Search Results

Search found 1273 results on 51 pages for 'vertex shader'.

Page 21/51 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • Concatenation of many lists in Python

    - by Space_C0wb0y
    Suppose i have a function like this: def getNeighbors(vertex) which returns a list of vertices that are neighbors of the given vertex. Now i want to create a list with all the neighbors of the neighbors. I do that like this: listOfNeighborsNeighbors = [] for neighborVertex in getNeighbors(vertex): listOfNeighborsNeighbors.append(getNeighbors(neighborsVertex)) Is there a more pythonic way to do that?

    Read the article

  • State in OpenGL

    - by newprogrammer
    This is some simple code that draws to the screen. GLuint vbo; glGenBuffers(1, &vbo); glUseProgram(myProgram); glBindBuffer(GL_ARRAY_BUFFER, vbo); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); //Fill up my VBO with vertex data glBufferData(GL_ARRAY_BUFFER, sizeof(vertexes), &vertexes, GL_STATIC_DRAW); /*Draw to the screen*/ This works fine. However, I tried changing the order of some GL calls like so: GLuint vbo; glGenBuffers(1, &vbo); glUseProgram(myProgram); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); //Now comes after the setting of the vertex attributes. glBindBuffer(GL_ARRAY_BUFFER, vbo); //Fill up my VBO with vertex data glBufferData(GL_ARRAY_BUFFER, sizeof(vertexes), &vertexes, GL_STATIC_DRAW); /*Draw to the screen*/ This crashes my program. Why does there need to be a VBO bound to GL_ARRAY_BUFFER while I'm just setting up vertex attributes? To me, what glVertexAttribPointer does is just set up the format of vertexes that OpenGL will eventually use to draw things. It is not specific to any VBO. Thus, if multiple VBOs wanted to use the same vertex format, you would not need to format the vertexes in the VBO again.

    Read the article

  • What are the GPU requirements for XNA 4.0?

    - by Nate Koppenhaver
    I tried to build a sample application using XNA, but I got an error saying that Pixel Shader 1.1 was required, so I got a used Radeon X300 GPU that supports Pixel Shader. I tried to build it again, but I got another error saying that "Your current graphics card does not support the XNA HiDef profile" and would not build. Since that card seems to not be compatible, I guess I need to buy another one. What features should I look for to make sure that it's compatible with XNA?

    Read the article

  • Atmospheric scattering sky from space artifacts

    - by ollipekka
    I am in the process of implementing atmospheric scattering of a planets from space. I have been using Sean O'Neil's shaders from http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html as a starting point. I have pretty much the same problem related to fCameraAngle except with SkyFromSpace shader as opposed to GroundFromSpace shader as here: http://www.gamedev.net/topic/621187-sean-oneils-atmospheric-scattering/ I get strange artifacts with sky from space shader when not using fCameraAngle = 1 in the inner loop. What is the cause of these artifacts? The artifacts disappear when fCameraAngle is limtied to 1. I also seem to lack the hue that is present in O'Neil's sandbox (http://sponeil.net/downloads.htm) Camera position X=0, Y=0, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. Camera position X=500, Y=500, Z=500. GroundFromSpace on the left, SkyFromSpace on the right. I've found that the camera angle seems to handled very differently depending the source: In the original shaders the camera angle in SkyFromSpaceShader is calculated as: float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight; Whereas in ground from space shader the camera angle is calculated as: float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos); However, various sources online tinker with negating the ray. Why is this? Here is a C# Windows.Forms project that demonstrates the problem and that I've used to generate the images: https://github.com/ollipekka/AtmosphericScatteringTest/ Update: I have found out from the ScatterCPU project found on O'Neil's site that the camera ray is negated when the camera is above the point being shaded so that the scattering is calculated from point to the camera. Changing the ray direction indeed does remove artifacts, but introduces other problems as illustrated here: Furthermore, in the ScatterCPU project, O'Neil guards against situations where optical depth for light is less than zero: float fLightDepth = Scale(fLightAngle, fScaleDepth); if (fLightDepth < float.Epsilon) { continue; } As pointed out in the comments, along with these new artifacts this still leaves the question, what is wrong with the images where camera is positioned at 500, 500, 500? It feels like the halo is focused on completely wrong part of the planet. One would expect that the light would be closer to the spot where the sun should hits the planet, rather than where it changes from day to night. The github project has been updated to reflect changes in this update.

