Search Results

Search found 13889 results on 556 pages for 'results'.

Page 178/556 | < Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >

  • SQL SERVER – Parsing SSIS Catalog Messages – Notes from the Field #030

    - by Pinal Dave
    [Note from Pinal]: This is a new episode of Notes from the Field series. SQL Server Integration Service (SSIS) is one of the most key essential part of the entire Business Intelligence (BI) story. It is a platform for data integration and workflow applications. The tool may also be used to automate maintenance of SQL Server databases and updates to multidimensional cube data. In this episode of the Notes from the Field series I requested SSIS Expert Andy Leonard to discuss one of the most interesting concepts of SSIS Catalog Messages. There are plenty of interesting and useful information captured in the SSIS catalog and we will learn together how to explore the same. The SSIS Catalog captures a lot of cool information by default. Here’s a query I use to parse messages from the catalog.operation_messages table in the SSISDB database, where the logged messages are stored. This query is set up to parse a default message transmitted by the Lookup Transformation. It’s one of my favorite messages in the SSIS log because it gives me excellent information when I’m tuning SSIS data flows. The message reads similar to: Data Flow Task:Information: The Lookup processed 4485 rows in the cache. The processing time was 0.015 seconds. The cache used 1376895 bytes of memory. The query: USE SSISDB GO DECLARE @MessageSourceType INT = 60 DECLARE @StartOfIDString VARCHAR(100) = 'The Lookup processed ' DECLARE @ProcessingTimeString VARCHAR(100) = 'The processing time was ' DECLARE @CacheUsedString VARCHAR(100) = 'The cache used ' DECLARE @StartOfIDSearchString VARCHAR(100) = '%' + @StartOfIDString + '%' DECLARE @ProcessingTimeSearchString VARCHAR(100) = '%' + @ProcessingTimeString + '%' DECLARE @CacheUsedSearchString VARCHAR(100) = '%' + @CacheUsedString + '%' SELECT operation_id , SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1))) AS LookupRowsCount , SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))) AS LookupProcessingTime , CASE WHEN (CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1))))) = 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) / CONVERT(numeric(3,3),SUBSTRING(MESSAGE, (PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@ProcessingTimeSearchString,MESSAGE) + LEN(@ProcessingTimeString) + 1)) - (PATINDEX(@ProcessingTimeSearchString, MESSAGE) + LEN(@ProcessingTimeString) + 1)))) END AS LookupRowsPerSecond , SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1))) AS LookupBytesUsed ,CASE WHEN (CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))))= 0 THEN 0 ELSE CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@CacheUsedSearchString,MESSAGE) + LEN(@CacheUsedString) + 1)) - (PATINDEX(@CacheUsedSearchString, MESSAGE) + LEN(@CacheUsedString) + 1)))) / CONVERT(bigint,SUBSTRING(MESSAGE, (PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1), ((CHARINDEX(' ', MESSAGE, PATINDEX(@StartOfIDSearchString,MESSAGE) + LEN(@StartOfIDString) + 1)) - (PATINDEX(@StartOfIDSearchString, MESSAGE) + LEN(@StartOfIDString) + 1)))) END AS LookupBytesPerRow FROM [catalog].[operation_messages] WHERE message_source_type = @MessageSourceType AND MESSAGE LIKE @StartOfIDSearchString GO Note that you have to set some parameter values: @MessageSourceType [int] – represents the message source type value from the following results: Value     Description 10           Entry APIs, such as T-SQL and CLR Stored procedures 20           External process used to run package (ISServerExec.exe) 30           Package-level objects 40           Control Flow tasks 50           Control Flow containers 60           Data Flow task 70           Custom execution message Note: Taken from Reza Rad’s (excellent!) helper.MessageSourceType table found here. @StartOfIDString [VarChar(100)] – use this to uniquely identify the message field value you wish to parse. In this case, the string ‘The Lookup processed ‘ identifies all the Lookup Transformation messages I desire to parse. @ProcessingTimeString [VarChar(100)] – this parameter is message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Processing Time value. For this execution, I use the string ‘The processing time was ‘. @CacheUsedString [VarChar(100)] – this parameter is also message-specific. I use this parameter to specifically search the message field value for the beginning of the Lookup Cache  Used value. It returns the memory used, in bytes. For this execution, I use the string ‘The cache used ‘. The other parameters are built from variations of the parameters listed above. The query parses the values into text. The string values are converted to numeric values for ratio calculations; LookupRowsPerSecond and LookupBytesPerRow. Since ratios involve division, CASE statements check for denominators that equal 0. Here are the results in an SSMS grid: This is not the only way to retrieve this information. And much of the code lends itself to conversion to functions. If there is interest, I will share the functions in an upcoming post. If you want to get started with SSIS with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSIS

    Read the article

  • Could Ajax + Caching be seen as cloaking?

