Search Results

Search found 5045 results on 202 pages for 'anonymous programmer'.

Page 172/202 | < Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >

  • Guest (and occasional co-host) on Jesse Liberty's Yet Another Podcast

    - by Jon Galloway
    I was a recent guest on Jesse Liberty's Yet Another Podcast talking about the latest Visual Studio, ASP.NET and Azure releases. Download / Listen: Yet Another Podcast #75–Jon Galloway on ASP.NET/ MVC/ Azure Co-hosted shows: Jesse's been inviting me to co-host shows and I told him I'd show up when I was available. It's a nice change to be a drive-by co-host on a show (compared with the work that goes into organizing / editing / typing show notes for Herding Code shows). My main focus is on Herding Code, but it's nice to pop in and talk to Jesse's excellent guests when it works out. Some shows I've co-hosted over the past year: Yet Another Podcast #76–Glenn Block on Node.js & Technology in China Yet Another Podcast  #73 - Adam Kinney on developing for Windows 8 with HTML5 Yet Another Podcast #64 - John Papa & Javascript Yet Another Podcast #60 - Steve Sanderson and John Papa on Knockout.js Yet Another Podcast #54–Damian Edwards on ASP.NET Yet Another Podcast #53–Scott Hanselman on Blogging Yet Another Podcast #52–Peter Torr on Windows Phone Multitasking Yet Another Podcast #51–Shawn Wildermuth: //build, Xaml Programming & Beyond And some more on the way that haven't been released yet. Some of these I'm pretty quiet, on others I get wacky and hassle the guests because, hey, not my podcast so not my problem. Show notes from the ASP.NET / MVC / Azure show: What was just released Visual Studio 2012 Web Developer features ASP.NET 4.5 Web Forms Strongly Typed data controls Data access via command methods Similar Binding syntax to ASP.NET MVC Some context: Damian Edwards and WebFormsMVP Two questions from Jesse: Q: Are you making this harder or more complicated for Web Forms developers? Short answer: Nothing's removed, it's just a new option History of SqlDataSource, ObjectDataSource Q: If I'm using some MVC patterns, why not just move to MVC? Short answer: This works really well in hybrid applications, doesn't require a rewrite Allows sharing models, validation, other code between Web Forms and MVC ASP.NET MVC Adaptive Rendering (oh, also, this is in Web Forms 4.5 as well) Display Modes Mobile project template using jQuery Mobile OAuth login to allow Twitter, Google, Facebook, etc. login Jon (and friends') MVC 4 book on the way: Professional ASP.NET MVC 4 Windows 8 development Jesse and Jon announce they're working on a new book: Pro Windows 8 Development with XAML and C# Jon and Jesse agree that it's nice to be able to write Windows 8 applications using the same skills they picked up for Silverlight, WPF, and Windows Phone development. Compare / contrast ASP.NET MVC and Windows 8 development Q: Does ASP.NET and HTML5 development overlap? Jon thinks they overlap in the MVC world because you're writing HTML views without controls Jon describes how his web development career moved from a preoccupation with server code to a focus on user interaction, which occurs in the browser Jon mentions his NDC Oslo presentation on Learning To Love HTML as Beautiful Code Q: How do you apply C# / XAML or HTML5 skills to Windows 8 development? Q: If I'm a XAML programmer, what's the learning curve on getting up to speed on ASP.NET MVC? Jon describes the difference in application lifecycle and state management Jon says it's nice that web development is really interactive compared to application development Q: Can you learn MVC by reading a book? Or is it a lot bigger than that? What is Azure, and why would I use it? Jon describes the traditional Azure platform mode and how Azure Web Sites fits in Q: Why wouldn't Jesse host his blog on Azure Web Sites? Domain names on Azure Web Sites File hosting options Q: Is Azure just another host? How is it different from any of the other shared hosting options? A: Azure gives you the ability to scale up or down whenever you want A: Other services are available if or when you want them

    Read the article

  • Review: ComponentOne Studio for Entity Framework

    - by Tim Murphy
    While I have always been a fan of libraries that improve coding efficiency and reduce code redundancy I have mostly been using ones that were in the public domain.  As part of the Geeks With Blogs Influencers program a got my hands on ComponentOne’s Studio for Entity Framework.  Below are my thought after working with the product for several weeks. My coding preference has always been maintainable code that is reusable across an enterprises protfolio.  Because of this my focus in reviewing this product is less on the RAD components and more on its benefits for layered applications using code first Entity Framework. Before we get into the pros and cons here is a summary of the main feature listed for SEF. Unified Data Context Virtual Data Access More Powerful Data Binding Pros The first thing that I found to my liking is the C1DataSource. It basically manages a cache for your Entity Model context.  Under RAD conditions this is setup automatically when you drop the object on a your design surface.  If you are like me and want to abstract you data management into a library it takes a little more work, but it is still acceptable and gains the same benefits. The second feature that I found beneficial is the definition of views with improved sorting and filtering.  Again the ease of use of these features is greater on the RAD side but no capabilities are missing when manipulating object in code. Linq has become my friend over the last couple of years and it was great to see that ComponentOne had ensured that it remained a first class citizen in their design.  When you look into this product yourself I would suggest taking a dive into LiveLinq which allow the joining of different data source types. As I went through discovering the features of this framework I appreciated the number of examples that they supplied for different uses.  Besides showing how to use SEF with WinForms, WPF and Silverlight they also showed how to accomplish tasks both RAD, code only and MVVM approaches. Cons The only area that I would really like to see improvement is in there level of detail in their documentation.  Specifically I would like to have seen some of the supporting code explained, such as what some supporting object did, in the examples instead of having to go to the programmer’s reference. I did find some times where currently existing projects had some trouble determining scope that the RAD controls were allowed, but I expect this is something that is in part end user related. Summary Overall I found the Studio for Entity Framework capable and well thought out.  If you are already using the Entity Framework this product will fit into your environment with little effort in return for greater flexibility and greater robustness in your solutions. Whether the $895 list price for a standard version works for you will depend on your return on investment. Smaller companies with only a small number of projects may not be able to stomach it, you get a full featured product that is supported by a well established company.  The more projects and the more code you have the greater your return on investment will be. Personally I intend to apply this product to some production systems and will probably have some tips and tricks in the future. del.icio.us Tags: ComponentOne,Studio for Entity Framework,Geeks With Blogs,Influencers,Product Reviews

    Read the article

  • Spolskism or Twitterism: A Doctor writes...

    - by Phil Factor
    "I never realized I had a problem. I just 'twittered' because it was a social thing to do. All my mates were doing it. It made me feel good to have 'followers'; it bolstered my self-esteem. Of course, you don't think of the long-term effects on your work and on the way you think. There's no denying that it impairs your judgment…" Yes, this story is typical. Hundreds of people are waking up to the long term effects of twittering, and seeking help. Dave, who wishes to remain anonymous, told our reporter… "I started using Twitter at work. Just a few minutes now and then, throughout the day. A lot of my colleagues were doing it and I thought 'Well, that's cool; it must be part of what I should be doing at work'. Soon, I was avidly reading every twitter that came my way, and counting the minutes between my own twitters. I tried to kid myself that it was all about professional development and getting other people to help you with work-related problems, but in truth I had become addicted to the buzz of the social network. The worse thing was that it made me seem busy even when I was really just frittering my time away. Inevitably, I started to get behind with my real work." Experts have identified the syndrome and given it a name: 'Twitterism', sometimes referred to as 'Spolskism', after the person who first drew attention to the pernicious damage to well-being that the practice caused, and who had the courage to take the pledge of rejecting it. According to one expert… "The occasional Twitter does little harm to the participant, and can be an adaptive way of dealing with stress. Unfortunately, it rarely stops there. The addictive qualities of the practice have put a strain on the caring professions who are faced with a flood of people making that first bold step to seeking help". Dave is one of those now seeking help for his addiction… "I had lost touch with reality. Even though I twittered my work colleagues constantly, I found I actually spoke to them less and less. Even when out socializing, I would frequently disengage from the conversation, in order to twitter. I stopped blogging. I stopped responding to emails; the only way to reach me was through the world of Twitter. Unfortunately, my denial about the harm that twittering was doing to me, my friends, and my work-colleagues was so strong that I truly couldn't see that I had a problem." Like other addictions, the help and support of others who are 'taking the cure' is important. There is a common bond between those who have 'been through hell and back' and are once more able to experience the joys of actually conversing and socializing, rather than the false comfort of solitary 'twittering'. Complete abstinence is essential to the cure. Most of those who risk even an occasional twitter face a headlong slide back into 'binge' twittering. Tom, another twitterer who has managed to kick the habit explains… "My twittering addiction now seems more like a bad dream. You get to work, and switch on the PC. You say to yourself, just open up the browser, just for a minute, just to see what people are saying on Twitter. The next thing you know, half the day has gone by. The worst thing is that when you're addicted, you get good at covering up the habit; I spent so much time looking at the screen and typing on the keyboard, people just assumed I was working hard.I know that I must never forget what it was like then, and what it's like now that I've kicked the habit. I now have more time for productive work and a real social life." Like many addictions, Spolskism has its most detrimental effects on family, friends and workmates, rather than the addict. So often nowadays, we hear the sad stories of Twitter-Widows; tales of long lonely evenings spent whilst their partners are engrossed in their twittering into their 'mobiles' or indulging in their solitary spolskistic habits in privacy, under cover of 'having to do work at home'. Workmates suffer too, when the addicts even take their laptops or mobiles into meetings in order to 'twitter' with their fellow obsessives, even stooping to complain to their followers how boring the meeting is. No; The best advice is to leave twittering to the birds. You know it makes sense.