    Read the article

  • Finding the Twins when Implementing Catmull-Clark subdivision using Half-Edge mesh [migrated]

    - by Ailurus
    Note: The description became a little longer than expected. Do you know a readable implementation of this algorithm using this mesh? Please let me know! I'm trying to implement Catmull-Clark subdivision using Matlab (because later on the results have to be compared with some other stuff already implemented in Matlab). First try was with a Vertex-Face mesh, the algorithm works but it is of course not very efficient (since you need neighbouring information for edges and faces). Therefore, I'm now using a Half-Edge mesh (info), see also the paper of Lutz Kettner. Wikipedia link to the idea behind Catmull-Clark SDV: Wiki. My problem lies in finding the Twin HalfEdges, I'm just not sure how to do this. Below I'm describing my thoughts on the implementation, trying to keep it concise. Half-Edge mesh (using indices to Vertices/HalfEdges/Faces): Vertex (x,y,z,Outgoing_HalfEdge) HalfEdge (HeadVertex (or TailVertex, which one should I use), Next, Face, Twin). Face (HalfEdge) To keep it simple for now, assume that every face is a quadrilateral. The actual mesh is a list of Vertices, HalfEdges and Faces. The new mesh will consist of NewVertices, NewHalfEdges and NewFaces, like this (note: Number_... is the number of ...): NumberNewVertices: Number_Faces + Number_HalfEdges/2 + Number_Vertices NumberNewHalfEdges: 4 * 4 * NumberFaces NumberNewfaces: 4 * NumberFaces Catmull-Clark: Find the FacePoint (centroid) of each Face: --> Just average the x,y,z values of the vertices, save as a NewVertex. Find the EdgePoint of each HalfEdge: --> To prevent duplicates (each HalfEdge has a Twin which would result in the same HalfEdge) --> Only calculate EdgePoints of the HalfEdge which has the lowest index of the Pair. Update old Vertices Ok, now all the new Vertices are calculated (however, their Outgoing_HalfEdge is still unknown). Next step to save the new HalfEdges and Faces. This is the part causing me problems! Loop through each old Face, there are 4 new Faces to be created (because of the quadrilateral assumption) First create the 4 new HalfEdges per New Face, starting at the FacePoint to the Edgepoint Next a new HalfEdge from the EdgePoint to an Updated Vertex Another new one from the Updated Vertex to the next EdgePoint Finally the fourth new HalfEdge from the EdgePoint back to the FacePoint. The HeadVertex of each new HalfEdge is known, the Next HalfEdge too. The Face is also known (since it is the new face you're creating!). Only the Twin HalfEdge is unknown, how should I know this? By the way, while looping through the Vertices of the new Face, assign the Outgoing_HalfEdge to the Vertices. This is probably the place to find out which HalfEdge is the Twin. Finally, after the 4 new HalfEdges are created, save the Face with the HalfVertex index the last newly created HalfVertex. I hope this is clear, if needed I can post my (obviously not-yet-finished) Matlab code.

    Read the article

  • How do you calculate UVW coordinates?

    - by Jenko
    I'm working on a 3d engine and I'm calculating UVT coordinates, where U and V represent pixels on the texture measured in 0-1, and T is: T = perspective / Z But I'm trying to use this perspective-correct triangle rasteriser, which requires a W, per vertex. How do I calculate the W for each vertex for the drawPerspectiveTexturedPolygon() function? Hint: The code comments refer to W as the "homogenous coordinate" ... does that mean anything?

    Read the article

  • What are the advantages of GLSL's compilation model?

    - by Kos
    GLSL is fundamentally different from other shader solutions because the server (GPU driver) is responsible for shader compilation. Cg and HLSL are (afaik) generally compiled a priori and sent to the GPU in that way. This causes some real-world practical issues: many drivers provide buggy compilers compilers differ in terms of strictness (one GPU can accept a program while another won't) also we can't know how the assembler code will be optimised What are the upsides of GLSL's current approach? Is it worth it?

    Read the article

  • loading 3d model data into buffers

    - by mulletdevil
    I am using assimp to load 3d model data. I have noticed that each loaded model is made up of different meshes. I was wondering should each mesh have it's own vertex/index buffer or should there just be one for the whole model? From looking through the index data that is loaded it seems to suggest that I will need a vertex buffer per mesh but I'm not 100% sure. I am using C++ and DirectX9 Thank you, Mark

    Read the article

  • When does depth testing happen?