    - by Angel
    I have a website where we use a technique to speed up loading times based in a combination of AJAX + caching. Basically, when we have a section in a page with content which is slow to retrieve, we first look if it's cached. If it is, then we serve the content, if it's not, we serve a placeholder and then make an AJAX call in the client to retrieve the content, wich is now cached for subsequent requests. As a consecuence, sometimes you get the entire page content in the first request, and sometimes you get those placeholders, wich get filled inmediatly with the responses of the AJAX request. You can see an example in the results count by category in the right column of this page: http://www.inzoco.com/crits/2-1-3-28-185-0-28079-0-0/listado-piso-en-alquiler-en-madrid-madrid.aspx I'm worried if it could be seen as cloaking by search engines because if you make a request for a page wich content isn't cached and then ask again for the same page, you would get different responses, the first with the placeholders and AJAX requests and the second one with al the content rendered.

    Read the article

  • Code Metrics: Number of IL Instructions

    - by DigiMortal
    In my previous posting about code metrics I introduced how to measure LoC (Lines of Code) in .NET applications. Now let’s take a step further and let’s take a look how to measure compiled code. This way we can somehow have a picture about what compiler produces. In this posting I will introduce you code metric called number of IL instructions. NB! Number of IL instructions is not something you can use to measure productivity of your team. If you want to get better idea about the context of this metric and LoC then please read my first posting about LoC. What are IL instructions? When code written in some .NET Framework language is compiled then compiler produces assemblies that contain byte code. These assemblies are executed later by Common Language Runtime (CLR) that is code execution engine of .NET Framework. The byte code is called Intermediate Language (IL) – this is more common language than C# and VB.NET by example. You can use ILDasm tool to convert assemblies to IL assembler so you can read them. As IL instructions are building blocks of all .NET Framework binary code these instructions are smaller and highly general – we don’t want very rich low level language because it executes slower than more general language. For every method or property call in some .NET Framework language corresponds set of IL instructions. There is no 1:1 relationship between line in high level language and line in IL assembler. There are more IL instructions than lines in C# code by example. How much instructions there are? I have no common answer because it really depends on your code. Here you can see some metrics from my current community project that is developed on SharePoint Server 2007. As average I have about 7 IL instructions per line of code. This is not metric you should use, it is just illustrative example so you can see the differences between numbers of lines and IL instructions. Why should I measure the number of IL instructions? Just take a look at chart above. Compiler does something that you cannot see – it compiles your code to IL. This is not intuitive process because you usually cannot say what is exactly the end result. You know it at greater plain but you don’t know it exactly. Therefore we can expect some surprises and that’s why we should measure the number of IL instructions. By example, you may find better solution for some method in your source code. It looks nice, it works nice and everything seems to be okay. But on server under load your fix may be way slower than previous code. Although you minimized the number of lines of code it ended up with increasing the number of IL instructions. How to measure the number of IL instructions? My choice is NDepend because Visual Studio is not able to measure this metric. Steps to make are easy. Open your NDepend project or create new and add all your application assemblies to project (you can also add Visual Studio solution to project). Run project analysis and wait until it is done. You can see over-all stats form global summary window. This is the same window I used to read the LoC and the number of IL instructions metrics for my chart. Meanwhile I made some changes to my code (enabled advanced caching for events and event registrations module) and then I ran code analysis again to get results for this section of this posting. NDepend is also able to tell you exactly what parts of code have problematically much IL instructions. The code quality section of CQL Query Explorer shows you how much problems there are with members in analyzed code. If you click on the line Methods too big (NbILInstructions) you can see all the problematic members of classes in CQL Explorer shown in image on right. In my case if have 10 methods that are too big and two of them have horrible number of IL instructions – just take a look at first two methods in this TOP10. Also note the query box. NDepend has easy and SQL-like query language to query code analysis results. You can modify these queries if you like and also you can define your own ones if default set is not enough for you. What is good result? As you can see from query window then the number of IL instructions per member should have maximally 200 IL instructions. Of course, like always, the less instructions you have, the better performing code you have. I don’t mean here little differences but big ones. By example, take a look at my first method in warnings list. The number of IL instructions it has is huge. And believe me – this method looks awful. Conclusion The number of IL instructions is useful metric when optimizing your code. For analyzing code at general level to find out too long methods you can use the number of LoC metric because it is more intuitive for you and you can therefore handle the situation more easily. Also you can use NDepend as code metrics tool because it has a lot of metrics to offer.

