a normal depth value. // However, (input.light_position.z / input.light_position.w) is 0.999f or similar. // If the primitive is touching the near plane, it very quickly goes to 0. return (0.0f).rrrr; } How is it possible to make the hardware treat light_position in the same way which position is being treated between the vertex and pixel shaders? EDIT: Aha! (input.position.z) without dividing by W is the same as (input.light_position.z / input.light_position.w). Not sure why this is.

    Read the article

  • using PixelBender to double the size of a bitmap

    - by jedierikb
    I have a performance question about pixel bender. I want to enlarge many BitmapData (double their size into new BitmapData). I was doing this with as3, but wanted to use pixel bender to get better performance. On my machines, I get great comparative performance out of many pixel bender demonstrations. To my surprise (or bad coding / understanding), I am getting much worse performance out of pixel bender -- 2 seconds to do 3000 scalings vs .5 seconds! I expected to get at least the same performance as as3. What am I doing wrong? I got the straightforward pixel bender code here (and it is included below for easy reference). package { import aCore.aUtil.timingUtils; import flash.display.BitmapData; import flash.display.Shader; import flash.display.ShaderJob; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.Event; import flash.geom.Matrix; public class flashFlash extends Sprite { [Embed ( source="pixelbender/bilinearresample.pbj", mimeType="application/octet-stream" ) ] private static var BilinearScaling:Class; public function flashFlash( ):void { stage.align = StageAlign.TOP_LEFT; stage.scaleMode = StageScaleMode.NO_SCALE; addEventListener( Event.ENTER_FRAME, efCb, false, 0, true ); } private function efCb( evt:Event ):void { removeEventListener( Event.ENTER_FRAME, efCb, false ); traceTime( "init" ); var srcBmd:BitmapData = new BitmapData( 80, 120, false, 0 ); var destBmd:BitmapData = new BitmapData( 160, 240, false, 0 ); var mx:Matrix = new Matrix( ); mx.scale( 2, 2 ); for (var i:uint = 0; i < 3000; i++) { destBmd.draw( srcBmd, mx ); } traceTime( "scaled with as3" ); // create and configure a Shader object var shader:Shader = new Shader( ); shader.byteCode = new BilinearScaling( ); shader.data.scale.value = [2]; shader.data.src.input = srcBmd; for (var j:uint = 0; j < 3000; j++) { var shaderJob:ShaderJob = new ShaderJob( ); shaderJob.shader = shader; shaderJob.target = destBmd; shaderJob.start( true ); } traceTime( "scaled with pixel bender bilinearresample.pbj" ); } private static var _lastTraceTime:Number = new Date().getTime(); public static function traceTime( note:String ):Number { var nowTime:Number = new Date().getTime(); var diff:Number = (nowTime-_lastTraceTime); trace( "[t" + diff + "] " + note ); _lastTraceTime = nowTime; return diff; } } } And the pixel bender code: <languageVersion : 1.0;> kernel BilinearResample < namespace : "com.brooksandrus.pixelbender"; vendor : "Brooks Andrus"; version : 1; description : "Resizes an image using bilinear resampling. Constrains aspect ratio - divide Math.max( input.width / output.width, input.height / output.height ) and pass in to the scale parameter"; > { parameter float scale < minValue: 0.0; maxValue: 1000.0; defaultValue: 1.0; >; input image4 src; output pixel4 dst; void evaluatePixel() { // scale should be Math.max( src.width / output.width, src.height / output.height ) dst = sampleLinear( src, outCoord() * scale ); // bilinear scaling } }

    Read the article

  • XNA Reach profile with VMWare - Vertex Buffers not working?

    - by Nektarios
    Running XNA app, using Reach profile, in VMWare Fusion host OS Mac OSX, VM is Windows XP SP 3 (my dual-boot OS). Running on MacBook Pro w/NVidia 320M graphics card When I am booted in to XP natively, my code works. The code is drawing cubes that are set up using vertex buffers When another friend runs this same code on Windows 7, it also works for him just fine When I am running my code in the VM, it doesn't work. I have billboarding sprites running in a shader program and this part displays fine. I get no crashing or errors, the geometry just doesn't appear. I tried Debug and Release. This is very basic operation so I'm thinking VMWare isn't the problem, but it's my code.... My init code: var vertexArray = verts.ToArray(); var indexArray = indices.ToArray(); indexBuffer = new IndexBuffer(GraphicsDevice, typeof(Int16), indexArray.Length, BufferUsage.WriteOnly); indexBuffer.SetData(indexArray); vertexBuffer = new VertexBuffer(GraphicsDevice, typeof(VertexPositionColor), vertexArray.Length, BufferUsage.WriteOnly); vertexBuffer.SetData(vertexArray); My Draw code: // problem isn't here, tried no cull GraphicsDevice.RasterizerState = RasterizerState.CullClockwise; GraphicsDevice.BlendState = BlendState.AlphaBlend; GraphicsDevice.DepthStencilState = new DepthStencilState() { DepthBufferEnable = true }; // Update View and Projection TileEffect.View = ((Game1)Game).Camera.View; TileEffect.Projection = ((Game1)Game).Camera.Projection; TileEffect.CurrentTechnique.Passes[0].Apply(); GraphicsDevice.SetVertexBuffer(vertexBuffer); GraphicsDevice.Indices = indexBuffer; GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, indices.Count, 0, indices.Count / 3); For LoadContent: TileEffect = new BasicEffect(GraphicsDevice) { World = Matrix.Identity, View = ((Game1)Game).Camera.View, Projection = ((Game1)Game).Camera.Projection, VertexColorEnabled = true };

