Search Results

Search found 17816 results on 713 pages for 'variable names'.

Page 171/713 | < Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >

  • php include file issue using document root

    - by nithi
    I have used the following code to get the document root. $path = get_file_dir(); function get_file_dir() { global $argv; return realpath($argv[0]); } Below code includes config.php and config.php has the $setuprun variable with a value. if((file_exists("$path/admin/config.php"))) { include_once "$path/admin/config.php"; } if($setuprun=="true") { //do some code } In my system, it takes the document root like /home/myname/myfolder and the variable $setuprun has the value and the code works perfectly. But in another user's system, it shows the following error. Notice: Undefined variable: setuprun in /usr/local/www/chat/setup.php on line 22. He is using FreeBSD 8.2 Stable with MySQL 5, PHP5 and Apache 2.2. Can anyone please help me to solve this error?

    Read the article

  • AppEngine: Can I write a Dynamic property (db.Expando) with a name chosen at runtime?

    - by MarcoB
    If I have an entity derived from db.Expando I can write Dynamic property by just assigning a value to a new property, e.g. "y" in this example: class MyEntity(db.Expando): x = db.IntegerProperty() my_entity = MyEntity(x=1) my_entity.y = 2 But suppose I have the name of the dynamic property in a variable... how can I (1) read and write to it, and (2) check if the Dynamic variable exists in the entity's instance? e.g. class MyEntity(db.Expando): x = db.IntegerProperty() my_entity = MyEntity(x=1) # choose a var name: var_name = "z" # assign a value to the Dynamic variable whose name is in var_name: my_entity.property_by_name[var_name] = 2 # also, check if such a property esists if my_entity.property_exists(var_name): # read the value of the Dynamic property whose name is in var_name print my_entity.property_by_name[var_name] Thanks...

    Read the article

  • Function in xcode

    - by Joy
    I have a function which have two global variable 1.temp-a nsmutable array 2.j-a int type variable. But i cant access any global variable inside this function. I'm giving the code sample. void print( NSArray *array) { NSEnumerator *enumerator = [array objectEnumerator]; id obj; while ( nil!=(obj = [enumerator nextObject]) ) { NSString *tem=[[obj description] cString]; [temp insertObject:tem atIndex:j]; j=j+1; printf( "%s\n", [[obj description] cString]); } } Looking forward to your response. Thanks in advance..

    Read the article

  • How can I create an enum using numbers?

    - by Jordan S
    Is it possible to make an enum using just numbers in C#? In my program I have a variable, Gain, that can only be set to 1, 2, 4, and 8. I am using a propertygrid control to display and set this value. If I were to create an enum like this... private enum GainValues {One, Two, Four, Eight} and I made my gain variable of type GainValues then the drop-down list in the propertygrid would only show the available values for the gain variable. The problem is I want the gain values to read numerically an not as words. But I can not create an enum like this: private enum GainValues {1,2,4,8} So is there another way of doing this? Perhaps creating a custom type?

    Read the article

  • how to find which libraries to link to? or, how can I create *-config (such as sdl-config, llvm-con

    - by numeric
    Hey, I want to write a program that outputs a list of libraries that I should link to given source code (or object) files (for C or C++ programs). In *nix, there are useful tools such as sdl-config and llvm-config. But, I want my program to work on Windows, too. Usage: get-library-names -l /path/to/lib a.cpp b.cpp c.cpp d.obj Then, get-library-names would get a list of function names that are invoked from a.cpp, b.cpp, c.cpp, and d.obj. And, it'll search all library files in /path/to/lib directory and list libraries that are needed to link properly. Is there such tool already written? Is it not trivial to write a such tool? How do you find what libraries you should link to? Thanks.

    Read the article

  • A Tkinter StringVar() Question

    - by Graham
    I would like to create a StringVar() that looks something like this: someText = "The Spanish Inquisition" #Here's a normal variable whose value I will change eventually TkEquivalent = StringVar() #and here's the StringVar() TkEquivalent.set(string(someText)) #and here I set it equal to the normal variable. When someText changes, this variable will too... HOWEVER: TkEquivalent.set("Nobody Expects " + string(someText)) If I do this, the StringVar() will no longer automatically update! How can I include that static text and still have the StringVar() update to reflect changes made to someText? Thanks for your help.