    Read the article

  • CPU fan kicks in to full gear when i try to install ubuntu 12.10 or LTS

    - by Remi cook
    Whenever I try to install (DUAL BOOT WITH WINDOWS 7) both versions of Ubuntu desktop on my PC the CPU fan starts spinning so fast that I couldn't even go through the installation for fear of my CPU exploding. In windows 7, the temp reaches 25-30 idle and 30-45 under full load. I tried installing through Wubi and by burning it to USB drive. Both wield the same results. I would appreciate any help. I'm a complete noob so take it easy one me. Intel Core i5 2500 @ 3.30GHz 4.00 GB Dual-Channel DDR3 @ 668MHz (9-9-9-24) Motherboard ASUSTeK Computer INC. P8Z68-V LX (LGA1155) Graphics AMD Radeon HD 6850 (Sapphire/PCPartner)

    Read the article

  • Recover that Photo, Picture or File You Deleted Accidentally

    - by The Geek
    Have you ever accidentally deleted a photo on your camera, computer, USB drive, or anywhere else? What you might not know is that you can usually restore those pictures—even from your camera’s memory stick. Windows tries to prevent you from making a big mistake by providing the Recycle Bin, where deleted files hang around for a while—but unfortunately it doesn’t work for external USB drives, USB flash drives, memory sticks, or mapped drives. The great news is that this technique also works if you accidentally deleted the photo… from the camera itself. That’s what happened to me, and prompted writing this article. Restore that File or Photo using Recuva The first piece of software that you’ll want to try is called Recuva, and it’s extremely easy to use—just make sure when you are installing it, that you don’t accidentally install that stupid Yahoo! toolbar that nobody wants. Now that you’ve installed the software, and avoided an awful toolbar installation, launch the Recuva wizard and let’s start through the process of recovering those pictures you shouldn’t have deleted. The first step on the wizard page will let you tell Recuva to only search for a specific type of file, which can save a lot of time while searching, and make it easier to find what you are looking for. Next you’ll need to specify where the file was, which will obviously be up to wherever you deleted it from. Since I deleted mine from my camera’s SD card, that’s where I’m looking for it. The next page will ask you whether you want to do a Deep Scan. My recommendation is to not select this for the first scan, because usually the quick scan can find it. You can always go back and run a deep scan a second time. And now, you’ll see all of the pictures deleted from your drive, memory stick, SD card, or wherever you searched. Looks like what happened in Vegas didn’t stay in Vegas after all… If there are a really large number of results, and you know exactly when the file was created or modified, you can switch to the advanced view, where you can sort by the last modified time. This can help speed up the process quite a bit, so you don’t have to look through quite as many files. At this point, you can right-click on any filename, and choose to Recover it, and then save the files elsewhere on your drive. Awesome! Restore that File or Photo using DiskDigger If you don’t have any luck with Recuva, you can always try out DiskDigger, another excellent piece of software. I’ve tested both of these applications very thoroughly, and found that neither of them will always find the same files, so it’s best to have both of them in your toolkit. Note that DiskDigger doesn’t require installation, making it a really great tool to throw on your PC repair Flash drive. Start off by choosing the drive you want to recover from…   Now you can choose whether to do a deep scan, or a really deep scan. Just like with Recuva, you’ll probably want to select the first one first. I’ve also had much better luck with the regular scan, rather than the “dig deeper” one. If you do choose the “dig deeper” one, you’ll be able to select exactly which types of files you are looking for, though again, you should use the regular scan first. Once you’ve come up with the results, you can click on the items on the left-hand side, and see a preview on the right.  You can select one or more files, and choose to restore them. It’s pretty simple! Download DiskDigger from dmitrybrant.com Download Recuva from piriform.com Good luck recovering your deleted files! And keep in mind, DiskDigger is a totally free donationware software from a single, helpful guy… so if his software helps you recover a photo you never thought you’d see again, you might want to think about throwing him a dollar or two. Similar Articles Productive Geek Tips Stupid Geek Tricks: Undo an Accidental Move or Delete With a Keyboard ShortcutRestore Accidentally Deleted Files with RecuvaCustomize Your Welcome Picture Choices in Windows VistaAutomatically Resize Picture Attachments in Outlook 2007Resize Your Photos with Easy Thumbnails TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Icelandic Volcano Webcams Open Multiple Links At One Go NachoFoto Searches Images in Real-time Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi

    Read the article

  • Convert a Door Peephole Viewer into a Fisheye Camera Lens

    - by Jason Fitzpatrick
    Commercial fish eye lenses are a niche product and carry a hefty price tag; if you’re looking to goof around with fish eye photography on the cheap, this $6 tutorial is for you. Courtesy of Dave from Knobtop–a thrifty DIY photography video blog–this hack uses dirt cheap parts (the whole build is composed of a PVC pipe reducer and a door peephole lens) to bring you fun fish eye photography on a budget. Check out the video above to see the build and the results, then hit up the link below to check out the notes on the video for more information. Fisheye Lens for $6 [via DIY Photography] HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me? HTG Explains: How Windows 8′s Secure Boot Feature Works & What It Means for Linux

    Read the article

  • Does it work when a developer is the project manager's boss?