    - by Utkarsh Sinha
    I'm working with 2D sprites - and I want to do 3D style depth testing with them. When writing a pixel shader for them, I get access to the semantic DEPTH0. Would writing to this value help? It seems it doesn't. Maybe it's done before the pixel shader step? Or is depth testing only done when drawing 3D things (I'm using SpriteBatch)? Any links/articles/topics to read/search for would be appreciated.

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • How to do directional per fragment lighting in world space?

    - by user
    I am attempting to create a GLSL shader for simple, per-fragment directional light. So far, after following many tutorials, I have continually ran into the issue: my light is specified in world coordinates, however, the shader treats the light's position as being in eye space, thus, the light direction changes when I move the camera. My question is, how to I transform a directional light position such as (50, 50, 50, 0) into eye space, or, would doing things this way be the incorrect approach to the problem?

    Read the article

  • Masking OpenGL texture by a pattern

    - by user1304844
    Tiled terrain. User wants to build a structure. He presses build and for each tile there is an "allow" or "disallow" tile sprite added to the scene. FPS drops right away, since there are 600+ tiles added to the screen. Since map equals screen, there is no scrolling. I came to an idea to make an allow grid covering the whole map and mask the disallow fields. Approach 1: Create allow and disallow grid textures. Draw a polygon on screen. Pass both textures to the fragment shader. Determine the position inside the polygon and use color from allowTexture if the fragment belongs to the allow field, disallow otherwise Problem: How do I know if I'm on the field that isn't allowed if I cannot pass the matrix representing the map (enum FieldStatus[][] (Allow / Disallow)) to the shader? Therefore, inside the shader I don't know which fragments should be masked. Approach 2: Create allow texture. Create an empty texture buffer same size as the allow texture Memset the pixels of the empty texture to desired color for each pixel that doesn't allow building. Draw a polygon on screen. Pass both textures to the fragment shader. Use texture2 color if alpha 0, texture1 color otherwise. Problem: I'm not sure what is the right way to manipulate pixels on a texture. Do I just make a buffer with width*height*4 size and memcpy the color[] to desired coordinates or is there anything else to it? Would I have to call glTexImage2D after every change to the texture? Another problem with this approach is that it takes a lot more work to get a prettier effect since I'm manipulating the color pixels instead of just masking two textures. varying vec2 TexCoordOut; uniform sampler2D Texture1; uniform sampler2D Texture2; void main(void){ vec4 allowColor = texture2D(Texture1, TexCoordOut); vec4 disallowColor = texture2D(Texture2, TexCoordOut); if(disallowColor.a > 0){ gl_FragColor= disallowColor; }else{ gl_FragColor= allowColor; }} I'm working with OpenGL on Windows. Any other suggestion is welcome.

    Read the article

  • Why is my card Unity blacklisted with all the requirements fulfilled?

    - by Oxwivi
    The following is the Unity test output: OpenGL vendor string: NVIDIA Corporation OpenGL renderer string: GeForce FX 5500/AGP/SSE2 OpenGL version string: 2.1.2 NVIDIA 173.14.30 Not software rendered: yes Not blacklisted: no GLX fbconfig: yes GLX texture from pixmap: yes GL npot or rect textures: yes GL vertex program: yes GL fragment program: yes GL vertex buffer object: yes GL framebuffer object: yes GL version is 1.4+: yes Unity supported: no As you can see, all requirements are fulfilled but my GPU is blacklisted. What can I do about it?

    Read the article

  • XNA ModelMesh.Draw vs GraphicsDevice.DrawIndexedPrimitives

    - by cubrman
    I am using XNA 4.0 and I wonder if drawing models with multiple meshes is better by filling the vertex and index buffers first and calling GraphicsDevice.DrawIndexedPrimitives() or by simply using good ol' foreach(...) {ModelMesh.Draw()}. Is it possible to add data to vertex/index buffers at all in order to pack all the models on the scene in them and then call Draw only once per frame? I would appreciate a link to an in-depth explanation. Thanks.

    Read the article

  • Why are my scene's depth values not being written to my DepthStencilView?