    Read the article

  • TiVo Follow-up&hellip;Training Opportunities

    - by MightyZot
    A few posts ago I talked about my experience with TiVo Customer Service. While I didn’t receive bad service per se, I felt like the reps could have communicated better. I made the argument that it should be just as easy to leave a company as it is to engage with a company, even though my intention is to remain a TiVo fan. I worked for DataStorm Technologies in the early 90s. I pointed out to another developer that we were leaving files behind in our installations. My opinion was that, if the customer is uninstalling our application, there should be no trace of it left after uninstall except for the customer’s data. He replied with, “screw ‘em. They’re leaving us. Why do we care if we left anything behind?” Wow. Surely there is a lot of arrogance in that statement. Think about this…how often do you change your services, devices, or whatever?  Personally, I change things up about once every two or three years. If I don’t change things up, I at least think about it. So, every two or three years there is an opportunity for you (as a vendor or business) to sell me something. (That opportunity actually exists all the time, because there are many of these two or three year periods overlapping.) Likewise, you have the opportunity to win back my business every two or three years as well. Customer service on exit is just as important as customer service during engagement because, every so often, you have another chance to gain back my loyalty. If you screw that up on exit, your chances are close to zero. In addition, you need to consider all of the potential or existing customers that are part of or affected by my social organizations. “Melissa” at TiVo gave me a call last week and set up some time to talk about my experience. We talked yesterday and she gave me a few moments to pontificate about my thoughts on the importance of a complete customer experience. She had listened to my customer support calls and agreed that I had made it clear that I intended to remain a TiVo customer even though suddenLink is handling my subscription. She said that suddenLink is a very important partner for them and, of course, they want to do everything they can to support TiVo / suddenLink customers.  “Melissa” also said that they had turned this experience into a training opportunity for the reps involved. I hope that is true, because that “programmer arrogance” that I mentioned above (which was somewhat pervasive back then) may be part of the reason why that company is no longer around. Good job “Melissa”!  And, like I said, I am still a TiVo fan. In fact, we love our new TiVo and many of the great new features. In addition, if you’re one of the two people that read these posts, please remember that these are just opinions. Your experiences may be, and likely will be, completely unique to you.

    Read the article

  • CLR via C# 3rd Edition is out

    - by Abhijeet Patel
    Time for some book news update. CLR via C#, 3rd Edition seems to have been out for a little while now. The book was released in early Feb this year, and needless to say my copy is on it’s way. I can barely wait to dig in and chew on the goodies that one of the best technical authors and software professionals I respect has in store. The 2nd edition of the book was an absolute treat and this edition promises to be no less. Here is a brief description of what’s new and updated from the 2nd edition. Part I – CLR Basics Chapter 1-The CLR’s Execution Model Added about discussion about C#’s /optimize and /debug switches and how they relate to each other. Chapter 2-Building, Packaging, Deploying, and Administering Applications and Types Improved discussion about Win32 manifest information and version resource information. Chapter 3-Shared Assemblies and Strongly Named Assemblies Added discussion of TypeForwardedToAttribute and TypeForwardedFromAttribute. Part II – Designing Types Chapter 4-Type Fundamentals No new topics. Chapter 5-Primitive, Reference, and Value Types Enhanced discussion of checked and unchecked code and added discussion of new BigInteger type. Also added discussion of C# 4.0’s dynamic primitive type. Chapter 6-Type and Member Basics No new topics. Chapter 7-Constants and Fields No new topics. Chapter 8-Methods Added discussion of extension methods and partial methods. Chapter 9-Parameters Added discussion of optional/named parameters and implicitly-typed local variables. Chapter 10-Properties Added discussion of automatically-implemented properties, properties and the Visual Studio debugger, object and collection initializers, anonymous types, the System.Tuple type and the ExpandoObject type. Chapter 11-Events Added discussion of events and thread-safety as well as showing a cool extension method to simplify the raising of an event. Chapter 12-Generics Added discussion of delegate and interface generic type argument variance. Chapter 13-Interfaces No new topics. Part III – Essential Types Chapter 14-Chars, Strings, and Working with Text No new topics. Chapter 15-Enums Added coverage of new Enum and Type methods to access enumerated type instances. Chapter 16-Arrays Added new section on initializing array elements. Chapter 17-Delegates Added discussion of using generic delegates to avoid defining new delegate types. Also added discussion of lambda expressions. Chapter 18-Attributes No new topics. Chapter 19-Nullable Value Types Added discussion on performance. Part IV – CLR Facilities Chapter 20-Exception Handling and State Management This chapter has been completely rewritten. It is now about exception handling and state management. It includes discussions of code contracts and constrained execution regions (CERs). It also includes a new section on trade-offs between writing productive code and reliable code. Chapter 21-Automatic Memory Management Added discussion of C#’s fixed state and how it works to pin objects in the heap. Rewrote the code for weak delegates so you can use them with any class that exposes an event (the class doesn’t have to support weak delegates itself). Added discussion on the new ConditionalWeakTable class, GC Collection modes, Full GC notifications, garbage collection modes and latency modes. I also include a new sample showing how your application can receive notifications whenever Generation 0 or 2 collections occur. Chapter 22-CLR Hosting and AppDomains Added discussion of side-by-side support allowing multiple CLRs to be loaded in a single process. Added section on the performance of using MarshalByRefObject-derived types. Substantially rewrote the section on cross-AppDomain communication. Added section on AppDomain Monitoring and first chance exception notifications. Updated the section on the AppDomainManager class. Chapter 23-Assembly Loading and Reflection Added section on how to deploy a single file with dependent assemblies embedded inside it. Added section comparing reflection invoke vs bind/invoke vs bind/create delegate/invoke vs C#’s dynamic type. Chapter 24-Runtime Serialization This is a whole new chapter that was not in the 2nd Edition. Part V – Threading Chapter 25-Threading Basics Whole new chapter motivating why Windows supports threads, thread overhead, CPU trends, NUMA Architectures, the relationship between CLR threads and Windows threads, the Thread class, reasons to use threads, thread scheduling and priorities, foreground thread vs background threads. Chapter 26-Performing Compute-Bound Asynchronous Operations Whole new chapter explaining the CLR’s thread pool. This chapter covers all the new .NET 4.0 constructs including cooperative cancelation, Tasks, the aralle class, parallel language integrated query, timers, how the thread pool manages its threads, cache lines and false sharing. Chapter 27-Performing I/O-Bound Asynchronous Operations Whole new chapter explaining how Windows performs synchronous and asynchronous I/O operations. Then, I go into the CLR’s Asynchronous Programming Model, my AsyncEnumerator class, the APM and exceptions, Applications and their threading models, implementing a service asynchronously, the APM and Compute-bound operations, APM considerations, I/O request priorities, converting the APM to a Task, the event-based Asynchronous Pattern, programming model soup. Chapter 28-Primitive Thread Synchronization Constructs Whole new chapter discusses class libraries and thread safety, primitive user-mode, kernel-mode constructs, and data alignment. Chapter 29-Hybrid Thread Synchronization Constructs Whole new chapter discussion various hybrid constructs such as ManualResetEventSlim, SemaphoreSlim, CountdownEvent, Barrier, ReaderWriterLock(Slim), OneManyResourceLock, Monitor, 3 ways to solve the double-check locking technique, .NET 4.0’s Lazy and LazyInitializer classes, the condition variable pattern, .NET 4.0’s concurrent collection classes, the ReaderWriterGate and SyncGate classes.