    - by marabutt
    I am in the planning stage of a project and I am looking to hire a project manager. I would like to do some coding and keep eye on all parts of the project. However, i have a feeling that a project manager will get better results. I have the following options: 1) manage the project and not code 2) hire a project manager and code myself I am worried that the project manager will feel impeded by having the project owner in the development team. If I run the project, the team might fall apart causing the project to fail. To stick within budget, I have to be involved in one capacity or another. Does anyone have experience with this situation, any suggestions? more info: 4 in-house developers each responsible for a specific area. The developers can also outsource work if agreed to by the project manager.

    Read the article

  • Solving Null Entity Problems with JPA Data Controls in PS1

    - by shay.shmeltzer
    Turns out there is a slight bug that seems to prevent you from doing interactions (update, scroll) with the results of a JPA named query that you dropped on a page using ADF Binding. People are running into this when they are doing the EJB tutorial on OTN for example. The problem is that the way the binding is set up for you automatically doesn't allow you to actually access the iterator set of records to do follow up operations. When I last checked this was solved in the next release of JDeveloper, but in the meantime there is a quick simple way to resolve the issue by changing the refresh condition of the oiterator in your page binding. Here is a little demo that shows the problem and the solution:

    Read the article

  • Data Mining Resources

    - by Dejan Sarka
    There are many different types of analyses, each one with its own pros and cons. Relational reports have a predefined structure, and end users cannot change it. They are simple to use for end users. Reports can use real-time data and snapshots of data to show the state of a report at specific points in time. One of the drawbacks is that report authoring is limited to IT pros and advanced users. Any kind of dynamic restructuring is very limited. If real-time data is used for a report, the report has a negative impact on the performance of the source system. Processing of the reports might be slow because the data comes from relational database management systems, which are not optimized for reporting only. If you create a semantic model of your data, your end users can create ad-hoc report structures. However, the development is more complex because a developer is needed to create these semantic models. For OLAP, you typically use specialized database management systems. You get lightning speed of analyses. End users can use rich and thin clients to interactively change the structure of the report. Typically, they do it graphically. However, the development of an OLAP system is many times quite complex. It involves the preparation and maintenance of an enterprise data warehouse and OLAP cubes. In order to exploit the possibility of real-time restructuring of reports, the users must be both active and educated. The data is usually stale, as it is loaded into data warehouses and OLAP cubes with a scheduled process. With data mining, a structure is not selected in advance; it searches for the structure. As a result, data mining can give you the most valuable results because you can discover patterns you did not expect. A data mining model structure is limited only by the attributes that you use to train the model. One of the drawbacks is that a lot of knowledge is needed for a successful data mining project. End users have to understand the results. Subject matter experts and IT professionals need to understand business problem thoroughly. The development might be sometimes even more complex than the development of OLAP cubes. Each type of analysis has its own place in an enterprise system. SQL Server has tools for all kinds of analyses. However, data mining is the most advanced way of analyzing the data; this is the “I” in BI. In order to get the most out of it, you need to learn quite a lot. In this blog post, I am gathering together resources for learning, including forthcoming events. Books Multiple authors: SQL Server MVP Deep Dives – I wrote an introductory data mining chapter there. Erik Veerman, Teo Lachev and Dejan Sarka: MCTS Self-Paced Training Kit (Exam 70-448): Microsoft SQL Server 2008 - Business Intelligence Development and Maintenance – you can find a good overview of a complete BI solution, including data mining, in this book. Jamie MacLennan, ZhaoHui Tang, and Bogdan Crivat: Data Mining with Microsoft SQL Server 2008 – can’t miss this book if you want to mine your data with SQL Server tools. Michael Berry, Gordon Linoff: Mastering Data Mining: The Art and Science of Customer Relationship Management – data mining from both, business and technical perspective. Dorian Pyle: Data Preparation for Data Mining – an in-depth book about data preparation. Thomas and Ronald Wonnacott: Introductory Statistics – if you thought that you could get away without statistics, then you are not serious about data mining. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques – in-depth explanation of the most popular data mining algorithms. Michael Berry and Gordon Linoff: Data Mining Techniques – another book that explains data mining algorithms, more fro a business perspective. Paolo Guidici: Applied Data Mining – very mathematical book, only if you enjoy statistics and mathematics in general. Forthcoming presentations I am presenting two data mining related sessions during the PASS Summit in Charlotte, NC: Wednesday, October 16th, 2013 - Fraud Detection: Notes from the Field – I am showing how to use data mining for a specific business problem. The presentation is based on real-life projects. Friday, October 18th: Excel 2013 Advanced Analytics – I am focusing on Excel Data Mining Add-ins, and how to use them together with Power Pivot and other add-ins. This is the most you can get out of Excel. Sinergija 2013, Belgrade, Serbia Tuesday, October 22nd: Excel 2013 Analytics to the Max – another presentation focusing on the most advanced analytics you can get in Excel. SQL Rally Amsterdam, Netherlands Thursday, November 7th: Advanced Analytics in Excel 2013 – and again I am presenting about data mining in Excel. Why three different titles for the same presentation? I don’t know, I guess I forgot the name I proposed every time right after I sent the proposal. Courses Data Mining with SQL Server 2012 – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. OK, now you know: no more excuses, start learning data mining, get the most out of your data