    - by dotminic
    I'm rendering to a depth map in order to use it as a shader resource view, but when I sample the depth map in my shader, the red component has a value of 1 while all other channels have a value of 0. The Texture2D I use to create the DepthStencilView is bound with the D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE flags, the DepthStencilView has the DXGI_FORMAT_D32_FLOAT format, and the ShaderResourceView's format is D3D11_SRV_DIMENSION_TEXTURE2D. I'm setting the depth map render target, then i'm drawing my scene, and once that is done, I'm the back buffer render target and depth stencil are set on the output merger, and I'm using the depth map shader resource view as a texture in my shader, but the depth value in the red channel is constantly 1. I'm not getting any runtime errors from D3D, and no compile time warning or anything. I'm not sure what I'm missing here at all. I have the impression the depth value is always being set to 1. I have not set any depth/stencil states, and AFAICT depth writing is enabled by default. The geometry is being rendered correctly so I'm pretty sure depth writing is enabled. The device is created with the appropriate debug flags; #if defined(DEBUG) || defined(_DEBUG) deviceFlags |= D3D11_CREATE_DEVICE_DEBUG | D3D11_RLDO_DETAIL; #endif This is how I create my depth map. I've omitted error checking for the sake of brevity D3D11_TEXTURE2D_DESC td; td.Width = width; td.Height = height; td.MipLevels = 1; td.ArraySize = 1; td.Format = DXGI_FORMAT_R32_TYPELESS; td.SampleDesc.Count = 1; td.SampleDesc.Quality = 0; td.Usage = D3D11_USAGE_DEFAULT; td.BindFlags = D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE; td.CPUAccessFlags = 0; td.MiscFlags = 0; _device->CreateTexture2D(&texDesc, 0, &this->_depthMap); D3D11_DEPTH_STENCIL_VIEW_DESC dsvd; ZeroMemory(&dsvd, sizeof(dsvd)); dsvd.Format = DXGI_FORMAT_D32_FLOAT; dsvd.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; dsvd.Texture2D.MipSlice = 0; _device->CreateDepthStencilView(this->_depthMap, &dsvd, &this->_dmapDSV); D3D11_SHADER_RESOURCE_VIEW_DESC srvd; srvd.Format = DXGI_FORMAT_R32_FLOAT; srvd.ViewDimension = D3D11_SRV_DIMENSION_TEXTURE2D; srvd.Texture2D.MipLevels = texDesc.MipLevels; srvd.Texture2D.MostDetailedMip = 0; _device->CreateShaderResourceView(this->_depthMap, &srvd, &this->_dmapSRV);

    Read the article

  • How to add two textures ,one is used as background and another one is used in a rotating cube!

    - by VampirEMufasa
    I am working in OpenGL ES 2.0. Now I am writing a demo for my project, I load two png images as my textures with the libSOIL But now I need to use one of them as the texture of my demo's background and another one as the texture of a rotating cube. In OpenGL ES 2.0, the adding texture operation is in the shader But now I don't know how to add the different textures to the different place in a shader Who can help me! Thank you very much!