    Read the article

  • Passing the CAML thru the EY of the NEEDL

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Passing the CAML thru the EY of the NEEDL Definitions: CAML (Collaborative Application Markup Language) is an XML based markup language used in Microsoft SharePoint technologies  Anonymous: A camel is a horse designed by committee  Dov Trietsch: A CAML is a HORS designed by Microsoft  I was advised against putting any Camel and Sphinx rhymes in here. Look it up in Google!  _____ Now that we have dispensed with the dromedary jokes (BTW, I have many more, but they are not fit to print!), here is an interesting problem and its solution.  We have built a list where the title must be kept unique so I needed to verify the existence (or absence) of a list item with a particular title. Two methods came to mind:  1: Span the list until the title is found (result = found) or until the list ends (result = not found). This is an algorithm of complexity O(N) and for long lists it is a performance sucker. 2: Use a CAML query instead. Here, for short list we’ll encounter some overhead, but because the query results in an SQL query on the content database, it is of complexity O(LogN), which is significantly better and scales perfectly. Obviously I decided to go with the latter and this is where the CAML s--t hit the fan.   A CAML query returns a SPListItemCollection and I simply checked its Count. If it was 0, the item did not already exist and it was safe to add a new item with the given title. Otherwise I cancelled the operation and warned the user. The trouble was that I always got a positive. Most of the time a false positive. The count was greater than 0 regardles of the title I checked (except when the list was empty, which happens only once). This was very disturbing indeed. To solve my immediate problem which was speedy delivery, I reverted to the “Span the list” approach, but the problem bugged me, so I wrote a little console app by which I tested and tweaked and tested, time and again, until I found the solution. Yes, one can pass the proverbial CAML thru the ey of the needle (e’s missing on purpose).  So here are my conclusions:  CAML that does not work:  Note: QT is my quote:  char QT = Convert.ToChar((int)34); string titleQuery = "<Query>><Where><Eq>"; titleQuery += "<FieldRef Name=" + QT + "Title" + QT + "/>"; titleQuery += "<Value Type=" + QT + "Text" + QT + ">" + uniqueID + "</Value></Eq></Where></Query>"; titleQuery += "<ViewFields><FieldRef Name=" + QT + "Title" + QT + "/></ViewFields>";  Why? Even though U2U generates it, the <Query> and </Query> tags do not belong in the query that you pass. Start your query with the <Where> clause.  Also the <ViewFiels> clause does not belong. I used this clause to limit the returned collection to a single column, and I still wish to do it. I’ll show how this is done a bit later.   When you use the <Query> </Query> tags in you query, it’s as if you did not specify the query at all. What you get is the all inclusive default query for the list. It returns evey column and every item. It is expensive for both server and network because it does all the extra processing and eats plenty of bandwidth.   Now, here is the CAML that works  string titleQuery = "<Where><Eq>"; titleQuery += "<FieldRef Name=" + QT + "Title" + QT + "/>"; titleQuery += "<Value Type=" + QT + "Text" + QT + ">" + uniqueID + "</Value></Eq></Where>";  You’ll also notice that inside the unusable <ViewFields> clause above, we have a <FieldRef> clause. This is what we pass to the SPQuery object. Here is how:  SPQuery query = new SPQuery(); query.Query = titleQuery; query.ViewFields = "<FieldRef Name=" + QT + "Title" + QT + "/>"; query.RowLimit = 1; SPListItemCollection col = masterList.GetItems(query);  Two thing to note: we enter the view fields into the SPQuery object and we also limited the number of rows that the query returns. The latter is not always done, but in an existence test, there is no point in returning hundreds of rows. The query will now return one item or none, which is all we need in order to verify the existence (or non-existence) of items. Limiting the number of columns and the number of rows is a great performance enhancer. That’s all folks!!

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Extend Your Applications Your Way: Oracle OpenWorld Live Poll Results

    - by Applications User Experience
    Lydia Naylor, Oracle Applications User Experience Manager At OpenWorld 2012, I attended one of our team’s very exciting sessions: “Extend Your Applications, Your Way”. It was clear that customers were engaged by the topics presented. Not only did we see many heads enthusiastically nodding in agreement during the presentation, and witness a large crowd surround our speakers Killian Evers, Kristin Desmond and Greg Nerpouni afterwards, but we can prove it…with data! Figure 1. Killian Evers, Kristin Desmond, and Greg Nerpouni of Oracle at the OOW 2012 session. At the beginning of our OOW 2012 journey, Greg Nerpouni, Fusion HCM Principal Product Manager, told me he really wanted to get feedback from the audience on our extensibility direction. Initially, we were thinking of doing a group activity at the OOW UX labs events that we hold every year, but Greg was adamant- he wanted “real-time” feedback. So, after a little tinkering, we came up with a way to use an online survey tool, a simple QR code (Quick Response code: a matrix barcode that can include information like URLs and can be read by mobile device cameras), and the audience’s mobile devices to do just that. Figure 2. Actual QR Code for survey Prior to the session, we developed a short survey in Vovici (an online survey tool), with questions to gather feedback on certain points in the presentation, as well as demographic data from our participants. We used Vovici’s feature to generate a mobile HTML version of the survey. At the session, attendees accessed the survey by simply scanning a QR code or typing in a TinyURL (a shorthand web address that is easily accessible through mobile devices). Killian, Kristin and Greg paused at certain points during the session and asked participants to answer a few survey questions about what they just presented. Figure 3. Session survey deployed on a mobile phone The nice thing about Vovici’s survey tool is that you can see the data real-time as participants are responding to questions - so we knew during the session that not only was our direction on track but we were hitting the mark and fulfilling Greg’s request. We planned on showing the live polling results to the audience at the end of the presentation but it ran just a little over time, and we were gently nudged out of the room by the session attendants. We’ve included a quick summary below and this link to the full results for your enjoyment. Figure 4. Most important extensions to Fusion Applications So what did participants think of our direction for extensibility? A total of 94% agreed that it was an improvement upon their current process. The vast majority, 80%, concurred that the extensibility model accounts for the major roles involved: end user, business systems analyst and programmer. Attendees suggested a few supporting roles such as systems administrator, data architect and integrator. Customers and partners in the audience verified that Oracle‘s Fusion Composers allow them to make changes in the most common areas they need to: user interface, business processes, reporting and analytics. Integrations were also suggested. All top 10 things customers can do on a page rated highly in importance, with all but two getting an average rating above 4.4 on a 5 point scale. The kinds of layout changes our composers allow customers to make align well with customers’ needs. The most common were adding columns to a table (94%) and resizing regions and drag and drop content (both selected by 88% of participants). We want to thank the attendees of the session for allowing us another great opportunity to gather valuable feedback from our customers! If you didn’t have a chance to attend the session, we will provide a link to the OOW presentation when it becomes available.

    Read the article

  • SQLAuthority News – History of the Database – 5 Years of Blogging at SQLAuthority

    - by pinaldave
    Don’t miss the Contest:Participate in 5th Anniversary Contest   Today is this blog’s birthday, and I want to do a fun, informative blog post. Five years ago this day I started this blog. Intention – my personal web blog. I wrote this blog for me and still today whatever I learn I share here. I don’t want to wander too far off topic, though, so I will write about two of my favorite things – history and databases.  And what better way to cover these two topics than to talk about the history of databases. If you want to be technical, databases as we know them today only date back to the late 1960’s and early 1970’s, when computers began to keep records and store memories.  But the idea of memory storage didn’t just appear 40 years ago – there was a history behind wanting to keep these records. In fact, the written word originated as a way to keep records – ancient man didn’t decide they suddenly wanted to read novels, they needed a way to keep track of the harvest, of their flocks, and of the tributes paid to the local lord.  And that is how writing and the database began.  You could consider the cave paintings from 17,0000 years ago at Lascaux, France, or the clay token from the ancient Sumerians in 8,000 BC to be the first instances of record keeping – and thus databases. If you prefer, you can consider the advent of written language to be the first database.  Many historians believe the first written language appeared in the 37th century BC, with Egyptian hieroglyphics. The ancient Sumerians, not to be outdone, also created their own written language within a few hundred years. Databases could be more closely described as collections of information, in which case the Sumerians win the prize for the first archive.  A collection of 20,000 stone tablets was unearthed in 1964 near the modern day city Tell Mardikh, in Syria.  This ancient database is from 2,500 BC, and appears to be a sort of law library where apprentice-scribes copied important documents.  Further archaeological digs hope to uncover the palace library, and thus an even larger database. Of course, the most famous ancient database would have to be the Royal Library of Alexandria, the great collection of records and wisdom in ancient Egypt.  It was created by Ptolemy I, and existed from 300 BC through 30 AD, when Julius Caesar effectively erased the hard drives when he accidentally set fire to it.  As any programmer knows who has forgotten to hit “save” or has experienced a sudden power outage, thousands of hours of work was lost in a single instant. Databases existed in very similar conditions up until recently.  Cuneiform tablets gave way to papyrus, which led to vellum, and eventually modern paper and the printing press.  Someday the databases we rely on so much today will become another chapter in the history of record keeping.  Who knows what the databases of tomorrow will look like! Reference:  Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • The busy developers guide to the Kinect SDK Beta