    Read the article

  • Pointer problem in C for char*

    - by egebilmuh
    Hi guys, i use pointer for holding name and research lab property. But when i print the existing Vertex ,when i print the vertex, i cant see so -called attributes properly. For example though real value of name is "lancelot" , i see it as wrong such as "asdasdasdasd" struct vertex { int value; char*name; char* researchLab; struct vertex *next; struct edge *list; }; void GRAPHinsertV(Graph G, int value,char*name,char*researchLab) { //create new Vertex. Vertex newV = malloc(sizeof newV); // set value of new variable to which belongs the person. newV->value = value; newV->name=name; newV->researchLab=researchLab; newV->next = G->head; newV->list = NULL; G->head = newV; G->V++; } /*** The method creates new person. **/ void createNewPerson(Graph G) { int id; char name[30]; char researchLab[30]; // get requeired variables. printf("Enter id of the person to be added.\n"); scanf("%d",&id); printf("Enter name of the person to be added.\n"); scanf("%s",name); printf("Enter researc lab of the person to be added\n"); scanf("%s",researchLab); // insert the people to the social network. GRAPHinsertV(G,id,name,researchLab); } void ListAllPeople(Graph G) { Vertex tmp; Edge list; for(tmp = G->head;tmp!=NULL;tmp=tmp->next) { fprintf(stdout,"V:%d\t%s\t%s\n",tmp->value,tmp->name,tmp->researchLab); } system("pause"); }

    Read the article

  • How to get pixel information inside a fragment shader?

    - by user697111
    In my fragment shader I can load a texture, then do this: uniform sampler2D tex; void main(void) { vec4 color = texture2D(tex, gl_TexCoord[0].st); gl_FragColor = color; } That sets the current pixel to color value of texture. I can modify these, etc and it works well. But a few questions. How do I tell "which" pixel I am? For example, say I want to set pixel 100,100 (x,y) to red. Everything else to black. How do I do a : "if currentSelf.Position() == (100,100); then color=red; else color=black?" ? I know how to set colors, but how do I get "my" location? Secondly, how do I get values from a neighbor pixel? I tried this: vec4 nextColor = texture2D(tex, gl_TexCoord[1].st); But not clear what it is returning? if I'm pixel 100,100; how do I get the values from 101,100 or 100,101?

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • How to read the 3D chart data with directX?

    - by MemoryLeak
    I am reading a open source project, and I found there is a function which read 3D data(let's say a character) from obj file, and draw it . the source code: List<Vertex3f> verts=new List<Vertex3f>(); List<Vertex3f> norms=new List<Vertex3f>(); Groups=new List<ToothGroup>(); //ArrayList ALf=new ArrayList();//faces always part of a group List<Face> faces=new List<Face>(); MemoryStream stream=new MemoryStream(buffer); using(StreamReader sr = new StreamReader(stream)){ String line; Vertex3f vertex; string[] items; string[] subitems; Face face; ToothGroup group=null; while((line = sr.ReadLine()) != null) { if(line.StartsWith("#")//comment || line.StartsWith("mtllib")//material library. We build our own. || line.StartsWith("usemtl")//use material || line.StartsWith("o")) {//object. There's only one object continue; } if(line.StartsWith("v ")) {//vertex items=line.Split(new char[] { ' ' }); vertex=new Vertex3f();//float[3]; if(flipHorizontally) { vertex.X=-Convert.ToSingle(items[1],CultureInfo.InvariantCulture); } else { vertex.X=Convert.ToSingle(items[1],CultureInfo.InvariantCulture); } vertex.Y=Convert.ToSingle(items[2],CultureInfo.InvariantCulture); vertex.Z=Convert.ToSingle(items[3],CultureInfo.InvariantCulture); verts.Add(vertex); continue; } And why it need to read the data manually in directX? As far as I know, in XDA programming, we just need to call a function a load the resource. Is this because it is in DirectX, there is no function to read resource? If yes, then how to prepare the 3D resource ? in XDA we just need to use other software draw the 3D picture and then export. but what should I do in DirectX?

    Read the article

  • Reading and writing C++ vector to a file

    - by JB
    For some graphics work I need to read in a large amount of data as quickly as possible and would ideally like to directly read and write the data structures to disk. Basically I have a load of 3d models in various file formats which take too long to load so I want to write them out in their "prepared" format as a cache that will load much faster on subsequent runs of the program. Is it safe to do it like this? My worries are around directly reading into the data of the vector? I've removed error checking, hard coded 4 as the size of the int and so on so that i can give a short working example, I know it's bad code, my question really is if it is safe in c++ to read a whole array of structures directly into a vector like this? I believe it to be so, but c++ has so many traps and undefined behavour when you start going low level and dealing directly with raw memory like this. I realise that number formats and sizes may change across platforms and compilers but this will only even be read and written by the same compiler program to cache data that may be needed on a later run of the same program. #include <fstream> #include <vector> using namespace std; struct Vertex { float x, y, z; }; typedef vector<Vertex> VertexList; int main() { // Create a list for testing VertexList list; Vertex v1 = {1.0f, 2.0f, 3.0f}; list.push_back(v1); Vertex v2 = {2.0f, 100.0f, 3.0f}; list.push_back(v2); Vertex v3 = {3.0f, 200.0f, 3.0f}; list.push_back(v3); Vertex v4 = {4.0f, 300.0f, 3.0f}; list.push_back(v4); // Write out a list to a disk file ofstream os ("data.dat", ios::binary); int size1 = list.size(); os.write((const char*)&size1, 4); os.write((const char*)&list[0], size1 * sizeof(Vertex)); os.close(); // Read it back in VertexList list2; ifstream is("data.dat", ios::binary); int size2; is.read((char*)&size2, 4); list2.resize(size2); // Is it safe to read a whole array of structures directly into the vector? is.read((char*)&list2[0], size2 * sizeof(Vertex)); }

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20 21 22 23 24  | Next Page >