    Read the article

  • Atmospheric Scattering

    - by Lawrence Kok
    I'm trying to implement atmospheric scattering based on Sean O`Neil algorithm that was published in GPU Gems 2. But I have some trouble getting the shader to work. My latest attempts resulted in: http://img253.imageshack.us/g/scattering01.png/ I've downloaded sample code of O`Neil from: http://http.download.nvidia.com/developer/GPU_Gems_2/CD/Index.html. Made minor adjustments to the shader 'SkyFromAtmosphere' that would allow it to run in AMD RenderMonkey. In the images it is see-able a form of banding occurs, getting an blueish tone. However it is only applied to one half of the sphere, the other half is completely black. Also the banding appears to occur at Zenith instead of Horizon, and for a reason I managed to get pac-man shape. I would appreciate it if somebody could show me what I'm doing wrong. Vertex Shader: uniform mat4 matView; uniform vec4 view_position; uniform vec3 v3LightPos; const int nSamples = 3; const float fSamples = 3.0; const vec3 Wavelength = vec3(0.650,0.570,0.475); const vec3 v3InvWavelength = 1.0f / vec3( Wavelength.x * Wavelength.x * Wavelength.x * Wavelength.x, Wavelength.y * Wavelength.y * Wavelength.y * Wavelength.y, Wavelength.z * Wavelength.z * Wavelength.z * Wavelength.z); const float fInnerRadius = 10; const float fOuterRadius = fInnerRadius * 1.025; const float fInnerRadius2 = fInnerRadius * fInnerRadius; const float fOuterRadius2 = fOuterRadius * fOuterRadius; const float fScale = 1.0 / (fOuterRadius - fInnerRadius); const float fScaleDepth = 0.25; const float fScaleOverScaleDepth = fScale / fScaleDepth; const vec3 v3CameraPos = vec3(0.0, fInnerRadius * 1.015, 0.0); const float fCameraHeight = length(v3CameraPos); const float fCameraHeight2 = fCameraHeight * fCameraHeight; const float fm_ESun = 150.0; const float fm_Kr = 0.0025; const float fm_Km = 0.0010; const float fKrESun = fm_Kr * fm_ESun; const float fKmESun = fm_Km * fm_ESun; const float fKr4PI = fm_Kr * 4 * 3.141592653; const float fKm4PI = fm_Km * 4 * 3.141592653; varying vec3 v3Direction; varying vec4 c0, c1; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main( void ) { // Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere) vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Pos = normalize(gl_Vertex.xyz) * fOuterRadius; vec3 v3Ray = v3CameraPos - v3Pos; float fFar = length(v3Ray); v3Ray = normalize(v3Ray); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(normalize(v3LightPos), v3SamplePoint) / fHeight; float fCameraAngle = dot(normalize(v3Ray), v3SamplePoint) / fHeight; float fScatter = (-fStartOffset + fDepth*( scale(fLightAngle) - scale(fCameraAngle)))/* 0.25f*/; vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } // Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader vec4 newPos = vec4( (gl_Vertex.xyz + view_position.xyz), 1.0); gl_Position = gl_ModelViewProjectionMatrix * vec4(newPos.xyz, 1.0); gl_Position.z = gl_Position.w * 0.99999; c1 = vec4(v3FrontColor * fKmESun, 1.0); c0 = vec4(v3FrontColor * (v3InvWavelength * fKrESun), 1.0); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: uniform vec3 v3LightPos; varying vec3 v3Direction; varying vec4 c0; varying vec4 c1; const float g =-0.90f; const float g2 = g * g; const float Exposure =2; void main(void){ float fCos = dot(normalize(v3LightPos), v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); gl_FragColor = c0 + fMiePhase * c1; gl_FragColor.a = 1.0; }

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • First time shadow mapping problems

    - by user1294203
    I have implemented basic shadow mapping for the first time in OpenGL using shaders and I'm facing some problems. Below you can see an example of my rendered scene: The process of the shadow mapping I'm following is that I render the scene to the framebuffer using a View Matrix from the light point of view and the projection and model matrices used for normal rendering. In the second pass, I send the above MVP matrix from the light point of view to the vertex shader which transforms the position to light space. The fragment shader does the perspective divide and changes the position to texture coordinates. Here is my vertex shader, #version 150 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform mat4 lightMVP; uniform float scale; in vec3 in_Position; in vec3 in_Normal; in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; smooth out vec4 lightspace_Position; void main(void){ pass_Normal = NormalMatrix * in_Normal; pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; lightspace_Position = lightMVP * vec4(scale * in_Position, 1.0); TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } And my fragment shader, #version 150 core struct Light{ vec3 direction; }; uniform Light light; uniform sampler2D inSampler; uniform sampler2D inShadowMap; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; smooth in vec4 lightspace_Position; out vec4 out_Color; float CalcShadowFactor(vec4 lightspace_Position){ vec3 ProjectionCoords = lightspace_Position.xyz / lightspace_Position.w; vec2 UVCoords; UVCoords.x = 0.5 * ProjectionCoords.x + 0.5; UVCoords.y = 0.5 * ProjectionCoords.y + 0.5; float Depth = texture(inShadowMap, UVCoords).x; if(Depth < (ProjectionCoords.z + 0.001)) return 0.5; else return 1.0; } void main(void){ vec3 Normal = normalize(pass_Normal); vec3 light_Direction = -normalize(light.direction); vec3 camera_Direction = normalize(-pass_Position); vec3 half_vector = normalize(camera_Direction + light_Direction); float diffuse = max(0.2, dot(Normal, light_Direction)); vec3 temp_Color = diffuse * vec3(1.0); float specular = max( 0.0, dot( Normal, half_vector) ); float shadowFactor = CalcShadowFactor(lightspace_Position); if(diffuse != 0 && shadowFactor > 0.5){ float fspecular = pow(specular, 128.0); temp_Color += fspecular; } out_Color = vec4(shadowFactor * texture(inSampler, TexCoord).xyz * temp_Color, 1.0); } One of the problems is self shadowing as you can see in the picture, the crate has its own shadow cast on itself. What I have tried is enabling polygon offset (i.e. glEnable(POLYGON_OFFSET_FILL), glPolygonOffset(GLfloat, GLfloat) ) but it didn't change much. As you see in the fragment shader, I have put a static offset value of 0.001 but I have to change the value depending on the distance of the light to get more desirable effects , which not very handy. I also tried using front face culling when I render to the framebuffer, that didn't change much too. The other problem is that pixels outside the Light's view frustum get shaded. The only object that is supposed to be able to cast shadows is the crate. I guess I should pick more appropriate projection and view matrices, but I'm not sure how to do that. What are some common practices, should I pick an orthographic projection? From googling around a bit, I understand that these issues are not that trivial. Does anyone have any easy to implement solutions to these problems. Could you give me some additional tips? Please ask me if you need more information on my code. Here is a comparison with and without shadow mapping of a close-up of the crate. The self-shadowing is more visible.