    Read the article

  • Entity Framework Batch Update and Future Queries

    - by pwelter34
    Entity Framework Extended Library A library the extends the functionality of Entity Framework. Features Batch Update and Delete Future Queries Audit Log Project Package and Source NuGet Package PM> Install-Package EntityFramework.Extended NuGet: http://nuget.org/List/Packages/EntityFramework.Extended Source: http://github.com/loresoft/EntityFramework.Extended Batch Update and Delete A current limitations of the Entity Framework is that in order to update or delete an entity you have to first retrieve it into memory. Now in most scenarios this is just fine. There are however some senerios where performance would suffer. Also, for single deletes, the object must be retrieved before it can be deleted requiring two calls to the database. Batch update and delete eliminates the need to retrieve and load an entity before modifying it. Deleting //delete all users where FirstName matches context.Users.Delete(u => u.FirstName == "firstname"); Update //update all tasks with status of 1 to status of 2 context.Tasks.Update( t => t.StatusId == 1, t => new Task {StatusId = 2}); //example of using an IQueryable as the filter for the update var users = context.Users .Where(u => u.FirstName == "firstname"); context.Users.Update( users, u => new User {FirstName = "newfirstname"}); Future Queries Build up a list of queries for the data that you need and the first time any of the results are accessed, all the data will retrieved in one round trip to the database server. Reducing the number of trips to the database is a great. Using this feature is as simple as appending .Future() to the end of your queries. To use the Future Queries, make sure to import the EntityFramework.Extensions namespace. Future queries are created with the following extension methods... Future() FutureFirstOrDefault() FutureCount() Sample // build up queries var q1 = db.Users .Where(t => t.EmailAddress == "[email protected]") .Future(); var q2 = db.Tasks .Where(t => t.Summary == "Test") .Future(); // this triggers the loading of all the future queries var users = q1.ToList(); In the example above, there are 2 queries built up, as soon as one of the queries is enumerated, it triggers the batch load of both queries. // base query var q = db.Tasks.Where(t => t.Priority == 2); // get total count var q1 = q.FutureCount(); // get page var q2 = q.Skip(pageIndex).Take(pageSize).Future(); // triggers execute as a batch int total = q1.Value; var tasks = q2.ToList(); In this example, we have a common senerio where you want to page a list of tasks. In order for the GUI to setup the paging control, you need a total count. With Future, we can batch together the queries to get all the data in one database call. Future queries work by creating the appropriate IFutureQuery object that keeps the IQuerable. The IFutureQuery object is then stored in IFutureContext.FutureQueries list. Then, when one of the IFutureQuery objects is enumerated, it calls back to IFutureContext.ExecuteFutureQueries() via the LoadAction delegate. ExecuteFutureQueries builds a batch query from all the stored IFutureQuery objects. Finally, all the IFutureQuery objects are updated with the results from the query. Audit Log The Audit Log feature will capture the changes to entities anytime they are submitted to the database. The Audit Log captures only the entities that are changed and only the properties on those entities that were changed. The before and after values are recorded. AuditLogger.LastAudit is where this information is held and there is a ToXml() method that makes it easy to turn the AuditLog into xml for easy storage. The AuditLog can be customized via attributes on the entities or via a Fluent Configuration API. Fluent Configuration // config audit when your application is starting up... var auditConfiguration = AuditConfiguration.Default; auditConfiguration.IncludeRelationships = true; auditConfiguration.LoadRelationships = true; auditConfiguration.DefaultAuditable = true; // customize the audit for Task entity auditConfiguration.IsAuditable<Task>() .NotAudited(t => t.TaskExtended) .FormatWith(t => t.Status, v => FormatStatus(v)); // set the display member when status is a foreign key auditConfiguration.IsAuditable<Status>() .DisplayMember(t => t.Name); Create an Audit Log var db = new TrackerContext(); var audit = db.BeginAudit(); // make some updates ... db.SaveChanges(); var log = audit.LastLog;