    - by mbcrump
    The Kinect is awesome. From day one, I’ve said this thing has got potential. After playing with several open-source Kinect projects, I am please to announce that Microsoft has released the official SDK beta on 6/16/2011. I’ve created this quick start guide to get you up to speed in no time flat. Let’s begin: What is it? The Kinect for Windows SDK beta is a starter kit for applications developers that includes APIs, sample code, and drivers. This SDK enables the academic research and enthusiast communities to create rich experiences by using Microsoft Xbox 360 Kinect sensor technology on computers running Windows 7. (defined by Microsoft) Links worth checking out: Download Kinect for Windows SDK beta – You can either download a 32 or 64 bit SDK depending on your OS. Readme for Kinect for Windows SDK Beta from Microsoft Research  Programming Guide: Getting Started with the Kinect for Windows SDK Beta Code Walkthroughs of the samples that ship with the Kinect for Windows SDK beta (Found in \Samples Folder) Coding4Fun Kinect Toolkit – Lots of extension methods and controls for WPF and WinForms. Kinect Mouse Cursor – Use your hands to control things like a mouse created by Brian Peek. Kinect Paint – Basically MS Paint but use your hands! Kinect for Windows SDK Quickstarts Installing and Using the Kinect Sensor Getting it installed: After downloading the Kinect SDK Beta, double click the installer to get the ball rolling. Hit the next button a few times and it should complete installing. Once you have everything installed then simply plug in your Kinect device into the USB Port on your computer and hopefully you will get the following screen: Once installed, you are going to want to check out the following folders: C:\Program Files (x86)\Microsoft Research KinectSDK – This contains the actual Kinect Sample Executables along with the documentation as a CHM file. Also check out the C:\Users\Public\Documents\Microsoft Research KinectSDK Samples directory: The main thing to note here is that these folders contain the source code to the applications where you can compile/build them yourself. Audio NUI DEMO Time Let’s get started with some demos. Navigate to the C:\Program Files (x86)\Microsoft Research KinectSDK folder and double click on ShapeGame.exe. Next up is SkeletalViewer.exe (image taken from http://www.i-programmer.info/news/91-hardware/2619-microsoft-launch-kinect-sdk-beta.html as I could not get a good image using SnagIt) At this point, you will have to download Kinect Mouse Cursor – This is really cool because you can use your hands to control the mouse cursor. I actually used this to resize itself. Last up is Kinect Paint – This is very cool, just make sure you read the instructions! MS Paint on steroids! A few tips for getting started building Kinect Applications. It appears WPF is the way to go with building Kinect Applications. You must also use a version of Visual Studio 2010.  Your going to need to reference Microsoft.Research.Kinect.dll when building a Kinect Application. Right click on References and then goto Browse and navigate to C:\Program Files (x86)\Microsoft Research KinectSDK and select Microsoft.Research.Kinect.dll. You are going to want to make sure your project has the Platform target set to x86. The Coding4Fun Kinect Toolkit really makes things easier with extension methods and controls. Just note that this is for WinForms or WPF. Conclusion It looks like we have a lot of fun in store with the Kinect SDK. I’m very excited about the release and have already been thinking about all the applications that I can begin building. It seems that development will be easier now that we have an official SDK and the great work from Coding4Fun. Please subscribe to my blog or follow me on twitter for more information about Kinect, Silverlight and other great technology.  Subscribe to my feed

    Read the article

  • Remote Debug Windows Azure Cloud Service

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/11/02/remote-debug-windows-azure-cloud-service.aspxOn the 22nd of October Microsoft Announced the new Windows Azure SDK 2.2. It introduced a lot of cool features but one of it shocked most, which is the remote debug support for Windows Azure Cloud Service (a.k.a. WACS).   Live Debug is Nightmare for Cloud Application When we are developing against public cloud, debug might be the most difficult task, especially after the application had been deployed. In order to minimize the debug effort, Microsoft provided local emulator for cloud service and storage once the Windows Azure platform was announced. By using local emulator developers could be able run their application on local machine with almost the same behavior as running on Windows Azure, and that could be debug easily and quickly. But when we deployed our application to Azure, we have to use log, diagnostic monitor to debug, which is very low efficient. Visual Studio 2012 introduced a new feature named "anonymous remote debug" which allows any workstation under any user could be able to attach the remote process. This is less secure comparing the authenticated remote debug but much easier and simpler to use. Now in Windows Azure SDK 2.2, we could be able to attach our application from our local machine to Windows Azure, and it's very easy.   How to Use Remote Debugger First, let's create a new Windows Azure Cloud Project in Visual Studio and selected ASP.NET Web Role. Then create an ASP.NET WebForm application. Then right click on the cloud project and select "publish". In the publish dialog we need to make sure the application will be built in debug mode, since .NET assembly cannot be debugged in release mode. I enabled Remote Desktop as I will log into the virtual machine later in this post. It's NOT necessary for remote debug. And selected "advanced settings" tab, make sure we checked "Enable Remote Debugger for all roles". In WACS, a cloud service could be able to have one or more roles and each role could be able to have one or more instances. The remote debugger will be enabled for all roles and all instances if we checked. Currently there's no way for us to specify which role(s) and which instance(s) to enable. Finally click "publish" button. In the windows azure activity window in Visual Studio we can find some information about remote debugger. To attache remote process would be easy. Open the "server explorer" window in Visual Studio and expand "cloud services" node, find the cloud service, role and instance we had just published and wanted to debug, right click on the instance and select "attach debugger". Then after a while (it's based on how fast our Internet connect to Windows Azure Data Center) the Visual Studio will be switched to debug mode. Let's add a breakpoint in the default web page's form load function and refresh the page in browser to see what's happen. We can see that the our application was stopped at the breakpoint. The call stack, watch features are all available to use. Now let's hit F5 to continue the step, then back to the browser we will find the page was rendered successfully.   What Under the Hood Remote debugger is a WACS plugin. When we checked the "enable remote debugger" in the publish dialog, Visual Studio will add two cloud configuration settings in the CSCFG file. Since they were appended when deployment, we cannot find in our project's CSCFG file. But if we opened the publish package we could find as below. At the same time, Visual Studio will generate a certificate and included into the package for remote debugger. If we went to the azure management portal we will find there will a certificate under our application which was created, uploaded by remote debugger plugin. Since I enabled Remote Desktop there will be two certificates in the screenshot below. The other one is for remote debugger. When our application was deployed, windows azure system will open related ports for remote debugger. As below you can see there are two new ports opened on my application. Finally, in our WACS virtual machine, windows azure system will copy the remote debug component based on which version of Visual Studio we are using and start. Our application then can be debugged remotely through the visual studio remote debugger. Below is the task manager on the virtual machine of my WACS application.   Summary In this post I demonstrated one of the feature introduced in Windows Azure SDK 2.2, which is Remote Debugger. It allows us to attach our application from local machine to windows azure virtual machine once it had been deployed. Remote debugger is powerful and easy to use, but it brings more security risk. And since it's only available for debug build this means the performance will be worse than release build. Hence we should only use this feature for staging test and bug fix (publish our beta version to azure staging slot), rather than for production.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Guessing Excel Data Types

    - by AjarnMark
    Note to Self HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel: TypeGuessRows = 0 means scan everything. Note to Others About 10 years ago I stumbled across this bit of information just when I needed it and it saved my project.  Then for some reason, a few years later when it would have been nice, but not critical, for some reason I could not find it again anywhere.  Well, now I have stumbled across it again, and to preserve my future self from nightmares and sudden baldness due to pulling my hair out, I have decided to blog it in the hopes that I can find it again this way. Here’s the story…  When you query data from an Excel spreadsheet, such as with old-fashioned DTS packages in SQL 2000 (my first reference) or simply with an OLEDB Data Adapter from ASP.NET (recent task) and if you are using the Microsoft Jet 4.0 driver (newer ones may deal with this differently) then you can get funny results where the query reports back that a cell value is null even when you know it contains data. What happens is that Excel doesn’t really have data types.  While you can format information in cells to appear like certain data types (e.g. Date, Time, Decimal, Text, etc.) that is not really defining the cell as being of a certain type like we think of when working with databases.  But, presumably, to make things more convenient for the user (programmer) when you issue a query against Excel, the query processor tries to guess what type of data is contained in each column and returns it in an appropriate manner.  This is all well and good IF your data is consistent in every row and matches what the processor guessed.  And, for efficiency’s sake, when the query processor is trying to figure out each column’s data type, it does so by analyzing only the first 8 rows of data (default setting). Now here’s the problem, suppose that your spreadsheet contains information about clothing, and one of the columns is Size.  Now suppose that in the first 8 rows, all of your sizes look like 32, 34, 18, 10, and so on, using numbers, but then, somewhere after the 8th row, you have some rows with sizes like S, M, L, XL.  What happens is that by examining only the first 8 rows, the query processor inferred that the column contained numerical data, and then when it hits the non-numerical data in later rows, it comes back blank.  Major bummer, and a real pain to track down if you don’t know that Excel is doing this, because you study the spreadsheet and say, “the data is RIGHT THERE!  WHY doesn’t the query see it?!?!”  And the hair-pulling begins. So, what’s a developer to do?  One option is to go to the registry setting noted above and change the DWORD value of TypeGuessRows from the default of 8 to 0 (zero).  Setting this value to zero will force Jet to scan every row in the spreadsheet before making its determination as to what type of data the column contains.  And that means that in the example above, it would have treated the column as a string rather than as numeric, and presto! your query now returns all of the values that you know are in there. Of course, there is a caveat… if you are querying large spreadsheets, making Jet scan every row can be quite a performance hit.  You could enter a different number (more than 8) that you believe is a better sampling of rows to make the guess, but you still have the possibility that every row scanned looks alike, but that later rows are different, and that you might get blanks when there really is data there.  That’s the type of gamble, I really don’t like to take with my data. Anyone with a better approach, or with experience with more recent drivers that have a better way of handling data types, please chime in!