    Read the article

  • OpenGL 3 and the Radeon HD 4850x2

    - by rotard
    A while ago, I picked up a copy of the OpenGL SuperBible fifth edition and slowly and painfully started teaching myself OpenGL the 3.3 way, after having been used to the 1.0 way from school way back when. Making things more challenging, I am primarily a .NET developer, so I was working in Mono with the OpenTK OpenGL wrapper. On my laptop, I put together a program that let the user walk around a simple landscape using a couple shaders that implemented per-vertex coloring and lighting and texture mapping. Everything was working brilliantly until I ran the same program on my desktop. Disaster! Nothing would render! I have chopped my program down to the point where the camera sits near the origin, pointing at the origin, and renders a square (technically, a triangle fan). The quad renders perfectly on my laptop, coloring, lighting, texturing and all, but the desktop renders a small distorted non-square quadrilateral that is colored incorrectly, not affected by the lights, and not textured. I suspect the graphics card is at fault, because I get the same result whether I am booted into Ubuntu 10.10 or Win XP. I did find that if I pare the vertex shader down to ONLY outputting the positional data and the fragment shader to ONLY outputting a solid color (white) the quad renders correctly. But as SOON as I start passing in color data (whether or not I use it in the fragment shader) the output from the vertex shader is distorted again. The shaders follow. I left the pre-existing code in, but commented out so you can get an idea what I was trying to do. I'm a noob at glsl so the code could probably be a lot better. My laptop is an old lenovo T61p with a Centrino (Core 2) Duo and an nVidia Quadro graphics card running Ubuntu 10.10 My desktop has an i7 with a Radeon HD 4850 x2 (single card, dual GPU) from Saphire dual booting into Ubuntu 10.10 and Windows XP. The problem occurs in both XP and Ubuntu. Can anyone see something wrong that I am missing? What is "special" about my HD 4850x2? string vertexShaderSource = @" #version 330 precision highp float; uniform mat4 projection_matrix; uniform mat4 modelview_matrix; //uniform mat4 normal_matrix; //uniform mat4 cmv_matrix; //Camera modelview. Light sources are transformed by this matrix. //uniform vec3 ambient_color; //uniform vec3 diffuse_color; //uniform vec3 diffuse_direction; in vec4 in_position; in vec4 in_color; //in vec3 in_normal; //in vec3 in_tex_coords; out vec4 varyingColor; //out vec3 varyingTexCoords; void main(void) { //Get surface normal in eye coordinates //vec4 vEyeNormal = normal_matrix * vec4(in_normal, 0); //Get vertex position in eye coordinates //vec4 vPosition4 = modelview_matrix * vec4(in_position, 0); //vec3 vPosition3 = vPosition4.xyz / vPosition4.w; //Get vector to light source in eye coordinates //vec3 lightVecNormalized = normalize(diffuse_direction); //vec3 vLightDir = normalize((cmv_matrix * vec4(lightVecNormalized, 0)).xyz); //Dot product gives us diffuse intensity //float diff = max(0.0, dot(vEyeNormal.xyz, vLightDir.xyz)); //Multiply intensity by diffuse color, force alpha to 1.0 //varyingColor.xyz = in_color * diff * diffuse_color.xyz; varyingColor = in_color; //varyingTexCoords = in_tex_coords; gl_Position = projection_matrix * modelview_matrix * in_position; }"; string fragmentShaderSource = @" #version 330 //#extension GL_EXT_gpu_shader4 : enable precision highp float; //uniform sampler2DArray colorMap; //in vec4 varyingColor; //in vec3 varyingTexCoords; out vec4 out_frag_color; void main(void) { out_frag_color = vec4(1,1,1,1); //out_frag_color = varyingColor; //out_frag_color = vec4(varyingColor, 1) * texture(colorMap, varyingTexCoords.st); //out_frag_color = vec4(varyingColor, 1) * texture(colorMap, vec3(varyingTexCoords.st, 0)); //out_frag_color = vec4(varyingColor, 1) * texture2DArray(colorMap, varyingTexCoords); }"; Note that in this code the color data is accepted but not actually used. The geometry is outputted the same (wrong) whether the fragment shader uses varyingColor or not. Only if I comment out the line varyingColor = in_color; does the geometry output correctly. Originally the shaders took in vec3 inputs, I only modified them to take vec4s while troubleshooting.