    Read the article

  • 301 redirect bulk aspx URLs on IIS

    - by tiki16
    We recently relaunched an old ASPX site as a new Drupal site on the same domain. No 301 redirect was implemented. I have outputted a list of 1000 URLs that need to be 301 redirected. Most of the URLs are the results of search queries that were committed on the website. I.E.: http://www.mysite.com/electronics/CommunityDetails.aspx?FirstLetter=%&ID=444 We are running a Drupal site on IIS using a PHP plugin. Is there a way I can wild card a redirect of all ASPX pages? I know I can do it with .htaccess but that doesn't apply here. Any suggestions appreciated.

    Read the article

  • What are the benefits and drawback of documentation vs tutorials vs video tutorials [closed]

    - by Cat
    Which types of learning resources do you find the most helpful, for which kinds of learning and/or perhaps at specific times? Some examples of types of learning you could consider: When starting to integrate a new SDK inside an existing codebase When learning a new framework without having to integrate legacy code When digging deeper into an already-used SDK that you may not know very well yet For example - (video) tutorials are usually very easy to follow and tells a story from beginning to end to get results, but will nearly always assume starting from scratch or a previous tutorial. Therefore such a resource is useful for quick learning if you don't have legacy code around, but less so if you have to search for the best-fit to the code you already have. SDK Documentation on the other hand is well-structured but does not tell a story. It is more difficult to get to a specific larger result with documentation alone, but it is a better fit when you do have legacy code around and are searching for perhaps non-obvious ways of employing the SDK or library. Are there other forms of resources that you find useful, such as interactive training?

    Read the article

  • Bare minimum on the Joel Test

    - by Fung
    From the Joel Test, of the 12, which do you think are the absolute must-haves to at least have a decently running software department/company? I realise there is no absolutely right answer. I'm just trying to get opinions of others out there. My own organization only manages a measly 5 of 12. If you check listings on Careers 2.0, most companies don't score a full 12 either but I'm sure they're doing fine. Does SO publish the stats for those anywhere? Or has anyone tried scrapping the results? Would be interesting to know which are practised the most. And whether because they are easier to implement or whether they actually have the most impact. Thanks.

    Read the article

  • Why does my domain not show up in Google anymore?

    - by Earlz
    So I have had a website since about 2006. It's http://earlz.biz.tm . Recently I've noticed that no results will show up for it in google. I do have a secondary domain(that I plan on getting rid of) pointing to it but I don't understand why google would suddenly not show my site. I believe it was showing up a few months ago and my website is hardly ever down, like one or two days I believe has been the most it's been down in a row in this time period. Is there something wrong with my DNS or other configuration that would make google not index me? For reference I've tried: earlz.biz.tm site:earlz.biz.tm and the heading from my site "Earlz.biz.tm -- The reasoning is bacon" A few show up with the therusticstone.com domain(the one I plan to point somewhere else) but none show up directly linking to earlz.biz.tm.

    Read the article

  • Do print and bookmark links really work?

    - by Joseph Mastey
    It seems to be common on the web to provide users with some visual element on the page to either print or bookmark a page. This is all well and good (and probably doesn't hurt for the most part), but I question its effectiveness at causing the intended behavior. Is there any evidence to suggest that this causes an increase in bookmarking/printing behavior? Similarly, is there any evidence that users will use this method rather than the browser's default interface for the functions? I am really looking for user research with actual results, rather than anecdotes to answer this question. Thanks, Joseph Mastey

    Read the article

  • Utilities Worldwide Succeed with Oracle Utilities Applications

    - by caroline.yu
    More than 50 utilities worldwide have selected or implemented Oracle Utilities applications in the current fiscal year to date to respond to environmental imperatives, adapt to changing business conditions, meet and exceed customer expectations, implement smart grid components and address operational issues. Customers who have recently selected or implemented Oracle Utilities applications include: Acea Distribuzione, California Water Service Company, City of Winnipeg, Denver Water, Enersource Hydro, GasTerra, Modesto Irrigation District, Rappahannock Electric Cooperative, San Francisco Public Utilities Commission and Western Power. "Around the world, utilities are under pressure to address customer demands, improve environmental quality and comply with regulatory requirements. Oracle Utilities provides a choice of mission-critical applications to deliver tangible business results. Our recent traction in the industry illustrates the solid value we bring to our customers," said Stephan Scholl, senior vice president and general manager, Oracle Utilities.

    Read the article

  • How can I block abusive bots from accessing my Heroku app?

    - by aem
    My Heroku (Bamboo) app has been getting a bunch of hits from a scraper identifying itself as GSLFBot. Googling for that name produces various results of people who've concluded that it doesn't respect robots.txt (eg, http://www.0sw.com/archives/96). I'm considering updating my app to have a list of banned user-agents, and serving all requests from those user-agents a 400 or similar and adding GSLFBot to that list. Is that an effective technique, and if not what should I do instead? (As a side note, it seems weird to have an abusive scraper with a distinctive user-agent.)

    Read the article

  • Big label generator

    - by jamiet
    Sometimes I write blog posts mainly so that I can find stuff when I need it later. This is such a blog post. Of late I have been writing lots of deployment scripts and I am fan of putting big labels into deployment scripts (which, these days, reside in SSDT) so one can easily see what’s going on as they execute. Here’s such an example from my current project: which results in this being displayed when the script is run: In case you care….PM_EDW is the name of one of our databases. I’m almost embarrassed to admit that I spent about half an hour crafting that and a few others for my current project because a colleague has just alerted me to a website that would have done it for me, and given me lots of options for how to present it too: http://www.patorjk.com/software/taag/#p=testall&f=Banner3&t=PM__EDW Very useful indeed. Nice one! And yes, I’m sure there are a myriad of sites that do the same thing - I’m a latecomer, ok? @Jamiet

    Read the article

  • IFS Achieves Oracle Exadata Optimized and Oracle Exalogic Optimized Status

    - by Javier Puerta
    IFS, the global enterprise applications company, announces that it has earned Oracle Exadata Optimized and Oracle Exalogic Optimized status through Oracle PartnerNetwork (OPN), demonstrating that IFS Applications Release 8 has been tested and tuned on Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud to deliver speed, scalability and reliability to customers. By combining IFS Applications with the Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud, IFS customers will be able to leverage benefits such as faster time to implementation, increased performance, as well as reduced energy and hardware footprint. IFS is a Platinum level member in Oracle PartnerNetwork. Initial test results showed that IFS Applications Release 8 material resource planning (MRP) batch jobs achieved a 2.5x performance improvement and a 2.2x increase in user transactions on Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud. Additionally, IFS Applications 8 achieved a 37x higher compression ratio, resulting in significantly shorter time for daily backup routines and lowering storage costs. Read full press release here

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Should I avoid SharePoint Development in Visual Studio?

    - by SaphuA
    Hello, Not long ago I started an internship at a company that supplies SharePoint consultancy, hosting and development. While their consultancy seems to be pretty good and solid, I feel their development department lacks direction. The reason for this, most likely, is that they stopped outsourcing not too long ago. One thing that I've frequently bumped my head into is the following: My supervisor strongly insists that everything that can be done natively in SharePoint (somehow this includes editing xslt files in Designer) should be done in SharePoint. Even if this results in longer development time (at least when they make me write XSLT) and reduced usability. Her main arguments for this are: Better maintainability Editing the functionality doesn't require programming knowledge I feel the company is a little biassed and I am unable to get a decent discussion going. This is why I am looking for other places to get some responses on the subject (and not only on the arguments of my supervisor, but more on the subject in general). Kind regards

    Read the article

  • Softbody with complex geometry

    - by philipp
    I have modeled an Handball, based on the tutorial here, with a custom texture. Now I am trying to animate this model with the reactor module as a soft body. Therefor I have watched and tried a lot of tutorials and for animating a simple Sphere everything works fine. But if i try to use the model I have created, than it results in the crash of max or an animation that shows a crystal like structure that transforms itself to another crystal. Is it possible to animate this kind of complex geometry as a soft body and am i just setting the values wrong? If yes, which are the important ones I should check? Thanks in advance! Greetings philipp

    Read the article

  • What Works in Data Integration?

    - by dain.hansen
    TDWI just recently put out this paper on "What Works in Data Integration". I invite you especially to take a look at the section on "Accelerating your Business with Real-time Data Integration" and the DIRECTV case study. The article discusses some of the technology considerations for BI/DW and how data integration plays a role to deliver timely, accessible, and high-quality data. It goes on to outline the three key requirements for how to deliver high performance, low impact, and reliability and how that can translate to faster results. The DIRECTV webinar is something you definitely want to take a look at, you'll hear how DIRECTV successfully transformed their data warehouse investments into a competitive advantage with Oracle GoldenGate.

    Read the article

  • Why lock-free data structures just aren't lock-free enough

    - by Alex.Davies
    Today's post will explore why the current ways to communicate between threads don't scale, and show you a possible way to build scalable parallel programming on top of shared memory. The problem with shared memory Soon, we will have dozens, hundreds and then millions of cores in our computers. It's inevitable, because individual cores just can't get much faster. At some point, that's going to mean that we have to rethink our architecture entirely, as millions of cores can't all access a shared memory space efficiently. But millions of cores are still a long way off, and in the meantime we'll see machines with dozens of cores, struggling with shared memory. Alex's tip: The best way for an application to make use of that increasing parallel power is to use a concurrency model like actors, that deals with synchronisation issues for you. Then, the maintainer of the actors framework can find the most efficient way to coordinate access to shared memory to allow your actors to pass messages to each other efficiently. At the moment, NAct uses the .NET thread pool and a few locks to marshal messages. It works well on dual and quad core machines, but it won't scale to more cores. Every time we use a lock, our core performs an atomic memory operation (eg. CAS) on a cell of memory representing the lock, so it's sure that no other core can possibly have that lock. This is very fast when the lock isn't contended, but we need to notify all the other cores, in case they held the cell of memory in a cache. As the number of cores increases, the total cost of a lock increases linearly. A lot of work has been done on "lock-free" data structures, which avoid locks by using atomic memory operations directly. These give fairly dramatic performance improvements, particularly on systems with a few (2 to 4) cores. The .NET 4 concurrent collections in System.Collections.Concurrent are mostly lock-free. However, lock-free data structures still don't scale indefinitely, because any use of an atomic memory operation still involves every core in the system. A sync-free data structure Some concurrent data structures are possible to write in a completely synchronization-free way, without using any atomic memory operations. One useful example is a single producer, single consumer (SPSC) queue. It's easy to write a sync-free fixed size SPSC queue using a circular buffer*. Slightly trickier is a queue that grows as needed. You can use a linked list to represent the queue, but if you leave the nodes to be garbage collected once you're done with them, the GC will need to involve all the cores in collecting the finished nodes. Instead, I've implemented a proof of concept inspired by this intel article which reuses the nodes by putting them in a second queue to send back to the producer. * In all these cases, you need to use memory barriers correctly, but these are local to a core, so don't have the same scalability problems as atomic memory operations. Performance tests I tried benchmarking my SPSC queue against the .NET ConcurrentQueue, and against a standard Queue protected by locks. In some ways, this isn't a fair comparison, because both of these support multiple producers and multiple consumers, but I'll come to that later. I started on my dual-core laptop, running a simple test that had one thread producing 64 bit integers, and another consuming them, to measure the pure overhead of the queue. So, nothing very interesting here. Both concurrent collections perform better than the lock-based one as expected, but there's not a lot to choose between the ConcurrentQueue and my SPSC queue. I was a little disappointed, but then, the .NET Framework team spent a lot longer optimising it than I did. So I dug out a more powerful machine that Red Gate's DBA tools team had been using for testing. It is a 6 core Intel i7 machine with hyperthreading, adding up to 12 logical cores. Now the results get more interesting. As I increased the number of producer-consumer pairs to 6 (to saturate all 12 logical cores), the locking approach was slow, and got even slower, as you'd expect. What I didn't expect to be so clear was the drop-off in performance of the lock-free ConcurrentQueue. I could see the machine only using about 20% of available CPU cycles when it should have been saturated. My interpretation is that as all the cores used atomic memory operations to safely access the queue, they ended up spending most of the time notifying each other about cache lines that need invalidating. The sync-free approach scaled perfectly, despite still working via shared memory, which after all, should still be a bottleneck. I can't quite believe that the results are so clear, so if you can think of any other effects that might cause them, please comment! Obviously, this benchmark isn't realistic because we're only measuring the overhead of the queue. Any real workload, even on a machine with 12 cores, would dwarf the overhead, and there'd be no point worrying about this effect. But would that be true on a machine with 100 cores? Still to be solved. The trouble is, you can't build many concurrent algorithms using only an SPSC queue to communicate. In particular, I can't see a way to build something as general purpose as actors on top of just SPSC queues. Fundamentally, an actor needs to be able to receive messages from multiple other actors, which seems to need an MPSC queue. I've been thinking about ways to build a sync-free MPSC queue out of multiple SPSC queues and some kind of sign-up mechanism. Hopefully I'll have something to tell you about soon, but leave a comment if you have any ideas.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 174 175 176 177 178 179 180 181 182 183 184 185  | Next Page >