    Read the article

  • javascript complex recurrsion [on hold]

    - by Achilles
    Given Below is my data in data array. What i am doing in code below is that from that given data i have to construct json in a special format which i also gave below. //code start here var hierarchy={}; hierarchy.name="Hierarchy"; hierarchy.children=[{"name":"","children":[{"name":"","children":[]}]}]; var countryindex; var flagExist=false; var data = [ {country :"America", city:"Kansas", employe:'Jacob'}, {country :"Pakistan", city:"Lahore", employe:'tahir'}, {country :"Pakistan", city:"Islamabad", employe:'fakhar'} , {country :"Pakistan", city:"Lahore", employe:'bilal'}, {country :"India", city:"d", employe:'ali'} , {country :"Pakistan", city:"Karachi", employe:'eden'}, {country :"America", city:"Kansas", employe:'Jeen'} , {country :"India", city:"Banglore", employe:'PP'} , {country :"India", city:"Banglore", employe:'JJ'} , ]; for(var i=0;i<data.length;i++) { for(var j=0;j<hierarchy.children.length;j++) { //for checking country match if(hierarchy.children[j].name==data[i].country) { countryindex=j; flagExist=true; break; } } if(flagExist)//country match now no need to add new country just add city in it { var cityindex; var cityflag=false; //hierarchy.children[countryindex].children.push({"name":data[i].city,"children":[]}) //if(hierarchy.children[index].children!=undefined) for(var k=0;k< hierarchy.children[countryindex].children.length;k++) { //for checking city match if(hierarchy.children[countryindex].children[k].name==data[i].city) { // hierarchy.children[countryindex].children[k].children.push({"name":data[i].employe}) cityflag=true; cityindex=k; break; } } if(cityflag)//city match now add just empolye at that city index { hierarchy.children[countryindex].children[cityindex].children.push({"name":data[i].employe}); cityflag=false; } else//no city match so add new with employe also as this is new city so its emplye will be 1st { hierarchy.children[countryindex].children.push({"name":data[i].city,children:[{"name":data[i].employe}]}); //same as above //hierarchy.children[countryindex].children[length-1].children.push({"name":data[i].employe}); } flagExist=false; } else{ //no country match adding new country //with city also as this is new city of new country console.log("sparta"); hierarchy.children.push({"name":data[i].country,"children":[{"name":data[i].city,"children":[{"name":data[i].employe}]}]}); // hierarchy.children.children.push({"name":data[i].city,"children":[]}); } //console.log(hierarchy); } hierarchy.children.shift(); var j=JSON.stringify(hierarchy); //code ends here //here is the json which i seccessfully formed from the code { "name":"Hierarchy", "children":[ { "name":"America", "children":[ { "name":"Kansas", "children":[{"name":"Jacob"},{"name":"Jeen"}]}]}, { "name":"Pakistan", "children":[ { "name":"Lahore", "children": [ {"name":"tahir"},{"name":"bilal"}]}, { "name":"Islamabad", "children":[{"name":"fakhar"}]}, { "name":"Karachi", "children":[{"name":"eden"}]}]}, { "name":"India", "children": [ { "name":"d", "children": [ {"name":"ali"}]}, { "name":"Banglore", "children":[{"name":"PP"},{"name":"JJ"}]}]}]} Now the orignal problem is that currently i am solving this problem for data of array of three keys and i have to go for 3 nested loops now i want to optimize this solution so that if data array of object has more than 3 key say 5 {country :"America", state:"NewYork",city:"newYOrk",street:"elm", employe:'Jacob'}, or more than my solution will not work and i cannot decide before how many keys will come so i thought recursion may suit best here. But i am horrible in writing recurrsion and the case is also complex. Can some awesome programmer help me writing recurrsion or suggest some other solution.

    Read the article

  • What Counts For A DBA: ESP

    - by Louis Davidson
    Now I don’t want to get religious here, and I’m not going to, but what I’m going to describe in this ‘What Counts for a DBA’ installment sometimes feels like magic. Often  I will spend hours thinking about the solution to a design issue or coding problem, working diligently to try to come up with a solution and then finally just give up with the feeling that I’m not even qualified to be a data entry clerk, much less a data architect.  At this point I often take a walk (or sometimes a nap), and then it hits me. I realize that I have the answer just sitting in my brain, ready to implement.  This phenomenon is not limited to walks either; it can happen almost any time after I stop my obsession about a problem. I call this phenomena ESP (or Extra-Sensory Programming.)  Another term for this could be ‘sleeping on it’, and while the idiom tends to mean to let time pass to actively think about a problem, sleeping on a problem also lets you relax and let your brain do the work. I first noticed this back in my college days when I would play video games for hours on end. We would get stuck deep in some dungeon unable to find a way out, playing for days on end until we were beaten down tired. Once we gave up and walked away, the solution would usually be there waiting for one of us before we came back to play the next day.  Sometimes it would be in the form of a dream, and sometimes it would just be that the problem was now easy to solve when we started to play again.  While it worked great for video games, it never occurred when I studied English Literature for hours on end, or even when I worked for the same sort of frustrating hours attempting to solve a homework problem in Calculus.  I believe that the difference was that I was passionate about the video game, and certainly far less so about homework where people used the word “thou” instead of “you” or x to represent a number. This phenomenon occurs somewhat more often in my current work as a professional data programmer, because I am very passionate about SQL and love those aspects of my career choice.  Every day that I get to draw a new data model to solve a customer issue, or write a complex SELECT statement to ferret out the answer to a complex data question, is a great day. I hope it is the same for any reader of this blog.  But, unfortunately, while the day on a whole is great, a heck of a lot of noise is generated in work life. There are the typical project deadlines, along with the requisite project manager sitting on your shoulders shouting slogans to try to make you to go faster: Add in office politics, and the occasional family issues that permeate the mind, and you lose the ability to think deeply about any problem, not to mention occasionally forgetting your own name.  These office realities coupled with a difficult SQL problem staring at you from your widescreen monitor will slowly suck the life force out of your body, making it seem impossible to solve the problem This is when the walk starts; or a nap. Maybe you hide from the madness under your desk like George Costanza hides from Steinbrenner on Seinfeld.  Forget about the problem. Free your mind from the insanity of the problem and your surroundings. Then let your training and education deep in your brain take over and see if it will passively do the rest for you. If you don’t end up with a solution, the worst case scenario is that you have a bit of exercise or rest, and you won’t have heard the phrase “better is the enemy of good enough” even once…which certainly will do your brain some good. Once you stop expecting whipping your brain for information, inspiration may just strike and instead of a humdrum solution you find a solution you hadn’t even considered, almost magically. So, my beloved manager, next time you have an urgent deadline and you come across me taking a nap, creep away quietly because I’m working, doing some extra-sensory programming.

    Read the article

  • Modernizr Rocks HTML5

    - by Laila
    HTML5 is a moving target.  At the moment, we don't know what will be in future versions.  In most circumstances, this really matters to the developer. When you're using Adobe Air, you can be reasonably sure what works, what is there, and what isn't, since you have a version of the browser built-in. With Metro, you can assume that you're going to be using at least IE 10.   If, however,  you are using HTML5 in a web application, then you are going to rely heavily on Feature Detection.  Feature-Detection is a collection of techniques that tell you, via JavaScript, whether the current browser has this feature natively implemented or not Feature Detection isn't just there for the esoteric stuff such as  Geo-location,  progress bars,  <canvas> support,  the new <input> types, Audio, Video, web workers or storage, but is required even for semantic markup, since old browsers make a pigs ear out of rendering this.  Feature detection can't rely just on reading the browser version and inferring from that what works. Instead, you must use JavaScript to check that an HTML5 feature is there before using it.  The problem with relying on the user-agent is that it takes a lot of historical data  to work out what version does what, and, anyway, the user-agent can be, and sometimes is, spoofed. The open-source library Modernizr  is just about the most essential  JavaScript library for anyone using HTML5, because it provides APIs to test for most of the CSS3 and HTML5 features before you use them, and is intelligent enough to alter semantic markup into 'legacy' 'markup  using shims  on page-load  for old browsers. It also allows you to check what video Codecs are installed for playing video. It also provides media queries  and conditional resource-loading (formerly YepNope.js.).  Generally, Modernizr gives you the choice of what you do about browsers that don't support the feature that you want. Often, the best choice is graceful degradation, but the resource-loading feature allows you to dynamically load JavaScript Shims to replace the standard API for missing or defective HTML5 functionality, called 'PolyFills'.  As the Modernizr site says 'Yes, not only can you use HTML5 today, but you can use it in the past, too!' The evolutionary progress of HTML5  requires a more defensive style of JavaScript programming where the programmer adopts a mindset of fearing the worst ( IE 6)  rather than assuming the best, whilst exploiting as many of the new HTML features as possible for the requirements of the site or HTML application.  Why would anyone want the distraction of developing their own techniques to do this when  Modernizr exists to do this for you? Laila

    Read the article

  • How to make creating viewmodels at runtime less painful

    - by Mr Happy
    I apologize for the long question, it reads a bit as a rant, but I promise it's not! I've summarized my question(s) below In the MVC world, things are straightforward. The Model has state, the View shows the Model, and the Controller does stuff to/with the Model (basically), a controller has no state. To do stuff the Controller has some dependencies on web services, repository, the lot. When you instantiate a controller you care about supplying those dependencies, nothing else. When you execute an action (method on Controller), you use those dependencies to retrieve or update the Model or calling some other domain service. If there's any context, say like some user wants to see the details of a particular item, you pass the Id of that item as parameter to the Action. Nowhere in the Controller is there any reference to any state. So far so good. Enter MVVM. I love WPF, I love data binding. I love frameworks that make data binding to ViewModels even easier (using Caliburn Micro a.t.m.). I feel things are less straightforward in this world though. Let's do the exercise again: the Model has state, the View shows the ViewModel, and the ViewModel does stuff to/with the Model (basically), a ViewModel does have state! (to clarify; maybe it delegates all the properties to one or more Models, but that means it must have a reference to the model one way or another, which is state in itself) To do stuff the ViewModel has some dependencies on web services, repository, the lot. When you instantiate a ViewModel you care about supplying those dependencies, but also the state. And this, ladies and gentlemen, annoys me to no end. Whenever you need to instantiate a ProductDetailsViewModel from the ProductSearchViewModel (from which you called the ProductSearchWebService which in turn returned IEnumerable<ProductDTO>, everybody still with me?), you can do one of these things: call new ProductDetailsViewModel(productDTO, _shoppingCartWebService /* dependcy */);, this is bad, imagine 3 more dependencies, this means the ProductSearchViewModel needs to take on those dependencies as well. Also changing the constructor is painful. call _myInjectedProductDetailsViewModelFactory.Create().Initialize(productDTO);, the factory is just a Func, they are easily generated by most IoC frameworks. I think this is bad because Init methods are a leaky abstraction. You also can't use the readonly keyword for fields that are set in the Init method. I'm sure there are a few more reasons. call _myInjectedProductDetailsViewModelAbstractFactory.Create(productDTO); So... this is the pattern (abstract factory) that is usually recommended for this type of problem. I though it was genius since it satisfies my craving for static typing, until I actually started using it. The amount of boilerplate code is I think too much (you know, apart from the ridiculous variable names I get use). For each ViewModel that needs runtime parameters you'll get two extra files (factory interface and implementation), and you need to type the non-runtime dependencies like 4 extra times. And each time the dependencies change, you get to change it in the factory as well. It feels like I don't even use a DI container anymore. (I think Castle Windsor has some kind of solution for this [with it's own drawbacks, correct me if I'm wrong]). do something with anonymous types or dictionary. I like my static typing. So, yeah. Mixing state and behavior in this way creates a problem which don't exist at all in MVC. And I feel like there currently isn't a really adequate solution for this problem. Now I'd like to observe some things: People actually use MVVM. So they either don't care about all of the above, or they have some brilliant other solution. I haven't found an in-depth example of MVVM with WPF. For example, the NDDD-sample project immensely helped me understand some DDD concepts. I'd really like it if someone could point me in the direction of something similar for MVVM/WPF. Maybe I'm doing MVVM all wrong and I should turn my design upside down. Maybe I shouldn't have this problem at all. Well I know other people have asked the same question so I think I'm not the only one. To summarize Am I correct to conclude that having the ViewModel being an integration point for both state and behavior is the reason for some difficulties with the MVVM pattern as a whole? Is using the abstract factory pattern the only/best way to instantiate a ViewModel in a statically typed way? Is there something like an in depth reference implementation available? Is having a lot of ViewModels with both state/behavior a design smell?

    Read the article

  • Defining Your Online Segmentation and Targeting Strategy

    - by Christie Flanagan
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A lot of times, companies will put online segmentation and targeting on the back burner because they don’t know where to start. Often, I’ve heard web managers say that their segments aren’t well understood yet, so they can’t really deliver personalized online experiences that are meaningful. This lack of complete understanding means that they don't really bother to try. But, I don’t think you necessarily need to have an elaborate segmentation and targeting strategy already in place to start delivering a more relevant online customer experience. Sometimes it helps to think of how segmentation and targeting might solve some of the challenges your sites visitors are currently experiencing on your web presence, rather than doing nothing and waiting until a fully baked segmentation strategy lands in your inbox.  For example, perhaps you have a broad and varied service offering that makes it difficult for site visitors to easily find the solutions that are most relevant for them.  How can segmentation and targeting help solve this problem?  Or maybe it’s like the airline I described in Monday’s post where the special deals featured on the home page are only relevant to site visitors from a couple of cities.  Couldn’t segmentation and targeting help them to highlight offers on their home page that are relevant to a larger share of their site visitors? Your early segmentation and targeting efforts do not need to be complicated.  There are simple ways to start delivering a more relevant online customer experience, even if you’re dealing with anonymous site visitors.  These include targeting content to site visitors based on: Referral: Deliver targeted content to your site visitors that is based on where they came from or the search term they used to find your site Behavior:  Deliver content to your site visitors that is related or similar to content they’ve clicked on already Location:  Deliver content your site visitors that is most relevant for their geographic location (this would solve that pesky airline home page problem described above) So as you can see, there really are some very simple ways in which you can start improving your online customer experience using very basic segmentation and targeting methods.  One thing to keep in mind as you start to define you segmentation and targeting strategy is that there are many different types of attributes or combinations of attributes upon which you can base your segmentation and targeting strategy.  In addition to referral, behavior and location, other attributes that you should consider are: Profile Information:  What profile information do you know about this customer already?  Perhaps they provided some information on their interests and preferences when they first registered with your site. Time:  What time is it and how does that impact what my site visitors are looking for or trying to do? Demographics: What are my site visitors’ ages, incomes or ethnicities? Which attributes you select to include in your segmentation strategy will depend on your unique business needs and objectives.  Attributes such as behavior or referral may not be the most important targeting criteria depending on your situation. For example, if you’re a newspaper you might know that certain visitors are sports fans based on their profile information.  You can create a segment for sports fans and target sports related content to that segment of your readership online.  Or perhaps, a reader is browsing stories that are related to politics; you can use that visitor’s behavior to assign him or her to a segment for those interested in politics. From there you can recommend more stories to that visitor based on their interest in politics. For an airline, the visitor’s location may be a more important attribute. By detecting the visitor’s location, you can assign them to an appropriate segment and then target special flights and offers to them based on their likely departure airport. As you can see, there are many practical ways that you can start improving the experience your customers receive on your web presence using fairly basic segmentation and targeting techniques. If you want to learn more about segmentation and targeting using Oracle’s web experience management solution, check out this helpful video that demonstrates these powerful capabilities in Oracle WebCenter Sites. ***** On Demand Webcast Featuring Brian Solis of Altimeter Group Trends such as the mobile web, social media, gamification and real-time are changing customer behavior and expectations. In this new environment, many businesses will struggle. Some will fall by the wayside, while others learn to adapt and thrive. Watch this on demand webcast with Altimeter Group digital analyst and author, Brian Solis, and discover what your organization needs to know about how to compete in the new era of Digital Darwinism. View now.

    Read the article

  • How to prepare for a programming competition? Graphs, Stacks, Trees, oh my! [closed]

    - by Simucal
    Last semester I attended ACM's (Association for Computing Machinery) bi-annual programming competition at a local University. My University sent 2 teams of 3 people and we competed amongst other schools in the mid-west. We got our butts kicked. You are given a packet with about 11 problems (1 problem per page) and you have 4 hours to solve as many as you can. They'll run your program you submit against a set of data and your output must match theirs exactly. In fact, the judging is automated for the most part. In any case.. I went there fairly confident in my programming skills and I left there feeling drained and weak. It was a terribly humbling experience. In 4 hours my team of 3 people completed only one of the problems. The top team completed 4 of them and took 1st place. The problems they asked were like no problems I have ever had to answer before. I later learned that in order to solve them some of them effectively you have to use graphs/graph algorithms, trees, stacks. Some of them were simply "greedy" algo's. My question is, how can I better prepare for this semesters programming competition so I don't leave there feeling like a complete moron? What tips do you have for me to be able to answer these problems that involve graphs, trees, various "well known" algorithms? How can I easily identify the algorithm we should implement for a given problem? I have yet to take Algorithm Design in school so I just feel a little out of my element. Here are some examples of the questions asked at the competitions: ACM Problem Sets Update: Just wanted to update this since the latest competition is over. My team placed 1st for our small region (about 6-7 universities with between 1-5 teams each school) and ~15th for the midwest! So, it is a marked improvement over last years performance for sure. We also had no graduate students on our team and after reviewing the rules we found out that many teams had several! So, that would be a pretty big advantage in my own opinion. Problems this semester ranged from about 1-2 "easy" problems (ie bit manipulation, string manipulation) to hard (graph problems involving fairly complex math and network flow problems). We were able to solve 4 problems in our 5 hours. Just wanted to thank everyone for the resources they provided here, we used them for our weekly team practices and it definitely helped! Some quick tips that I have that aren't suggested below: When you are seated at your computer before the competition starts, quickly type out various data structures that you might need that you won't have access to in your languages libraries. I typed out a Graph data-structure complete with floyd-warshall and dijkstra's algorithm before the competition began. We ended up using it in our 2nd problem that we solved and this is the main reason why we solved this problem before anyone else in the midwest. We had it ready to go from the beginning. Similarly, type out the code to read in a file since this will be required for every problem. Save this answer "template" someplace so you can quickly copy/paste it to your IDE at the beginning of each problem. There are no rules on programming anything before the competition starts so get any boilerplate code out the way. We found it useful to have one person who is on permanent whiteboard duty. This is usually the person who is best at math and at working out solutions to get a head start on future problems you will be doing. One person is on permanent programming duty. Your fastest/most skilled "programmer" (most familiar with the language). This will save debugging time also. The last person has several roles between assessing the packet of problems for the next "easiest" problem, helping the person on the whiteboard work out solutions and helping the person programming work out bugs/issues. This person needs to be flexible and be able to switch between roles easily.

    Read the article

  • Subterranean IL: Compiling C# exception handlers

    - by Simon Cooper
    An exception handler in C# combines the IL catch and finally exception handling clauses into a single try statement: try { Console.WriteLine("Try block") // ... } catch (IOException) { Console.WriteLine("IOException catch") // ... } catch (Exception e) { Console.WriteLine("Exception catch") // ... } finally { Console.WriteLine("Finally block") // ... } How does this get compiled into IL? Initial implementation If you remember from my earlier post, finally clauses must be specified with their own .try clause. So, for the initial implementation, we take the try/catch/finally, and simply split it up into two .try clauses (I have to use label syntax for this): StartTry: ldstr "Try block" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndTry: StartIOECatch: ldstr "IOException catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndIOECatch: StartECatch: ldstr "Exception catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndECatch: StartFinally: ldstr "Finally block" call void [mscorlib]System.Console::WriteLine(string) // ... endfinally EndFinally: End: // ... .try StartTry to EndTry catch [mscorlib]System.IO.IOException handler StartIOECatch to EndIOECatch catch [mscorlib]System.Exception handler StartECatch to EndECatch .try StartTry to EndTry finally handler StartFinally to EndFinally However, the resulting program isn't verifiable, and doesn't run: [IL]: Error: Shared try has finally or fault handler. Nested try blocks What's with the verification error? Well, it's a condition of IL verification that all exception handling regions (try, catch, filter, finally, fault) of a single .try clause have to be completely contained within any outer exception region, and they can't overlap with any other exception handling clause. In other words, IL exception handling clauses must to be representable in the scoped syntax, and in this example, we're overlapping catch and finally clauses. Not only is this example not verifiable, it isn't semantically correct. The finally handler is specified round the .try. What happens if you were able to run this code, and an exception was thrown? Program execution enters top of try block, and exception is thrown within it CLR searches for an exception handler, finds catch Because control flow is leaving .try, finally block is run The catch block is run leave.s End inside the catch handler branches to End label. We're actually running the finally before the catch! What we do about it What we actually need to do is put the catch clauses inside the finally clause, as this will ensure the finally gets executed at the correct time (this time using scoped syntax): .try { .try { ldstr "Try block" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } catch [mscorlib]System.IO.IOException { ldstr "IOException catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } catch [mscorlib]System.Exception { ldstr "Exception catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } } finally { ldstr "Finally block" call void [mscorlib]System.Console::WriteLine(string) // ... endfinally } End: ret Returning from methods There is a further semantic mismatch that the C# compiler has to deal with; in C#, you are allowed to return from within an exception handling block: public int HandleMethod() { try { // ... return 0; } catch (Exception) { // ... return -1; } } However, you can't ret inside an exception handling block in IL. So the C# compiler does a leave.s to a ret outside the exception handling area, loading/storing any return value to a local variable along the way (as leave.s clears the stack): .method public instance int32 HandleMethod() { .locals init ( int32 retVal ) .try { // ... ldc.i4.0 stloc.0 leave.s End } catch [mscorlib]System.Exception { // ... ldc.i4.m1 stloc.0 leave.s End } End: ldloc.0 ret } Conclusion As you can see, the C# compiler has quite a few hoops to jump through to translate C# code into semantically-correct IL, and hides the numerous conditions on IL exception handling blocks from the C# programmer. Next up: catch-all blocks, and how the runtime deals with non-Exception exceptions.

    Read the article

  • What Counts For a DBA: Replaceable

    - by Louis Davidson
    Replaceable is what every employee in every company instinctively strives not to be. Yet, if you’re an irreplaceable DBA, meaning that the company couldn’t find someone else who could do what you do, then you’re not doing a great job. A good DBA is replaceable. I imagine some of you are already reaching for the lighter fluid, about to set the comments section ablaze, but before you destroy a perfectly good Commodore 64, read on… Everyone is replaceable, ultimately. Anyone, anywhere, in any job, could be sitting at their desk reading this, blissfully unaware that this is to be their last day at work. Morbidly, you could be about to take your terminal breath. Ideally, it will be because another company suddenly offered you a truck full of money to take a new job, forcing you to bid a regretful farewell to your current employer (with barely a “so long suckers!” left wafting in the air as you zip out of the office like the Wile E Coyote wearing two pairs of rocket skates). I’ve often wondered what it would be like to be present at the meeting where your former work colleagues discuss your potential replacement. It is perhaps only at this point, as they struggle with the question “What kind of person do we need to replace old Wile?” that you would know your true worth in their eyes. Of course, this presupposes you need replacing. I’ve known one or two people whose absence we adequately compensated with a small rock, to keep their old chair from rolling down a slight incline in the floor. On another occasion, we bought a noise-making machine that frequently attracted attention its way, with unpleasant sounds, but never contributed anything worthwhile. These things never actually happened, of course, but you take my point: don’t confuse replaceable with expendable. Likewise, if the term “trained seal” comes up, someone they can teach to follow basic instructions and push buttons in the right order, then the replacement discussion is going to be over quickly. What, however, if your colleagues decide they’ll need a super-specialist to replace you. That’s a good thing, right? Well, usually, in my experience, no it is not. It often indicates that no one really knows what you do, or how. A typical example is the “senior” DBA who built a system just before 16-bit computing became all the rage and then settled into a long career managing it. Such systems are often central to the company’s operations and the DBA very skilled at what they do, but almost impossible to replace, because the system hasn’t evolved, and runs on processes and routines that others no longer understand or recognize. The only thing you really want to hear, at your replacement discussion, is that they need someone skilled at the fundamentals and adaptable. This means that the person they need understands that their goal is to be an excellent DBA, not a specialist in whatever the-heck the company does. Someone who understands the new versions of SQL Server and can adapt the company’s systems to the way things work today, who uses industry standard methods that any other qualified DBA/programmer can understand. More importantly, this person rarely wants to get “pigeon-holed” and so documents and shares the specialized knowledge and responsibilities with their teammates. Being replaceable doesn’t mean being “dime a dozen”. The company might need four people to take your place due to the depth of your skills, but still, they could find those replacements and those replacements could step right in using techniques that any decent DBA should know. It is a tough question to contemplate, but take some time to think about the sort of person that your colleagues would seek to replace you. If you think they would go looking for a “super-specialist” then consider urgently how you can diversify and share your knowledge, and start documenting all the processes you know as if today were your last day, because who knows, it just might be.

    Read the article

  • Caveat utilitor - Can I run two versions of Microsoft Project side-by-side?

    - by Martin Hinshelwood
    A number of out customers have asked if there are any problems in installing and running multiple versions of Microsoft Project on a single client. Although this is a case of Caveat utilitor (Let the user beware), as long as the user understands and accepts the issues that can occur then they can do this. Although Microsoft provide the ability to leave old versions of Office products (except Outlook) on your client when you are installing a new version of the product they certainly do not endorse doing so. Figure: For Project you can choose to keep the old stuff   That being the case I would have preferred that they put a “(NOT RECOMMENDED)” after the options to impart that knowledge to the rest of us, but they did not. The default and recommended behaviour is for the newer version installer to remove the older versions. Of course this does not apply in the revers. There are no forward compatibility packs for Office. There are a number of negative behaviours (or bugs) that can occur in this configuration: There is only one MS Project In Windows a file extension can only be associated with a single program.  In this case, MPP files can be associated with only one version of winproj.exe.  The executables are in different folders so if a user double-clicks a Project file on the desktop, file explorer, or Outlook email, Windows will launch the winproj.exe associated with MPP and then load the MPP file.  There are problems associated with this situation and in some cases workarounds. The user double-clicks on a Project 2010 file, Project 2007 launches but is unable to open the file because it is a newer version.  The workaround is for the user to launch Project 2010 from the Start menu then open the file.  If the file is attached to an email they will need to first drag the file to the desktop. All your linked MS Project files need to be of the same version There are a number of problems that occur when people use on Microsoft’s Object Linking and Embedding (OLE) technology.  The three common uses of OLE are: for inserted projects where a Master project contains sub-projects and each sub-project resides in its own MPP file shared resource pools where multiple MPP files share a common resource pool kept in a single MPP file cross-project links where a task or milestone in one MPP file has a  predecessor/successor relationship with a task or milestone in a different MPP file What I’ve seen happen before is that if you are running in a version of Project that is not associated with the MPP extension and then try and activate an OLE link then Project tries to launch the other version of Project.  Things start getting very confused since different MPP files are being controlled by different versions of Project running at the same time.  I haven’t tried this in awhile so I can’t give you exact symptoms but I suspect that if Project 2010 is involved the symptoms will be different then in a Project 2003/2007 scenario.  I’ve noticed that Project 2010 gives different error messages for the exact same problem when it occurs in Project 2003 or 2007.  -Anonymous The recommendation would be either not to use this feature if you have to have multiple versions of Project installed or to use only a single version of Project. You may get unexpected negative behaviours if you are using shared resource pools or resource pools even when you are not running multiple versions as I have found that they can get broken very easily. If you need these thing then it is probably best to use Project Server as it was created to solve many of these specific issues. Note: I would not even allow multiple people to access a network copy of a Project file because of the way Windows locks files in write mode. This can cause write-locks that get so bad a server restart is required I’ve seen user’s files get write-locked to the point where the only resolution is to reboot the server. Changing the default version to run for an extension So what if you want to change the default association from Project 2007 to Project 2010?   Figure: “Control Panel | Folder Options | Change the file associated with a file extension” Windows normally only lists the last version installed for a particular extension. You can select a specific version by selecting the program you want to change and clicking “Change program… | Browse…” and then selecting the .exe you want to use on the file system. Figure: You will need to select the exact version of “winproj.exe” that you want to run Conclusion Although it is possible to run multiple versions of Project on one system in the main it does not really make sense.

    Read the article

  • Come see us at JavaU at JavaOne!

    - by tmcginn
    In just a little under a month, JavaOne will be in full swing (no pun intended) and thousands of Java developers will gather to hear the latest Java news, immerse themselves in Java technology and learn some new things. This year, I am fortunate enough to be able to attend, along with my Java curriculum development colleagues Matt Heimer and Mike Williams. We start our week at JavaOne teaching a one-day session at JavaU on Sunday morning. If you have never attended a training session through JavaU, you should check it out. There are some terrific sessions this year, and it might help to justify your trip to JavaOne if you can say it was for training! This year I am teaching a one day session on Java SE 7 New Features - a great session for anyone interested in the specific details of what is new in Java SE 7. Matt is teaching a one-day session on Developing Portable Java EE applications with the Enterprise JavaBeans 3.1 API and Java Persistence 2.0 API  EJB, and Mike is doing a one-day session on developing Rich Client applications with Java SE 7 using Java FX 2. I asked Matt and Mike to tell me what developers can expect from their sessions. Matt: "My session will get you up to speed on everything you need to know to create portable Java EE 6 applications using EJB 3.1 and JPA 2. I am going to cover why everyone can benefit from using EJBs (and why developers should relearn them if they haven't looked at them for years). Students who attend my session will see JPA examples showcasing how to use relational databases in an enterprise applications without programming to JDBC and without writing SQL statements. EJB and JPA benefit from being paired together, so I will also show how transaction management is easier in a container. I encourage students to bring a laptop and code as they learn!" Mike: "My session covers how to develop a rich client application using Java FX 2. Starting with the basic concepts of JavaFX, students will see how a JavaFX application is built from its layout, to its controls, to its data structures. In addition, more advanced controls like charts, smart tables, and transitions will be added to the application. Finally, a quick review of JavaFX concurrency and data binding is included. Blended with the core concepts the session will include some of the latest JavaFX technology. This includes using Scene Builder to create a JavaFX UI and connecting your XML UI definition to Java code.  In addition, packaging of the JavaFX application will be covered with some examples of the new native packaging features." As I mentioned, my session covers the changes in the Java for SE 7, including the  language changes that were voted into Java SE 7 from Project Coin. I will also look at how you can take advantage if the the new I/O library (NIO.2) for writing applications that work with files, directories and file systems. We will also look at the changes in Asynchronous I/O that are a part of the changes in NIO/2. We will spend some time looking at the changes to the Java Virtual Machine as well, including support for dynamically typed languages (JSR-292). We will spend some time looking at the Java Concurrency enhancements (JSR-166), including the new Fork/Join framework. And we'll round out the day with a look at changes in Swing, XML and a number of smaller changes in the API's. And, if these topics aren't grabbing your interest, take a look at the other 10 sessions that range from topics on architecture to how to pass the Oracle Certified Programmer I and II exams. See you soon!

    Read the article

  • Mapping Repeating Sequence Groups in BizTalk

    - by Paul Petrov
    Repeating sequence groups can often be seen in real life XML documents. It happens when certain sequence of elements repeats in the instance document. Here’s fairly abstract example of schema definition that contains sequence group: <xs:schemaxmlns:b="http://schemas.microsoft.com/BizTalk/2003"            xmlns:xs="http://www.w3.org/2001/XMLSchema"            xmlns="NS-Schema1"            targetNamespace="NS-Schema1" >  <xs:elementname="RepeatingSequenceGroups">     <xs:complexType>       <xs:sequencemaxOccurs="1"minOccurs="0">         <xs:sequencemaxOccurs="unbounded">           <xs:elementname="A"type="xs:string" />           <xs:elementname="B"type="xs:string" />           <xs:elementname="C"type="xs:string"minOccurs="0" />         </xs:sequence>       </xs:sequence>     </xs:complexType>  </xs:element> </xs:schema> And here’s corresponding XML instance document: <ns0:RepeatingSequenceGroupsxmlns:ns0="NS-Schema1">  <A>A1</A>  <B>B1</B>  <C>C1</C>  <A>A2</A>  <B>B2</B>  <A>A3</A>  <B>B3</B>  <C>C3</C> </ns0:RepeatingSequenceGroups> As you can see elements A, B, and C are children of anonymous xs:sequence element which in turn can be repeated N times. Let’s say we need do simple mapping to the schema with similar structure but with different element names: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Beta>B1</Beta>  <Gamma>C1</Gamma>  <Alpha>A2</Alpha>  <Beta>B2</Beta>  <Gamma>C2</Gamma> </ns0:Destination> The basic map for such typical task would look pretty straightforward: If we test this map without any modification it will produce following result: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Alpha>A2</Alpha>  <Alpha>A3</Alpha>  <Beta>B1</Beta>  <Beta>B2</Beta>  <Beta>B3</Beta>  <Gamma>C1</Gamma>  <Gamma>C3</Gamma> </ns0:Destination> The original order of the elements inside sequence is lost and that’s not what we want. Default behavior of the BizTalk 2009 and 2010 Map Editor is to generate compatible map with older versions that did not have ability to preserve sequence order. To enable this feature simply open map file (*.btm) in text/xml editor and find attribute PreserveSequenceOrder of the root <mapsource> element. Set its value to Yes and re-test the map: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Beta>B1</Beta>  <Gamma>C1</Gamma>  <Alpha>A2</Alpha>  <Beta>B2</Beta>  <Alpha>A3</Alpha>  <Beta>B3</Beta>  <Gamma>C3</Gamma> </ns0:Destination> The result is as expected – all corresponding elements are in the same order as in the source document. Under the hood it is achieved by using one common xsl:for-each statement that pulls all elements in original order (rather than using individual for-each statement per element name in default mode) and xsl:if statements to test current element in the loop:  <xsl:templatematch="/s0:RepeatingSequenceGroups">     <ns0:Destination>       <xsl:for-eachselect="A|B|C">         <xsl:iftest="local-name()='A'">           <Alpha>             <xsl:value-ofselect="./text()" />           </Alpha>         </xsl:if>         <xsl:iftest="local-name()='B'">           <Beta>             <xsl:value-ofselect="./text()" />           </Beta>         </xsl:if>         <xsl:iftest="local-name()='C'">           <Gamma>             <xsl:value-ofselect="./text()" />           </Gamma>         </xsl:if>       </xsl:for-each>     </ns0:Destination>  </xsl:template> BizTalk Map editor became smarter so learn and use this lesser known feature of XSLT 2.0 in your maps and XSL stylesheets.

    Read the article

  • What are some good questions (and good/bad answers) to ask at an interview to gauge the competency of the company/team?

    - by Wayne M
    I'm already familiar with the Joel Test, but it's been my experience that some of the questions there have the answers "massaged" to make the company seem better than it is. I've had several jobs in the past that, for instance, claimed they had a QA process and did unit testing, and what they really meant is "The programmers test the app, and test with the debugger and via trial-and-error."; they said they used SVN but they just lumped everything into one giant repository and had no concept of branching/merging or anything more complicated than updating and committing; said they can build in one step and what they really mean is it's "one step" to copy dozens of files by hand from the programmer's PC to the live server. How do you go about properly gauging a company's environment to make sure that it's a well-evolved company and not stuck on doing things a certain way because they've done it for years and they're ignorant of change? You can almost never ask to see their source code, so you're stuck trying to figure out if the interviewer's answer is accurate or BS to make the company seem good. Besides the Joel Test what are some other good questions to get the proper feel for a company, and more importantly what are some good and bad answers that could indicate a good or bad company? I mean something like (take at face value, please, it's all I could think of at short notice): Question: How does the software team apply the SOLID principles and Inversion of Control to their code? Good Answer: We adhere to SOLID wherever possible; we use TDD so it kind of forces us to write abstract, testable code. We use Ninject for our IoC container because it's fairly easy to configure - it was that or StructureMap but I find Ninject a bit more intuitive, and who doesn't like ninjas? You're not a pirate, are you? Bad Answer: Our code is pretty secure, yeah. And what's this Inversion of Control thing? I've never heard of it before. You see what I did there. The "good" answer uses facts to back it up and has a bit of "in crowd" humor; the bad answer shows complete ignorance of the question - not necessarily a bad thing if you are interviewing for a manger/director position, but a terrible answer and a huge red flag if you're interviewing as a developer and talking to a senior developer or manager! My biggest problem at the moment is being able to take a generic response and gauge whether it's the good or bad answer; more often than not it's the bad kind and I find myself frustrated almost from day one at the new job. I suppose I could name drop if I ask about specific things (e.g. "Do you write unit tests?" and if the answer is yes, ask if they use NUnit, MbUnit or something else; if they mention data access ask if they use a clean ORM like NHibernate or something more coupled like EF or Linq) but is there another way short of being resolute to actually call the interview on things (which will almost certainly result in not getting the job, but if they are skirting the question it's probably not a job I want).

    Read the article

< Previous Page | 168 169 170 171 172 173 174 175 176 177 178 179  | Next Page >