    Read the article

  • "const char *" is incompatible with parameter of type "LPCWSTR" error

    - by N0xus
    I'm trying to incorporate some code from Programming an RTS Game With Direct3D into my game. Before anyone says it, I know the book is kinda old, but it's the particle effects system he creates that I'm trying to use. With his shader class, he intialise it thusly: void SHADER::Init(IDirect3DDevice9 *Dev, const char fName[], int typ) { m_pDevice = Dev; m_type = typ; if(m_pDevice == NULL)return; // Assemble and set the pixel or vertex shader HRESULT hRes; LPD3DXBUFFER Code = NULL; LPD3DXBUFFER ErrorMsgs = NULL; if(m_type == PIXEL_SHADER) hRes = D3DXCompileShaderFromFile(fName, NULL, NULL, "Main", "ps_2_0", D3DXSHADER_DEBUG, &Code, &ErrorMsgs, &m_pConstantTable); else hRes = D3DXCompileShaderFromFile(fName, NULL, NULL, "Main", "vs_2_0", D3DXSHADER_DEBUG, &Code, &ErrorMsgs, &m_pConstantTable); } How ever, this generates the following error: Error 1 error C2664: 'D3DXCompileShaderFromFileW' : cannot convert parameter 1 from 'const char []' to 'LPCWSTR' The compiler states the issue is with fName in the D3DXCompileShaderFromFile line. I know this has something to do with the character set, and my program was already running with a Unicode Character set on the go. I read that to solve the above problem, I need to switch to a multi-byte character set. But, if I do that, I get other errors in my code, like so: Error 2 error C2664: 'D3DXCreateEffectFromFileA' : cannot convert parameter 2 from 'const wchar_t *' to 'LPCSTR' With it being accredited to the following line of code: if(FAILED(D3DXCreateEffectFromFile(m_pD3DDevice9,effectFileName.c_str(),NULL,NULL,0,NULL,&m_pCurrentEffect,&pErrorBuffer))) This if is nested within another if statement checking my effectmap list. Though it is the FAILED word with the red line. Like wise I get the another error with the following line of code: wstring effectFileName = TEXT("Sky.fx"); With the error message being: Error 1 error C2440: 'initializing' : cannot convert from 'const char [7]' to 'std::basic_string<_Elem,_Traits,_Ax' If I change it back to a Uni code character set, I get the original (fewer) errors. Leaving as a multi-byte, I get more errors. Does anyone know of a way I can fix this issue?