    Read the article

  • How to Get Control Panel Categories (Groups) on Windows Vista and Windows 7

    - by Bill
    Is there a way to get a listing of control panel categories on Windows Vista and Windows 7 using the shell? Is there a way to determine which category an applet is assigned to using conical Names using the shell? such as Microsoft.Mouse is in which category? I have some code that works nicely to display control panel applet names obtained from the shell in a TListView in a Vista Classic ungrouped list. I'd like to try to group the applet names in the TListView similar to Control Panel Classic Grouped by Category in Vista. Bill

    Read the article

  • Does this make any sense (Apple-documentation)?

    - by Paperflyer
    Here is a snippet of the official Apple Documentation of AudioBufferList (Core Audio Data Types Reference) AudioBufferList Holds a variable length array of AudioBuffer structures. struct AudioBufferList { UInt32 mNumberBuffers; AudioBuffer mBuffers[1]; }; typedef struct AudioBufferList AudioBufferList; Fields mNumberBuffers The number of AudioBuffer structures in the mBuffers array. mBuffers A variable length array of AudioBuffer structures. If mBuffers is defined as AudioBuffer[1] it is not of variable length and thus mNumberBuffers is implicitly defined as 1. Do I miss something here or is this just nonsense?

    Read the article

  • Double # showing 0 on android

    - by Dave
    I'm embarrassed to ask this question, but after 45 minutes of not finding a solution I will resort to public humiliation. I have a number that is being divided by another number and I'm storing that number in a double variable. The numbers are randomly generated, but debugging the app shows that both numbers are in fact being generated. Lets just say the numbers are 476 & 733. I then take the numbers and divide them to get the percentage 476/733 = .64 I then print out the variable and it's always set to 0. I've tried using DecimalFormat and NumberFormat. No matter what I try though it always says the variable is 0. I know there is something simple that I'm missing, I just can't find it =/.

    Read the article

  • Can a programming language without arrays be turing-complete?

    - by Ring
    My question is simple: There are no arrays possible. That means you can address variables only "statically" by directly using their unique name. (This already throws out the default array syntax variable[ index ] and variable variables) "Emulated arrays" are counted as arrays and excluded too. Examples: You could basically simulate arrays using strings (quite easily actually) or use variable variables as in PHP. Can such a language be turing-complete? Brainf*ck for example has arrays, in fact it is one big array, isn't it?

    Read the article

  • Python Class Variables Question

    - by zyq524
    I have some doubt about python's class variables. As my understanding, if I define a class variable, which is declared outside the init() function, this variable will create only once as a static variable in C++. This seems right for some python types, for instance, dict and list type, but for those base type, e.g. int,float, is not the same. For example: class A: dict1={} list1=list() int1=3 def add_stuff(self, k, v): self.dict1[k]=v self.list1.append(k) self.int1=k def print_stuff(self): print self.dict1,self.list1,self.int1 a1 = A() a1.add_stuff(1, 2) a1.print_stuff() a2=A() a2.print_stuff() The output is: {1: 2} [1] 1 {1: 2} [1] 3 I understand the results of dict1 and list1, but why does int1 behavior different?

    Read the article

  • Easiest way to merge two List<T>s

    - by Chris McCall
    I've got two List<Name>s: public class Name { public string NameText {get;set;} public Gender Gender { get; set; } } public class Gender { public decimal MaleFrequency { get; set; } public decimal MaleCumulativeFrequency { get; set; } public decimal FemaleCumulativeFrequency { get; set; } public decimal FemaleFrequency { get; set; } } If the NameText property matches, I'd like to take the FemaleFrequency and FemaleCumulativeFrequency from the list of female Names and the MaleFrequency and MaleCumulativeFrequency values from the list of male Names and create one list of Names with all four properties populated. What's the easiest way to go about this in C# using .Net 3.5?

    Read the article

  • Read data from specific memory address

    - by rapid
    Hello. How can I read (and put into new variable) data stored at specific memory address? For instance I know that: <nfqueue.queue; proxy of <Swig Object of type 'queue *' at 0xabd2b00> > And I want to have data stored at 0xabd2b00 in new variable so that I can work and use all functionalities of the object. Let's assume that I don't have access to the original variable that created this object.

    Read the article

  • Getting a java collection of objects in Alphabetical order

    - by MichaelMcCabe
    I have a question that I dont really know where to start. So I thought i'd ask it here. Basically, I have a drop down with names in it. I want these names to be in alphabetical order. Populating the drop down happens as follows; I query a database and pull down an Id and Name, make a object called "UserList", and set the name and id variables with what I get back. I then add this object to an ArrayList. I do this over and over. I then convert this collection to an array, and pass it to my JSP page using session.setAttribute("userList", UserList); I then populate the drop down as below. <c:forEach items="${usersCompanysList}" var="c" > There probably is a simple answer but how to I sort these names?

    Read the article

  • fields_for to stop pluralizing.

    - by Dmitriy Likhten
    I have a fields_for tag, where I specify the prefix (lets say for some good reasons), and this is supposed to represent a one-to-one relationship. I am trying to represent a relationship widget has_many thingamagigs thingamagig has_one whatchamacallit The field_for code is: fields_for "widgt[thingamagigs_attributes][][whatchamacallit_attributes]", thingamagig.whatchamacallit do |x| which generates names (wrongly): widget[thingamagigs_attributes][][whatchamacallit_attributes][][value] The better solution would be t.fields_for :whatchamacallit do |x| where t = fields_for the thingamagig... However if I do that, the following names are generated widgt[thingamagigs_attributes][whatchamacallit_attributes][] which is completely wrong as all other fields for a thingamagig is... widgt[thingamagigs_attributes][][name] So in all cases I am screwed. The original field_for using a string cannot be used with accepts_nested_attributes_for :whatchamacallit since whatchamacallit is a singular relationship and an object is expected not an array. The second fields_for will simply not work because rails cannot parse the params object correctly. Is there a way to tell the first forms_for to not add the [] after [whatchamacallit_attributes] in all field names?

    Read the article

  • Within SSIS - Is it possible to deploy one package multiple times in the same instance and set diffe

    - by Matt
    In my environment my Dev and QA Database Instances are on the same server. I would like to deploy the same package (or different versions of the package) into SSIS and set the filter to select different rows in the Config table. Is this possible? This is SQL 2005. For the sake of this question lets say I have one variable, which is a directory path. I would like to have these variables in the table twice (with different Filters applied (Dev and QA) as below (simplified) . . . Filter / Variable Value / Variable Name Dev / c:\data\dev / FilePath QA / c:\data\qa / FilePath Do I need to apply a change within the settings of the package in SSIS or is it changed on the job step within Agent? Any help would be appreciated.

    Read the article

  • a macro question for c language (#define)

    - by Daniel
    I am reading source code of hoard memory allocator, and in the file of gnuwrapper.cpp, there are the following code #define CUSTOM_MALLOC(x) CUSTOM_PREFIX(malloc)(x) What's the meaning of CUSTOM_PREFIX(malloc)(x)? is CUSTOM_PREFIX a function? But as a function it didn't defined anywhere. If it's variable, then how can we use variable like var(malloc)(x)? more code: #ifndef __GNUC__ #error "This file requires the GNU compiler." #endif #include <string.h> #include <stdlib.h> #include <stdio.h> #include <malloc.h> #ifndef CUSTOM_PREFIX ==> here looks like it's a variable, so if it doesn't define, then define here. #define CUSTOM_PREFIX #endif #define CUSTOM_MALLOC(x) CUSTOM_PREFIX(malloc)(x) ===> what's the meaning of this? #define CUSTOM_FREE(x) CUSTOM_PREFIX(free)(x) #define CUSTOM_REALLOC(x,y) CUSTOM_PREFIX(realloc)(x,y) #define CUSTOM_MEMALIGN(x,y) CUSTOM_PREFIX(memalign)(x,y)

    Read the article

  • How to overcome case sensitive problem with contains method.??

    - by Srikanth
    Is there any solution to overcome case-sensitive problem for contains method. I have code like below string str = m_name; return avobj.Viewname.Contains(str); Eg: Welcome Here welcome here Both are same names but case is different. If I give 'W' in search box it is returning only 1st one. but I need both names display. I am storing the names in collection. And resultant values ( searched values ) are storing in List.

    Read the article

  • Guidance for Php for a beginner

    - by luckyluke
    I've just started to learn PHP. I found the $_POST variable is not working and posted the same at the below link $_POST[] not working in php and as per the advise i installed XAMPP. But still the proble of $_POST variable is not solved. Now i've a doubt whether i need to configure any global variable to make $_POST work. I'm totally lost on this and dont know how to proceed. Any help on this is verryy much appreciated. Thanks.

    Read the article

  • How do you pass objects between View Controllers in Objective-C?

    - by editor
    I've been trudging through some code for two days trying to figure out why I couldn't fetch a global NSMutableArray variable I declared in the .h and implemented in .m and set in a the viewDidLoad function. It finally dawned on me: there's no such thing as a global variable in Objective-C, at least not in the PHP sense I've come to know. I didn't ever really read the XCode error warnings, but there it was, even if not quite plain English: "Instance variable 'blah' accessed in class method." My question: What am I supposed to do now? I've got two View Controllers that need to access a central NSMutableDictionary I generate from a JSON file via URL. It's basically an extended menu for all my Table View drill downs, and I'd like to have couple other "global" (non-static) variables. Do I have to grab the JSON each time I want to generate this NSMutableDictionary or is there some way to set it once and access it from various classes via #import? Do I have to write data to a file, or is there another way people usually do this?

    Read the article

  • Make array from $_POST values

    - by cbarg
    Let's start telling that I'm passing an x amount of variables via post from a form. Let's name them menu_category_1, menu_category_2, ..., menu_category_x, plus, maybe, menu_category_new (I'm using an if empty to check this last one variable). To make things easier I'm also sending the parameter $key (amount of variables starting from 0). Now I need to set them into a new variable $menu_category (array), which is going to be imploded and then update my database. How do I set up that new $menu_category variable to be an array containing all my variables named in the beginning? I was thinking of using a for loop but I can't come up with something useful. Thanks!!!

    Read the article

  • scope of variables java

    - by qxc
    Is a variable inside the main, a public variable? public static void main(String[] args) { ......... for(int i=0;i<threads.length;i++) try { threads[i].join(); } catch (InterruptedException e) { e.printStackTrace(); } long time=0; .... } i and time are they both public variables? Of course if my reasoning is correct, also any variable belonging to a public method should be considered public.. am i right? Thanks

    Read the article

  • Quite confused about what constitutes Current state of a resource

    - by bckpwrld
    From REST in Practice: Hypermedia and Systems Architecture: The current state of a resource is a combination of: The values of information items belonging to that resource Links to related resources Links that represent a transition to a possible future state of the current resource The results of evaluating any business rules that relate the resource to other local resources a) why would "links to related resources" also represent the current state of a resource? b) I also don't quite understand why "Links that represent a transition to a possible future state of the current resource" also represent the the current state. Namely, those links represent the possibility, not the current state. Analogy would be an int variable set to value 10. It's possible that in the future this variable will get processed and set to value 100, but we don't claim its current state also includes possible future state of 100?! thank you

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Modify Build Failure Work Item in TFS 2010 Build

    - by Jakob Ehn
    The default behaviour in TFS Team Build (all versions) is to create a bug work item when a build fails. This main benefit of this is that you get a work item for something that needs to be done, namely to fix the build!. When the developer responsible for the build failure has fixed the problem, he/she can associated that check-in with the work item that was created from the previous build failure. In TFS 2005/2008 you could modify the information in the created work item by changing some predefined properties in the TFSBuild.proj file:   <!-- WorkItemType The type of the work item created on a build failure. --> <WorkItemType>Bug</WorkItemType> <!-- WorkItemFieldValues Fields and values of the work item created on a build failure. Note: Use reference names for fields if you want the build to be resistant to field name changes. Reference names are language independent while friendly names are changed depending on the installed language. For example, "System.Reason" is the reference name for the "Reason" field. --> <WorkItemFieldValues>System.Reason=Build Failure;System.Description=Start the build using Team Build</WorkItemFieldValues> <!-- WorkItemTitle Title of the work item created on build failure. --> <WorkItemTitle>Build failure in build:</WorkItemTitle> <!-- DescriptionText History comment of the work item created on a build failure. --> <DescriptionText>This work item was created by Team Build on a build failure.</DescriptionText> <!-- BuildLogText Additional comment text for the work item created on a build failure. --> <BuildlogText>The build log file is at:</BuildlogText> <!-- ErrorWarningLogText Additional comment text for the work item created on a build failure. This text will only be added if there were errors or warnings. --> <ErrorWarningLogText>The errors/warnings log file is at:</ErrorWarningLogText>   In TFS 2010, with Windows Workflow, you change this by modifying the properties on the OpenWorkItem activity. The hardest part of this is to actually find where this activity is located in the build process workflow. If you open the build definition in XAML you can just search for OpenWorkItem. If you use the designer you need to click your way down to the Catch section of the Try to Compile the Project sequence: To change the default values of the created work item, select the Created Work Item activity and look at the Properties window: Note the CustomFields property which is a dictionary with key (work item field name) and value. If you add custom fields to your work item you can add a value for it here by adding a new entry in the dictionary.

    Read the article

< Previous Page | 167 168 169 170 171 172 173 174 175 176 177 178  | Next Page >