    Read the article

  • Implementing fog of war in opengl es 2.0 game

    - by joxnas
    Hi game development community, this is my first question here! ;) I'm developing a tactics/strategy real time android game and I've been wondering for some time what's the best way to implement an efficient and somewhat nice looking fog of war to incorporate in it. My experience with OpenGL or Android is not vast by any means, but I think it is sufficient for what I'm asking here. So far I have thought in some solutions: Draw white circles to a dark background, corresponding to the units visibility, then render to a texture, and then drawing a quad with that texture with blend mode set to multiply. Will this approach be efficient? Will it take too much memory? (I don't know how to render to texture and then use the texture. Is it too messy?) Have a grid object with a vertex shader which has an array of uniforms having the coordinates of all units, and another array which has their visibility range. The number of units will very probably never be bigger then 100. The vertex shader needs to test for each considered vertex, if there is some unit which can see it. In order to do this it, will have to loop the array with the coordinates and do some calculations based on distance. The efficiency of this is inversely proportional to the looks of it. A more dense grid will result in a more beautiful fog of war... but will require a greater amount of vertexes to be checked. Is it possible to find a nice compromise or is this a bad solution from the start? Which solution is the best? Are there better alternatives? Which ones? Thank you for your time.

    Read the article

  • Morph a sphere to a cube and a cube to a sphere with GLSL

    - by nkint
    I'm getting started with GLSL with quartz composer. I have a patch with a particle system in which each particle is mapped into a sphere with a blend value. With blend=0 particles are in random positions, blend=1 particles are in the sphere. The code is here: vec3 sphere(vec2 domain) { vec3 range; range.x = radius * cos(domain.y) * sin(domain.x); range.y = radius * sin(domain.y) * sin(domain.x); range.z = radius * cos(domain.x); return range; } // in main: vec2 p0 = gl_Vertex.xy * twopi; vec3 normal = sphere(p0);; vec3 r0 = radius * normal; vec3 vertex = r0; normal = normal * blend + gl_Normal * (1.0 - blend); vertex = vertex * blend + gl_Vertex.xyz * (1.0 - blend); I'd like the particle to be on a cube if blend=0 I've tried to find but I can't figure out some parametric equation for the cube. Maybe it is not the right way?

    Read the article

  • How best to handle ID3D11InputLayout in rendering code?

    - by JohnB
    I'm looking for an elegant way to handle input layouts in my directx11 code. The problem I have that I have an Effect class and a Element class. The effect class encapsulates shaders and similar settings, and the Element class contains something that can be drawn (3d model, lanscape etc) My drawing code sets the device shaders etc using the effect specified and then calls the draw function of the Element to draw the actual geometry contained in it. The problem is this - I need to create an D3D11InputLayout somewhere. This really belongs in the Element class as it's no business of the rest of the system how that element chooses to represent it's vertex layout. But in order to create the object the API requires the vertex shader bytecode for the vertex shader that will be used to draw the object. In directx9 it was easy, there was no dependency so my element could contain it's own input layout structures and set them without the effect being involved. But the Element shouldn't really have to know anything about the effect that it's being drawn with, that's just render settings, and the Element is there to provide geometry. So I don't really know where to store and how to select the InputLayout for each draw call. I mean, I've made something work but it seems very ugly. This makes me thing I've either missed something obvious, or else my design of having all the render settings in an Effect, the Geometry in an Element, and a 3rd party that draws it all is just flawed. Just wondering how anyone else handles their input layouts in directx11 in a elegant way?

    Read the article

  • Correct level of abstraction for a 3d rendering component?

    - by JohnB
    I've seen lots of questions around this area but not this exact question so apologies if this is a duplicate. I'm making a small 3d game. Well to be honest, it's just a little hobby project and likely won't turn out to be an actual game, I'll be happy to make a nice graphics demo and learn about 3d rendering and c++ design. My intent is to use direct3d9 for rendering as I have some little experience of it, and it seems to meet my requirements. However if I've learned one thing as a programmer it's to ask "is there any conceivable reason that this component might be replaced by a different implmentation" and if the answer is yes then I need to design a proper abstraction and interface to that component. So even though I intend to implment d3d9 I need to design a 3d interface that could be implemented for d3d11, opengl... My question then is what level is it best to do this at? I'm thinking that an interface capable of creating and later drawing Vertex buffers and index buffers Textures Vertex and Pixel "shaders" Some representation of drawing state (blending modes etc...) In other words a fairly low level interface where my code to draw for example an animated model would use the interface to obtain abstract vertex buffers etc. I worry though that it's too low level to abstract out all the functionallity I need efficiently. The alternative is to do this at a higher level where the interface can draw objects, animations, landscapes etc, and implement them for each system. This seems like more work, but it more flexible I guess. So that's my question really, when abstracting out the drawing system, what level of interface works best?

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >