Search Results

Search found 5786 results on 232 pages for 'fast'.

Page 179/232 | < Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >

  • Functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Also, I asked myself if my impression is just plainly wrong due to lack of knowledge. E.g., do C# and C++11 support FP as extensively as, say, Scala or Caml do? In this case, my question would be simply non-existent. Or can it be that many non-FP programmers are not really interested in using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Wireless internet is connected to an open network but has no internet

    - by Joshua Reeder
    I just installed Ubuntu on my laptop yesterday and it connected to the wireless fine. Then I took it to school, put it on their wired connection, downloaded some stuff, and now the wireless doesn't work. At first it would detect networks, but not connect. I restarted it and now it can connect, but it acts like it doesn't have internet in the browser. Wired connection still works fine on it. I know it isn't the network because my ipad is working on the wireless connection fine. I found another solution on here switching the security settings for the wireless, but this is the apartment's wireless so they have it open, and I won't be able to mess with it at all. Here is lspci output: 00:00.0 Host bridge: Intel Corporation Core Processor DMI (rev 11) 00:03.0 PCI bridge: Intel Corporation Core Processor PCI Express Root Port 1 (rev 11) 00:08.0 System peripheral: Intel Corporation Core Processor System Management Registers (rev 11) 00:08.1 System peripheral: Intel Corporation Core Processor Semaphore and Scratchpad Registers (rev 11) 00:08.2 System peripheral: Intel Corporation Core Processor System Control and Status Registers (rev 11) 00:08.3 System peripheral: Intel Corporation Core Processor Miscellaneous Registers (rev 11) 00:10.0 System peripheral: Intel Corporation Core Processor QPI Link (rev 11) 00:10.1 System peripheral: Intel Corporation Core Processor QPI Routing and Protocol Registers (rev 11) 00:16.0 Communication controller: Intel Corporation 5 Series/3400 Series Chipset HECI Controller (rev 06) 00:1a.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 05) 00:1b.0 Audio device: Intel Corporation 5 Series/3400 Series Chipset High Definition Audio (rev 05) 00:1c.0 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 1 (rev 05) 00:1c.1 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 2 (rev 05) 00:1c.2 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 3 (rev 05) 00:1c.3 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 4 (rev 05) 00:1c.4 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 5 (rev 05) 00:1d.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 05) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev a5) 00:1f.0 ISA bridge: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller (rev 05) 00:1f.2 SATA controller: Intel Corporation 5 Series/3400 Series Chipset 4 port SATA AHCI Controller (rev 05) 00:1f.3 SMBus: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller (rev 05) 01:00.0 VGA compatible controller: NVIDIA Corporation GT218 [GeForce 310M] (rev a2) 01:00.1 Audio device: NVIDIA Corporation High Definition Audio Controller (rev a1) 02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 05) 07:00.0 Network controller: Realtek Semiconductor Co., Ltd. RTL8191SEvB Wireless LAN Controller (rev 10) 16:00.0 System peripheral: JMicron Technology Corp. SD/MMC Host Controller (rev 20) 16:00.2 SD Host controller: JMicron Technology Corp. Standard SD Host Controller (rev 20) 16:00.3 System peripheral: JMicron Technology Corp. MS Host Controller (rev 20) 16:00.4 System peripheral: JMicron Technology Corp. xD Host Controller (rev 20) ff:00.0 Host bridge: Intel Corporation Core Processor QuickPath Architecture Generic Non-Core Registers (rev 04) ff:00.1 Host bridge: Intel Corporation Core Processor QuickPath Architecture System Address Decoder (rev 04) ff:02.0 Host bridge: Intel Corporation Core Processor QPI Link 0 (rev 04) ff:02.1 Host bridge: Intel Corporation Core Processor QPI Physical 0 (rev 04) ff:03.0 Host bridge: Intel Corporation Core Processor Integrated Memory Controller (rev 04) ff:03.1 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Target Address Decoder (rev 04) ff:03.4 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Test Registers (rev 04) ff:04.0 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 0 Control Registers (rev 04) ff:04.1 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 0 Address Registers (rev 04) ff:04.2 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 0 Rank Registers (rev 04) ff:04.3 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 0 Thermal Control Registers (rev 04) ff:05.0 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 1 Control Registers (rev 04) ff:05.1 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 1 Address Registers (rev 04) ff:05.2 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 1 Rank Registers (rev 04) ff:05.3 Host bridge: Intel Corporation Core Processor Integrated Memory Controller Channel 1 Thermal Control Registers (rev 04) Update: I re-installed Ubuntu 12.04 (I assumed I messed something up while toying with it) but it did not solve the problem. Eventually, I got it to work with my school's wireless internet (the default network settings were wrong), but the internet still doesn't work on my apartment's wifi (it has no security on it).

    Read the article

  • Code is not the best way to draw

    - by Bertrand Le Roy
    It should be quite obvious: drawing requires constant visual feedback. Why is it then that we still draw with code in so many situations? Of course it’s because the low-level APIs always come first, and design tools are built after and on top of those. Existing design tools also don’t typically include complex UI elements such as buttons. When we launched our Touch Display module for Netduino Go!, we naturally built APIs that made it easy to draw on the screen from code, but very soon, we felt the limitations and tedium of drawing in code. In particular, any modification requires a modification of the code, followed by compilation and deployment. When trying to set-up buttons at pixel precision, the process is not optimal. On the other hand, code is irreplaceable as a way to automate repetitive tasks. While tools like Illustrator have ways to repeat graphical elements, they do so in a way that is a little alien and counter-intuitive to my developer mind. From these reflections, I knew that I wanted a design tool that would be structurally code-centric but that would still enable immediate feedback and mouse adjustments. While thinking about the best way to achieve this goal, I saw this fantastic video by Bret Victor: The key to the magic in all these demos is permanent execution of the code being edited. Whenever a parameter is being modified, everything is re-executed immediately so that the impact of the modification is instantaneously visible. If you do this all the time, the code and the result of its execution fuse in the mind of the user into dual representations of a single object. All mental barriers disappear. It’s like magic. The tool I built, Nutshell, is just another implementation of this principle. It manipulates a list of graphical operations on the screen. Each operation has a nice editor, and translates into a bit of code. Any modification to the parameters of the operation will modify the bit of generated code and trigger a re-execution of the whole program. This happens so fast that it feels like the drawing reacts instantaneously to all changes. The order of the operations is also the order in which the code gets executed. So if you want to bring objects to the front, move them down in the list, and up if you want to move them to the back: But where it gets really fun is when you start applying code constructs such as loops to the design tool. The elements that you put inside of a loop can use the loop counter in expressions, enabling crazy scenarios while retaining the real-time edition features. When you’re done building, you can just deploy the code to the device and see it run in its native environment: This works thanks to two code generators. The first code generator is building JavaScript that is executed in the browser to build the canvas view in the web page hosting the tool. The second code generator is building the C# code that will run on the Netduino Go! microcontroller and that will drive the display module. The possibilities are fascinating, even if you don’t care about driving small touch screens from microcontrollers: it is now possible, within a reasonable budget, to build specialized design tools for very vertical applications. Direct feedback is a powerful ally in many domains. Code generation driven by visual designers has become more approachable than ever thanks to extraordinary JavaScript libraries and to the powerful development platform that modern browsers provide. I encourage you to tinker with Nutshell and let it open your eyes to new possibilities that you may not have considered before. It’s open source. And of course, my company, Nwazet, can help you develop your own custom browser-based direct feedback design tools. This is real visual programming…

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SQL SERVER – Expanding Views – Contest Win Joes 2 Pros Combo (USD 198) – Day 4 of 5

    - by pinaldave
    August 2011 we ran a contest where every day we give away one book for an entire month. The contest had extreme success. Lots of people participated and lots of give away. I have received lots of questions if we are doing something similar this month. Absolutely, instead of running a contest a month long we are doing something more interesting. We are giving away USD 198 worth gift every day for this week. We are giving away Joes 2 Pros 5 Volumes (BOOK) SQL 2008 Development Certification Training Kit every day. One copy in India and One in USA. Total 2 of the giveaway (worth USD 198). All the gifts are sponsored from the Koenig Training Solution and Joes 2 Pros. The books are available here Amazon | Flipkart | Indiaplaza How to Win: Read the Question Read the Hints Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India residents only) 2 Winners will be randomly selected announced on August 20th. Question of the Day: Which of the following key word will force the query to use indexes created on views? a) ENCRYPTION b) SCHEMABINDING c) NOEXPAND d) CHECK OPTION Query Hints: BIG HINT POST Usually, the assumption is that Index on the table will use Index on the table and Index on view will be used by view. However, that is the misconception. It does not happen this way. In fact, if you notice the image, you will find the both of them (table and view) use both the index created on the table. The index created on the view is not used. The reason for the same as listed in BOL. The cost of using the indexed view may exceed the cost of getting the data from the base tables, or the query is so simple that a query against the base tables is fast and easy to find. This often happens when the indexed view is defined on small tables. You can use the NOEXPAND hint if you want to force the query processor to use the indexed view. This may require you to rewrite your query if you don’t initially reference the view explicitly. You can get the actual cost of the query with NOEXPAND and compare it to the actual cost of the query plan that doesn’t reference the view. If they are close, this may give you the confidence that the decision of whether or not to use the indexed view doesn’t matter. Additional Hints: I have previously discussed various concepts from SQL Server Joes 2 Pros Volume 4. SQL Joes 2 Pros Development Series – Structured Error Handling SQL Joes 2 Pros Development Series – SQL Server Error Messages SQL Joes 2 Pros Development Series – Table-Valued Functions SQL Joes 2 Pros Development Series – Table-Valued Store Procedure Parameters SQL Joes 2 Pros Development Series – Easy Introduction to CHECK Options SQL Joes 2 Pros Development Series – Introduction to Views SQL Joes 2 Pros Development Series – All about SQL Constraints Next Step: Answer the Quiz in Contact Form in following format Question Answer Name of the country (The contest is open for USA and India) Bonus Winner Leave a comment with your favorite article from the “additional hints” section and you may be eligible for surprise gift. There is no country restriction for this Bonus Contest. Do mention why you liked it any particular blog post and I will announce the winner of the same along with the main contest. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Mirroring git and mercurial repos the lazy way

    - by Greg Malcolm
    I maintain Python Koans on mirrored on both Github using git and Bitbucket using mercurial. I get pull requests from both repos but it turns out keeping the two repos in sync is pretty easy. Here is how it's done... Assuming I’m starting again on a clean laptop, first I clone both repos ~/git $ hg clone https://bitbucket.org/gregmalcolm/python_koans ~/git $ git clone [email protected]:gregmalcolm/python_koans.git python_koans2 The only thing that makes a folder a git or mercurial repository is the .hg folder in the root of python_koans and the .git folder in the root of python_koans2. So I just need to move the .git folder over into the python_koans folder I'm using for mercurial: ~/git $ rm -rf python_koans/.git ~/git $ mv python_koans2/.git python_koans ~/git $ ls -la python_koans total 48 drwxr-xr-x 11 greg staff 374 Mar 17 15:10 . drwxr-xr-x 62 greg staff 2108 Mar 17 14:58 .. drwxr-xr-x 12 greg staff 408 Mar 17 14:58 .git -rw-r--r-- 1 greg staff 34 Mar 17 14:54 .gitignore drwxr-xr-x 13 greg staff 442 Mar 17 14:54 .hg -rw-r--r-- 1 greg staff 48 Mar 17 14:54 .hgignore -rw-r--r-- 1 greg staff 365 Mar 17 14:54 Contributor Notes.txt -rw-r--r-- 1 greg staff 1082 Mar 17 14:54 MIT-LICENSE -rw-r--r-- 1 greg staff 5765 Mar 17 14:54 README.txt drwxr-xr-x 10 greg staff 340 Mar 17 14:54 python 2 drwxr-xr-x 10 greg staff 340 Mar 17 14:54 python 3 That’s about it! Now git and mercurial are tracking files in the same folder. Of course you will still need to set up your .gitignore to ignore mercurial’s dotfiles and .hgignore to ignore git’s dotfiles or there will be squabbling in the backseat. ~/git $ cd python_koans/ ~/git/python_koans $ cat .gitignore *.pyc *.swp .DS_Store answers .hg <-- Ignore mercurial ~/git/python_koans $ cat .hgignore syntax: glob *.pyc *.swp .DS_Store answers .git <-- Ignore git Because both my mirrors are both identical as far as tracked files are concerned I won’t yet see anything if I check statuses at this point: ~/git/python_koans $ git status # On branch master nothing to commit (working directory clean) ~/git/python_koans $ hg status ~/git/python_koans But how about if I accept a pull request from the bitbucket (mercuial) site? ~/git/python_koans $ hg status ~/git/python_koans $ git status # On branch master # Your branch is behind 'origin/master' by 1 commit, and can be fast-forwarded. # # Changed but not updated: # (use "git add <file>..." to update what will be committed) # (use "git checkout -- <file>..." to discard changes in working directory) # # modified: python 2/koans/about_decorating_with_classes.py # modified: python 2/koans/about_iteration.py # modified: python 2/koans/about_with_statements.py # modified: python 3/koans/about_decorating_with_classes.py # modified: python 3/koans/about_iteration.py # modified: python 3/koans/about_with_statements.py Mercurial doesn’t have any changes to track right now, but git has changes. Commit and push them up to github and balance is restored to the force: ~/git/python_koans $ git commit -am "Merge from bitbucket mirror: 'gpiancastelli - Fix for issue #21 and some other tweaks'" [master 79ca184] Merge from bitbucket mirror: 'gpiancastelli - Fix for issue #21 and some other tweaks' 6 files changed, 78 insertions(+), 63 deletions(-) ~/git/python_koans $ git push origin master Or just use hg-git? The github developers have actually published a plugin for automatic mirroring: http://hg-git.github.com I haven’t used it because at the time I tried it a couple of years ago I was having problems getting all the parts to play nice with each other. Probably works fine now though..

    Read the article

  • how to drawing continues line just like in paint [on hold]

    - by hussain shah
    hi sir i want to draw a points.the following code is work good but the problem is than when i drag the mouse button, if i move slow working good but if i move the curser fast they cannot made continues line.please what is the solution...? #include <iostream> #include <GL/glut.h> #include <GL/glu.h> #include <stdlib.h> void first() { glPushMatrix(); glTranslatef(1,01,01); glScalef(1, 1, 1); glColor3f(0, 1, 0); glBegin(GL_QUADS); glVertex2f(0.8, 0.6); glVertex2f(0.6, 0.6); glVertex2f(0.6, 0.8); glVertex2f(0.8, 0.8); glEnd(); glPopMatrix(); glFlush(); } void display (void) { glClear(GL_COLOR_BUFFER_BIT); //store color of each pixels of a frame glClearColor(0, 0, 0, 0);// screen color //glFlush(); } void drag (int x, int y) { { y=500-y; //x=500-x; glPointSize(5); glColor3f(1.0,1.0,1.0); glBegin(GL_POINTS); glVertex2f(x,y+2); glEnd(); glutSwapBuffers(); glFlush(); } } void reshape (int w, int h){} void init (void) { glClear(GL_COLOR_BUFFER_BIT); //store color of each pixels of a frame glClearColor(0, 0, 0, 0); glViewport(0,0,500,500); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 500.0, 0.0, 500.0, 1.0, -1.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void mouse_button (int button, int state, int x, int y) { if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) { drag(x,y); first(); } //else if (button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN) //{ // //} else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) { exit(0); } } int main (int argc, char**argv) { glutInit (&argc, argv); //initialize the program. glutInitDisplayMode (GLUT_SINGLE); //set up a basic display buffer (only singular for now) glutInitWindowSize (500,500); //set whe width and height of the window glutInitWindowPosition (100, 100); //set the position of the window glutCreateWindow ("A basic OpenGL Window"); //set the caption for the window glutMotionFunc(drag); //glutMouseFunc(mouse_button); init(); glutDisplayFunc (display);//call the display function to draw our world glutMainLoop(); //initialize the OpenGL loop cycle return 0; }

    Read the article

  • InSync12 and Australia Visits: UX is Global, Regional, Everywhere!

    - by ultan o'broin
    I attended the Australian Oracle User Group (AUSOUG) and Quest International User Group's InSync12 event in Melbourne, Australia: the user group conference for Oracle products in the ANZ region. I demoed Oracle Fusion Applications and then presented how Oracle crafted the world class Fusion Apps user experience (UX). I explained about the Oracle user experience design pattern strategy of uptake for all apps, not just Fusion, and what our UX pattern externalization strategy means for customers, partners, and ADF developers. A great conference, lots of energy, the InSync12 highlights for me were Oracle's Senior Vice President Cliff Godwin’s fast-moving Oracle E-Business Suite (EBS) roadshow with the killer Oracle Endeca user experience uptake, and Oracle ADF product outreachmeister Chris Muir’s (@chriscmuir) session on Oracle ADF Mobile solution and his hands-on mobile app development showing how existing ADF/JDev skills can build a secure, code once-deploy-to-many-device hybrid app solution in minutes. Cliff Godwin shows off the Oracle Endeca integration with Oracle E-Business Suite. Chris Muir talked the talk and then walked the walked with Oracle ADF Mobile. Applications UX was mixing it up with the crowd at InSync12 too, showing off cool mobile UX solutions, gathering data for future innovations, and engaging with EBS, JD Edwards, and PeopleSoft apps customers and partners. User conferences such as InSync12 are an important part of our Oracle Applications UX user-centered design process, giving real apps users the opportunity to make real inputs and a way for us to watch and to listen to their needs and wants and get views on current and emerging UX too. Eric Stilan (@icondaddy) of Applications UX uses an iPad to gather feedback on the latest UX designs from conference attendees. While in Melbourne, I also visited impressive Oracle partner, Callista for a major ADF and UX pow-wow, and was the er, star of a very proactive event hosted by another partner Park Lane Information Technology (coordinated by Bambi Price (@bambiprice) of ODTUG) where I explained what UX is about, and how partner and customers can engage, participate and deploy that Applications UX scientific insight to advantage for their entire business. I also paired up with Oracle Australia in Sydney to visit key customers while there, and back at Oracle in Melbourne I spoke with sales consultants and account managers about regional opportunities and UX strategy, and came away with an understanding of what makes the Oracle market tick in Australia. Mobile worker solution development and user experience is hot news in Australia, and this was a great opportunity to team up with Chris Muir and show how the alignment of the twin stars of UX design patterns and ADF technology enables developers to make great-looking, usable apps that really sparkle. Our UX design patterns--or functional (UI) patterns, to use the developer world language--means that developers now have not only a great tool set to build apps on Oracle ADF/FMW but proven, tested usability solutions to solve common problems they can apply in the IDE too. In all, a whirlwind UX visit, packed with events and delivery opportunities, and all too short a time in the wonderful city of Melbourne. I need to get back there soon! For those who need a reminder, there's a website explaining how to get involved with, and participate in, Applications User Experience (including the Oracle Usability Advisory Board) events and programs. Thank you to AUSOUG, Quest, InSync, Callista, Park Lane IT, everyone at Oracle Australia, Chris Muir, and all the other people who came together to make this a productive visit. Stay tuned for more UX developments and engagements in the region on the Oracle VoX blog and Usable Apps website too!

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Search

    - by thatjeffsmith
    photo: Stuck in Customs via photopin cc The next version of Oracle SQL Developer Data Modeler is now available as an Early Adopter (read, beta) release. There are many new major feature enhancements to talk about, but today’s focus will be on the brand new Search mechanism. Data, data, data – SO MUCH data Google has made countless billions of dollars around a very efficient and intelligent search business. People have become accustomed to having their data accessible AND searchable. Data models can have thousands of entities or tables, each having dozens of attributes or columns. Imagine how hard it could be to find what you’re looking for here. This is the challenge we have tackled head-on in v3.3. Same location as the Search toolbar in Oracle SQL Developer (and most web browsers) Here’s how it works: Search as you type – wicked fast as the entire model is loaded into memory Supports regular expressions (regex) Results loaded to a new panel below Search across designs, models Search EVERYTHING, or filter by type Save your frequent searches Save your search results as a report Open common properties of object in search results and edit basic properties on-the-fly Want to just watch the video? We have a new Oracle Learning Library resource available now which introduces the new and improved Search mechanism in SQL Developer Data Modeler. Go watch the video and then come back. Some Screenshots This will be a pretty easy feature to pick up. Search is intuitive – we’ve already learned how to do search. Now we just have a better interface for it in SQL Developer Data Modeler. But just in case you need a couple of pointers… The SYS data dictionary in model form with Search Results If I type ‘translation’ in the search dialog, then the results will come up as hits are ‘resolved.’ By default, everything is searched, although I can filter the results after-the-fact. You can see where the search finds a match in the ‘Content’ column Save the Results as a Report If you limit the search results to a category and a model, then you can save the results as a report. All of the usual suspects You can optionally include the search string, which displays in the top of of the report as ‘PATTERN.’ You can save you common reporting setups as a template and reuse those as well. Here’s a sample HTML report: Yes, I like to search my search results report! Two More Ways to Search You can search ‘in context’ by opening the ‘Find’ dialog from an active design. You can do this using the ‘Search’ toolbar button or from a model context menu. Searching a specific model Instead of bringing up the old modal Find dialog, you now get to use the new and improved Search panel. Notice there’s no ‘Model’ drop-down to select and that the active Search form is now in the Search panel versus the search toolbar up top. What else is new in SQL Developer Data Modeler version 3.3? All kinds of goodies. You can send your model to Excel for quick edits/reviews and suck the changes back into your model, you can share objects between models, and much much more. You’ll find new videos and blog posts on the subject in the new few days and weeks. Enjoy! If you have any feedback or want to report bugs, please visit our forums.

    Read the article

  • Merge sort versus quick sort performance

    - by Giorgio
    I have implemented merge sort and quick sort using C (GCC 4.4.3 on Ubuntu 10.04 running on a 4 GB RAM laptop with an Intel DUO CPU at 2GHz) and I wanted to compare the performance of the two algorithms. The prototypes of the sorting functions are: void merge_sort(const char **lines, int start, int end); void quick_sort(const char **lines, int start, int end); i.e. both take an array of pointers to strings and sort the elements with index i : start <= i <= end. I have produced some files containing random strings with length on average 4.5 characters. The test files range from 100 lines to 10000000 lines. I was a bit surprised by the results because, even though I know that merge sort has complexity O(n log(n)) while quick sort is O(n^2), I have often read that on average quick sort should be as fast as merge sort. However, my results are the following. Up to 10000 strings, both algorithms perform equally well. For 10000 strings, both require about 0.007 seconds. For 100000 strings, merge sort is slightly faster with 0.095 s against 0.121 s. For 1000000 strings merge sort takes 1.287 s against 5.233 s of quick sort. For 5000000 strings merge sort takes 7.582 s against 118.240 s of quick sort. For 10000000 strings merge sort takes 16.305 s against 1202.918 s of quick sort. So my question is: are my results as expected, meaning that quick sort is comparable in speed to merge sort for small inputs but, as the size of the input data grows, the fact that its complexity is quadratic will become evident? Here is a sketch of what I did. In the merge sort implementation, the partitioning consists in calling merge sort recursively, i.e. merge_sort(lines, start, (start + end) / 2); merge_sort(lines, 1 + (start + end) / 2, end); Merging of the two sorted sub-array is performed by reading the data from the array lines and writing it to a global temporary array of pointers (this global array is allocate only once). After each merge the pointers are copied back to the original array. So the strings are stored once but I need twice as much memory for the pointers. For quick sort, the partition function chooses the last element of the array to sort as the pivot and scans the previous elements in one loop. After it has produced a partition of the type start ... {elements <= pivot} ... pivotIndex ... {elements > pivot} ... end it calls itself recursively: quick_sort(lines, start, pivotIndex - 1); quick_sort(lines, pivotIndex + 1, end); Note that this quick sort implementation sorts the array in-place and does not require additional memory, therefore it is more memory efficient than the merge sort implementation. So my question is: is there a better way to implement quick sort that is worthwhile trying out? If I improve the quick sort implementation and perform more tests on different data sets (computing the average of the running times on different data sets) can I expect a better performance of quick sort wrt merge sort? EDIT Thank you for your answers. My implementation is in-place and is based on the pseudo-code I have found on wikipedia in Section In-place version: function partition(array, 'left', 'right', 'pivotIndex') where I choose the last element in the range to be sorted as a pivot, i.e. pivotIndex := right. I have checked the code over and over again and it seems correct to me. In order to rule out the case that I am using the wrong implementation I have uploaded the source code on github (in case you would like to take a look at it). Your answers seem to suggest that I am using the wrong test data. I will look into it and try out different test data sets. I will report as soon as I have some results.

    Read the article

  • The enterprise vendor con - connecting SSD's using SATA 2 (3Gbits) thus limiting there performance

    - by tonyrogerson
    When comparing SSD against Hard drive performance it really makes me cross when folk think comparing an array of SSD running on 3GBits/sec to hard drives running on 6GBits/second is somehow valid. In a paper from DELL (http://www.dell.com/downloads/global/products/pvaul/en/PowerEdge-PowerVaultH800-CacheCade-final.pdf) on increasing database performance using the DELL PERC H800 with Solid State Drives they compare four SSD drives connected at 3Gbits/sec against ten 10Krpm drives connected at 6Gbits [Tony slaps forehead while shouting DOH!]. It is true in the case of hard drives it probably doesn’t make much difference 3Gbit or 6Gbit because SAS and SATA are both end to end protocols rather than shared bus architecture like SCSI, so the hard drive doesn’t share bandwidth and probably can’t get near the 600MiBytes/second throughput that 6Gbit gives unless you are doing contiguous reads, in my own tests on a single 15Krpm SAS disk using IOMeter (8 worker threads, queue depth of 16 with a stripe size of 64KiB, an 8KiB transfer size on a drive formatted with an allocation size of 8KiB for a 100% sequential read test) I only get 347MiBytes per second sustained throughput at an average latency of 2.87ms per IO equating to 44.5K IOps, ok, if that was 3GBits it would be less – around 280MiBytes per second, oh, but wait a minute [...fingers tap desk] You’ll struggle to find in the commodity space an SSD that doesn’t have the SATA 3 (6GBits) interface, SSD’s are fast not only low latency and high IOps but they also offer a very large sustained transfer rate, consider the OCZ Agility 3 it so happens that in my masters dissertation I did the same test but on a difference box, I got 374MiBytes per second at an average latency of 2.67ms per IO equating to 47.9K IOps – cost of an 240GB Agility 3 is £174.24 (http://www.scan.co.uk/products/240gb-ocz-agility-3-ssd-25-sata-6gb-s-sandforce-2281-read-525mb-s-write-500mb-s-85k-iops), but that same drive set in a box connected with SATA 2 (3Gbits) would only yield around 280MiBytes per second thus losing almost 100MiBytes per second throughput and a ton of IOps too. So why the hell are “enterprise” vendors still only connecting SSD’s at 3GBits? Well, my conspiracy states that they have no interest in you moving to SSD because they’ll lose so much money, the argument that they use SATA 2 doesn’t wash, SATA 3 has been out for some time now and all the commodity stuff you buy uses it now. Consider the cost, not in terms of price per GB but price per IOps, SSD absolutely thrash Hard Drives on that, it was true that the opposite was also true that Hard Drives thrashed SSD’s on price per GB, but is that true now, I’m not so sure – a 300GByte 2.5” 15Krpm SAS drive costs £329.76 ex VAT (http://www.scan.co.uk/products/300gb-seagate-st9300653ss-savvio-15k3-25-hdd-sas-6gb-s-15000rpm-64mb-cache-27ms) which equates to £1.09 per GB compared to a 480GB OCZ Agility 3 costing £422.10 ex VAT (http://www.scan.co.uk/products/480gb-ocz-agility-3-ssd-25-sata-6gb-s-sandforce-2281-read-525mb-s-write-410mb-s-30k-iops) which equates to £0.88 per GB. Ok, I compared an “enterprise” hard drive with a “commodity” SSD, ok, so things get a little more complicated here, most “enterprise” SSD’s are SLC and most commodity are MLC, SLC gives more performance and wear, I’ll talk about that another day. For now though, don’t get sucked in by vendor marketing, SATA 2 (3Gbit) just doesn’t cut it, SSD need 6Gbit to breath and even that SSD’s are pushing. Alas, SSD’s are connected using SATA so all the controllers I’ve seen thus far from HP and DELL only do SATA 2 – deliberate? Well, I’ll let you decide on that one.

    Read the article

  • 9 Ways Facebook Monetization Could Change Your Marketing

    - by Mike Stiles
    Think Facebook monetization isn’t a head game? Imagine creating something so functional, fun and addictive you literally amass about 1/7th of the planet’s population as an audience. You have 1 billion users that use it at least once a month. But analysts and marketers look at what you’ve done and say, “eh…not good enough.” What if you had a TV show that garnered 1/7 of Earth’s population as an audience? How much would a spot cost? And how fast would marketers write that check, even without the targeting and engagement analytics Facebook offers? Having already changed the marketing landscape forever, if you’re Facebook’s creator, you’d have to be scratching your head and asking, “Wow, what more does a product need to do?” Facebook’s been busy answering that very question with products and betas that will likely directly affect your brand’s strategy. Item 1: Users can send physical gifts to friends through Facebook based on suggestions from user data. A giant step toward the potential power of social commerce. Item 2: Users can pay $7 to promote posts for higher visibility. Individual users, not just marketers, are being leveraged as a revenue stream. Not impressive enough? There’s also the potential Craigslist killer Facebook Marketplace. Item 3: Mobile ads. 600 million+ access Facebook on smartphones. According to the company, half of the $1 million a day generated by Sponsored Stories as of late June was coming from mobile. Ads in News Feeds seen on mobile had click-through rates 23x higher than on desktop News Feeds or the right side panel. Item 4: App developers can buy install ads that show up in mobile News Feeds so reliance on discovery in app stores is reduced. Item 5: Want your posts seen by people who never liked your Page? A test began in August where you could appear in non-fans’ News Feeds on both web and mobile. Item 6: How about an ability to use Facebook data to buy ads outside of Facebook? A mobile ad network is being tested to get your targeted messages on non-Facebook apps and sites surfaced on devices. Item 7: Facebook Collections, Facebook’s answer to Pinterest. Users can gather images of desired products and click through to the retailer to buy. Keep focusing on your imagery. Item 8: Facebook Offers, Facebook’s answer to the Groupons and Living Socials of the world. You can send deals to your fans’ News Feeds. Item 9: Facebook Exchange lets you track what fans do on Facebook and across the entire Web. Could lead to a Facebook ad network leveraging Facebook users and data but not limiting exposure to the Facebook platform. Marketers are seeing increasing value in Facebook (and Twitter for that matter).  But as social grows and adjusts, will marketing budgets aimed in that direction grow and adjust accordingly, and within a reasonable time frame? @mikestilesPhoto Christie Merrill/stock.xchng

    Read the article

  • ArchBeat Top 10 for December 2-8, 2012

    - by Bob Rhubart
    The Top 10 most-clicked items shared on the OTN ArchBeat Facebook page for the week of December 2-8, 2012 Configure Oracle SOA JMSAdatper to Work with WLS JMS Topics Another of the four posts published on Dec 4 by the Fusion Middleware A-Team blogger identified as "fip" illlustrates "how to configure the JMS Topic, the JmsAdapter connection factory, as well as the composite so that the JMS Topic messages will be evenly distributed to same composite running off different SOA cluster nodes without causing duplication." Web Service Example - Part 3: Asynchronous Part 3 in this series from the Oracle ADF Mobile blog looks at "firing the web service asynchronously and then filling in the UI when it completes." Denis says, "This can be useful when you have data on the device in a local store and want to show that to the user while the application uses lazy loading from a web service to load more data." Advanced Oracle SOA Suite Oracle Open World 2012 SOA Presentations Oracle SOA & BPM Partner Community blogger Juergen Kress shares a list of 13 SOA presentations delivered or moderated by Oracle SOA Product Management at OOW12 in San Francisco. Oracle WebLogic Server WLS Domain Browser My colleague Jeff Davies, a frequent speaker at OTN Architect Day events and a genuinely nice guy, emailed me last night with this message: "I just came across this app on Google Play. It allows WebLogic administrators to browse WLS 12c domain information. I installed it on my phone and tried it out. Works very fast." I'm an iPhone guy, but I'm perfectly comfortable taking Jeff at his word. The app is called WLS Domain Browser. Follow the link for more info from the Google Play site. Retrieve Performance Data from SOA Infrastructure Database Another of the four blog posts published on Dec 4 by very busy Oracle Fusion Middleware A-Team member "fip," this one offers "examples of some basic SQL queries you can run against the infrastructure database of Oracle SOA Suite 11G to acquire the performance statistics for a given period of time." How to Achieve OC4J RMI Load Balancing "Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusion in the field [about] how OC4J RMI load balancing works," says the Oracle Fusion Middleware A-Team member known only as "fip." "Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public." From XaaS to Java EE – Which damn cloud is right for me in 2012? Oracle ACE Director Markus Eisele wrestles with a timely technical issue and shares his observations on several of the alternatives. Exalogic 2.0.1 Tea Break Snippets - Creating a ModifyJeOS VirtualBox "One of the main advantages of this is that Templates can be created away from the Exalogic Environment," explains The Old Toxophilist. (BTW: I had to look it up: a toxophilist is one who collects bows and arrows.) ADF Mobile - Implementing Reusable Mobile Architecture "Reusability was always a strong part of ADF," says Oracle ACE Director Andrejus Baranovskis. "The same high reusability level is supported now in ADF Mobile." The objective of this post is "to prove technically that [the] reusable architecture concept works for ADF Mobile." Using BPEL Performance Statistics to Diagnose Performance Bottlenecks Someone had a busy day… This post, one of four published on DeC 4 by a member of the Oracle Fusion Middleware A-Team identified only as "fip," offers details on how to "enable, retrieve and interpret the performance statistics, before the future versions provides a more pleasant user experience." Thought for the Day "If you're afraid to change something it is clearly poorly designed." — Martin Fowler Source: SoftwareQuotes.com

    Read the article

  • Inappropriate Updates?

    - by Tony Davis
    A recent Simple-talk article by Kathi Kellenberger dissected the fastest SQL solution, submitted by Peter Larsson as part of Phil Factor's SQL Speed Phreak challenge, to the classic "running total" problem. In its analysis of the code, the article re-ignited a heated debate regarding the techniques that should, and should not, be deemed acceptable in your search for fast SQL code. Peter's code for running total calculation uses a variation of a somewhat contentious technique, sometimes referred to as a "quirky update": SET @Subscribers = Subscribers = @Subscribers + PeopleJoined - PeopleLeft This form of the UPDATE statement, @variable = column = expression, is documented and it allows you to set a variable to the value returned by the expression. Microsoft does not guarantee the order in which rows are updated in this technique because, in relational theory, a table doesn’t have a natural order to its rows and the UPDATE statement has no means of specifying the order. Traditionally, in cases where a specific order is requires, such as for running aggregate calculations, programmers who used the technique have relied on the fact that the UPDATE statement, without the WHERE clause, is executed in the order imposed by the clustered index, or in heap order, if there isn’t one. Peter wasn’t satisfied with this, and so used the ingenious device of assuring the order of the UPDATE by the use of an "ordered CTE", based on an underlying temporary staging table (a heap). However, in either case, the ordering is still not guaranteed and, in addition, would be broken under conditions of parallelism, or partitioning. Many argue, with validity, that this reliance on a given order where none can ever be guaranteed is an abuse of basic relational principles, and so is a bad practice; perhaps even irresponsible. More importantly, Microsoft doesn't wish to support the technique and offers no guarantee that it will always work. If you put it into production and it breaks in a later version, you can't file a bug. As such, many believe that the technique should never be tolerated in a production system, under any circumstances. Is this attitude justified? After all, both forms of the technique, using a clustered index to guarantee the order or using an ordered CTE, have been tested rigorously and are proven to be robust; although not guaranteed by Microsoft, the ordering is reliable, provided none of the conditions that are known to break it are violated. In Peter's particular case, the technique is being applied to a temporary table, where the developer has full control of the data ordering, and indexing, and knows that the table will never be subject to parallelism or partitioning. It might be argued that, in such circumstances, the technique is not really "quirky" at all and to ban it from your systems would server no real purpose other than to deprive yourself of a reliable technique that has uses that extend well beyond the running total calculations. Of course, it is doubly important that such a technique, including its unsupported status and the assumptions that underpin its success, is fully and clearly documented, preferably even when posting it online in a competition or forum post. Ultimately, however, this technique has been available to programmers throughout the time Sybase and SQL Server has existed, and so cannot be lightly cast aside, even if one sympathises with Microsoft for the awkwardness of maintaining an archaic way of doing updates. After all, a Table hint could easily be devised that, if specified in the WITH (<Table_Hint_Limited>) clause, could be used to request the database engine to do the update in the conventional order. Then perhaps everyone would be satisfied. Cheers, Tony.

    Read the article

  • Fastest pathfinding for static node matrix

    - by Sean Martin
    I'm programming a route finding routine in VB.NET for an online game I play, and I'm searching for the fastest route finding algorithm for my map type. The game takes place in space, with thousands of solar systems connected by jump gates. The game devs have provided a DB dump containing a list of every system and the systems it can jump to. The map isn't quite a node tree, since some branches can jump to other branches - more of a matrix. What I need is a fast pathfinding algorithm. I have already implemented an A* routine and a Dijkstra's, both find the best path but are too slow for my purposes - a search that considers about 5000 nodes takes over 20 seconds to compute. A similar program on a website can do the same search in less than a second. This website claims to use D*, which I have looked into. That algorithm seems more appropriate for dynamic maps rather than one that does not change - unless I misunderstand it's premise. So is there something faster I can use for a map that is not your typical tile/polygon base? GBFS? Perhaps a DFS? Or have I likely got some problem with my A* - maybe poorly chosen heuristics or movement cost? Currently my movement cost is the length of the jump (the DB dump has solar system coordinates as well), and the heuristic is a quick euclidean calculation from the node to the goal. In case anyone has some optimizations for my A*, here is the routine that consumes about 60% of my processing time, according to my profiler. The coordinateData table contains a list of every system's coordinates, and neighborNode.distance is the distance of the jump. Private Function findDistance(ByVal startSystem As Integer, ByVal endSystem As Integer) As Integer 'hCount += 1 'If hCount Mod 0 = 0 Then 'Return hCache 'End If 'Initialize variables to be filled Dim x1, x2, y1, y2, z1, z2 As Integer 'LINQ queries for solar system data Dim systemFromData = From result In jumpDataDB.coordinateDatas Where result.systemId = startSystem Select result.x, result.y, result.z Dim systemToData = From result In jumpDataDB.coordinateDatas Where result.systemId = endSystem Select result.x, result.y, result.z 'LINQ execute 'Fill variables with solar system data for from and to system For Each solarSystem In systemFromData x1 = (solarSystem.x) y1 = (solarSystem.y) z1 = (solarSystem.z) Next For Each solarSystem In systemToData x2 = (solarSystem.x) y2 = (solarSystem.y) z2 = (solarSystem.z) Next Dim x3 = Math.Abs(x1 - x2) Dim y3 = Math.Abs(y1 - y2) Dim z3 = Math.Abs(z1 - z2) 'Calculate distance and round 'Dim distance = Math.Round(Math.Sqrt(Math.Abs((x1 - x2) ^ 2) + Math.Abs((y1 - y2) ^ 2) + Math.Abs((z1 - z2) ^ 2))) Dim distance = firstConstant * Math.Min(secondConstant * (x3 + y3 + z3), Math.Max(x3, Math.Max(y3, z3))) 'Dim distance = Math.Abs(x1 - x2) + Math.Abs(z1 - z2) + Math.Abs(y1 - y2) 'hCache = distance Return distance End Function And the main loop, the other 30% 'Begin search While openList.Count() != 0 'Set current system and move node to closed currentNode = lowestF() move(currentNode.id) For Each neighborNode In neighborNodes If Not onList(neighborNode.toSystem, 0) Then If Not onList(neighborNode.toSystem, 1) Then Dim newNode As New nodeData() newNode.id = neighborNode.toSystem newNode.parent = currentNode.id newNode.g = currentNode.g + neighborNode.distance newNode.h = findDistance(newNode.id, endSystem) newNode.f = newNode.g + newNode.h newNode.security = neighborNode.security openList.Add(newNode) shortOpenList(OLindex) = newNode.id OLindex += 1 Else Dim proposedG As Integer = currentNode.g + neighborNode.distance If proposedG < gValue(neighborNode.toSystem) Then changeParent(neighborNode.toSystem, currentNode.id, proposedG) End If End If End If Next 'Check to see if done If currentNode.id = endSystem Then Exit While End If End While If clarification is needed on my spaghetti code, I'll try to explain.

    Read the article

  • Building a Data Mart with Pentaho Data Integration Video Review by Diethard Steiner, Packt Publishing

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2014/06/01/building-a-data-mart-with-pentaho-data-integration-video-review.aspx The Building a Data Mart with Pentaho Data Integration Video by Diethard Steiner from Packt Publishing is more than just a course on how to use Pentaho Data Integration, it also implements and uses the principals of the Data Warehousing (and I even heard the name of Ralph Kimball in the video). Indeed, a video watcher should be familiar with its concepts as the Star Schema, Slowly Changing Dimension types, etc. so I suggest prior to watching this course to consider skimming through the Data Warehouse concepts (if unfamiliar) or even better, read the excellent Ralph’s The Data Warehouse Tooolkit. By the way, the author expands beyond using Pentaho along to MySQL and MonetDB which is a real icing on the cake! Indeed, I even suggest the name of the course should be ‘Building a Data Warehouse with Pentaho’. To successfully complete the course one needs to know some Linux (Ubuntu used in the course), the VI editor and the Bash command shell, but it seems that similar requirements would also apply to the Weindows OS. Additionally, knowing some basic SQL would not hurt. As I had said, MonetDB is used in this course several times which seems to be not anymore complex than say MySQL, but based on what I read is very well suited for fast querying big volumes of data thanks to having a columnstore (vertical data storage). I don’t see what else can be a barrier, the material is very digestible. On this note, I must add that the author does not cover how to acquire the software, so here is what I found may help: Pentaho: the free Community Edition must be more than anyone needs to learn it. Or even go into a POC. MonetDB can be downloaded (exists for both, Linux and Windows) from http://goo.gl/FYxMy0 (just see the appropriate link on the left). The author seems to be using Eclipse to run SQL code, one can get it from http://goo.gl/5CcuN. To create, or edit database entities and/or schema otherwise one can use a universal tool called SQuirreL, get it from http://squirrel-sql.sourceforge.net.   Next, I must confess Diethard is very knowledgeable in what he does and beyond. However, there will be some accent heard to the user of the course especially if one’s mother tongue language is English, but it I got over it in a few chapters. I liked the rate at which the material is being presented, it makes me feel I paid for every second Eventually, my impressions are: Pentaho is an awesome ETL offering, it is worth learning it very much (I am an ETL fan and a heavy user of SSIS) MonetDB is nice, it tickles my fancy to know it more Data Warehousing, despite all the BigData tool offerings (Hive, Scoop, Pig on Hadoop), using the traditional tools still rocks Chapters 2 to 6 were the most fun to me with chapter 8 being the most difficult.   In terms of closing, I highly recommend this video to anyone who needs to grasp Pentaho concepts quick, likewise, the course is very well suited for any developer on a “supposed to be done yesterday” type of a project. It is for a beginner to intermediate level ETL/DW developer. But one would need to learn more on Data Warehousing and Pentaho, for such I recommend the 5 star Pentaho Data Integration 4 Cookbook. Enjoy it! Disclaimer: I received this video from the publisher for the purpose of a public review.

    Read the article

  • Building a Data Mart with Pentaho Data Integration Video Review by Diethard Steiner, Packt Publishing

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2014/06/01/building-a-data-mart-with-pentaho-data-integration-video-review-again.aspx The Building a Data Mart with Pentaho Data Integration Video by Diethard Steiner from Packt Publishing is more than just a course on how to use Pentaho Data Integration, it also implements and uses the principals of the Data Warehousing (and I even heard the name of Ralph Kimball in the video). Indeed, a video watcher should be familiar with its concepts as the Star Schema, Slowly Changing Dimension types, etc. so I suggest prior to watching this course to consider skimming through the Data Warehouse concepts (if unfamiliar) or even better, read the excellent Ralph’s The Data Warehouse Tooolkit. By the way, the author expands beyond using Pentaho along to MySQL and MonetDB which is a real icing on the cake! Indeed, I even suggest the name of the course should be ‘Building a Data Warehouse with Pentaho’. To successfully complete the course one needs to know some Linux (Ubuntu used in the course), the VI editor and the Bash command shell, but it seems that similar requirements would also apply to the Windows OS. Additionally, knowing some basic SQL would not hurt. As I had said, MonetDB is used in this course several times which seems to be not anymore complex than say MySQL, but based on what I read is very well suited for fast querying big volumes of data thanks to having a columnstore (vertical data storage). I don’t see what else can be a barrier, the material is very digestible. On this note, I must add that the author does not cover how to acquire the software, so here is what I found may help: Pentaho: the free Community Edition must be more than anyone needs to learn it. Or even go into a POC. MonetDB can be downloaded (exists for both, Linux and Windows) from http://goo.gl/FYxMy0 (just see the appropriate link on the left). The author seems to be using Eclipse to run SQL code, one can get it from http://goo.gl/5CcuN. To create, or edit database entities and/or schema otherwise one can use a universal tool called SQuirreL, get it from http://squirrel-sql.sourceforge.net.   Next, I must confess Diethard is very knowledgeable in what he does and beyond. However, there will be some accent heard to the user of the course especially if one’s mother tongue language is English, but it I got over it in a few chapters. I liked the rate at which the material is being presented, it makes me feel I paid for every second Eventually, my impressions are: Pentaho is an awesome ETL offering, it is worth learning it very much (I am an ETL fan and a heavy user of SSIS) MonetDB is nice, it tickles my fancy to know it more Data Warehousing, despite all the BigData tool offerings (Hive, Scoop, Pig on Hadoop), using the traditional tools still rocks Chapters 2 to 6 were the most fun to me with chapter 8 being the most difficult.   In terms of closing, I highly recommend this video to anyone who needs to grasp Pentaho concepts quick, likewise, the course is very well suited for any developer on a “supposed to be done yesterday” type of a project. It is for a beginner to intermediate level ETL/DW developer. But one would need to learn more on Data Warehousing and Pentaho, for such I recommend the 5 star Pentaho Data Integration 4 Cookbook. Enjoy it! Disclaimer: I received this video from the publisher for the purpose of a public review.

    Read the article

  • Why SQL Developer Rocks for the Advanced User Too

    - by thatjeffsmith
    While SQL Developer may be ‘perfect for Oracle beginners,’ that doesn’t preclude advanced and intermediate users from getting their fair share of toys! I’ve been working with Oracle since the 7.3.4 days, and I think it’s pretty safe to say that the WAY an ‘old timer’ uses a tool like SQL Developer is radically different than the ‘beginner.’ If you’ve been reluctant to use SQL Developer because it’s a GUI, give me a few minutes to try to convince you it’s worth a second (or third) look. 1. Help when you want it, and only when you want it One of the biggest gripes any user has with a piece of software is when said software can’t get out of it’s own way. When you’re typing in a word processor, sometimes you can do without the grammar and spelling checks, the offer to auto-complete your words, and all of the additional mark-up. This drives folks to programs like Notepad++ and vi. You can disable the code insight feature so you can type unmolested by SQL Developer’s attempt to auto-complete your object names. Now, if you happen to come across a long or hard to spell object name, you can still invoke the feature on demand using Ctrl+Spacebar Code Editor – Completion Insight – Enable Completion Auto-Popup (Keyword being Auto) 2. Automatic File Tracking SQL*Minus is nice. Vi is cool. Notepad++ has a lot of features I like. But not too many editors offer automatic logging of changes to your files without having to setup a source control system. I was doing some work on my login.sql. I’m not doing anything crazy, but seeing what I had done in previous iterations was helpful. Now imagine how nice it would be to have this available for your l,000+ line scripts! Track your scripts as they change, no setup required! 3. Extend the Functionality Know SQL and XML? Wish SQL Developer did JUST a little bit more? Build your own extensions. You can have custom context menus and object pages in just a few minutes. This is an example of lazy developers writing code that write code. 4. Get Your Money’s Worth You’ve licensed Enterprise Edition. You got your Diagnostic and Tuning packs. Now start using them! Not everyone has access to Enterprise Manager, especially developers. But that doesn’t mean they don’t need help with troubleshooting and optimizing poorly performing SQL statements. ASH, AWR, Real-Time SQL Monitoring and the SQL Tuning Advisor are built into the Reports and Worksheet. Yes you could make the package calls, but that’s a whole lot of typing, and I’d rather just get to the results. 5. Profile, Debug, & Unit Testing PLSQL An Interactive Development Environment (IDE) built by the same folks that own the programming language (Hello – Oracle PLSQL!) should be complete. It should ‘hug’ the developer and empower them to churn out programs that work, run fast, and are easy to maintain. Write it, test it, debug it, and tune it. When you’re running your programs and you just want to see the data that’s returned, that shouldn’t require any special settings or workaround to make it happen either. Magic! And a whole lot more… I could go on and talk about the support for things like DataPump, RMAN, and DBMS_SCHEDULER, but you’re experts and you’re plenty busy. If you think SQL Developer is falling short somewhere, I want you to let us know about it.

    Read the article

  • IE9, HTML5 and truck load of other stuff happening around the web

    - by Harish Ranganathan
    First of all, I haven’t been updating this blog as regularly as it used to be.  Primarily, due to the fact was I was visiting a lot of cities talking about SharePoint, Web Matrix, IE9 and few other stuff.  IE9 is my new found love and I simply think we have done great work in improving the browser and browsing experiences for our users. This post would talk about IE, general things happening around the web and few misconceptions around IE (I had earlier written about IE8 and common myths When you think about the way web has transformed, its truly amazing.  Rewind back to late 90s and early 2000s, web was a luxury.  There were lot of desktop applications running around and web applications was starting to pick up.  Primarily reason was not a lot of folks were into web development and the areas of web were confined to HTML and JavaScript.  CSS was around here and there but no one took it so seriously.  XML, XSLT was fast picking up and contributed to decent web development techniques. So as a web developer all we had to worry about was, building good looking websites which worked well with IE6 and occasionally with Safari.  Firefox was  not even in the picture then and so was Chrome.  But with the various arms of W3C consortium and other bodies working actively on stuff like CSS, SVG and XHTML, few more areas came into picture when it comes to browsers supporting standards.  IE6 for sure wasn’t up to the speed and the main issue we were tackling then was privacy and piracy.  We did invest a lot of our efforts to curb piracy and one of the steps into it was that, IE7 the next version of IE would install only on genuine windows machines.  What this means, is that, people who were running pirated windows xp knowingly/unknowingly could not install IE7 and the limitations of IE6 really hurt them.  One more thing of importance is that, if you were running pirated windows, lots of chances that you didn’t get the security updates and thereby were vulnerable to run viruses/trojans on your system. Many of them actually block using IE in the first place and make it difficult to browse.  SP2 came as a big boon but again was there only for genuine windows machines. With Firefox coming as a free install and also heavily pushed by Google then, it was natural that people would try an alternative.  By then, we had started working on IE8 supporting the best standards (note HTML5, CSS 2.1 and other specs were then work in progress.  they are still) Later, Google in their infinite wisdom realized that with Firefox they were going nowhere and they released Chrome.  Now, they heavily push Chrome even for Firefox users, which is natural since its their browser. In the meanwhile, these browsers push their updates as mandatory and therefore have a very short lifecycle to add enhancements and support for stuff like CSS etc., Meanwhile, when IE8 came out, it really was the best standards supported browser and a lot of people saw our efforts in improving our browser. HTML5 is the buzz word in the industry and there is a lot of noise being made by many browsers claiming their support for it.  IE8 doesn’t have much support for HTML5.  But, with IE9 Beta, we have great support for many of HTML5 specifications.  Note that, HTML5 is still work under progress and one of the board of members working on the spec has mentioned that these specs might change and relying on them heavily is dangerous.  But, some of the advances such as video tag, etc., are indeed supported in IE9 Beta.  IE9 Beta also has full hardware acceleration support which other browsers don’t have. IE8 had advanced security features such as smartscreen filter, in-private browsing, anti-phishing and a lot of other stuff.  IE9 builds on top of these with the best in town security standards as well as support for HTML5, CSS3, Hardware acceleration, SVG and many other advancements in browser.  Read more at http://www.beautyoftheweb.com/#/highlights/html5  To summarize, IE9 Beta is really innovative and you should try it to believe what it provides.  You can visit http://www.beautyoftheweb.com/  to install as well as read more on this. Cheers !!!

    Read the article

  • Low level programming - what's in it for me?

    - by back2dos
    For years I have considered digging into what I consider "low level" languages. For me this means C and assembly. However I had no time for this yet, nor has it EVER been neccessary. Now because I don't see any neccessity arising, I feel like I should either just schedule some point in time when I will study the subject or drop the plan forever. My Position For the past 4 years I have focused on "web technologies", which may change, and I am an application developer, which is unlikely to change. In application development, I think usability is the most important thing. You write applications to be "consumed" by users. The more usable those applications are, the more value you have produced. In order to achieve good usability, I believe the following things are viable Good design: Well-thought-out features accessible through a well-thought-out user interface. Correctness: The best design isn't worth anything, if not implemented correctly. Flexibility: An application A should constantly evolve, so that its users need not switch to a different application B, that has new features, that A could implement. Applications addressing the same problem should not differ in features but in philosophy. Performance: Performance contributes to a good user experience. An application is ideally always responsive and performs its tasks reasonably fast (based on their frequency). The value of performance optimization beyond the point where it is noticeable by the user is questionable. I think low level programming is not going to help me with that, except for performance. But writing a whole app in a low level language for the sake of performance is premature optimization to me. My Question What could low level programming teach me, what other languages wouldn't teach me? Am I missing something, or is it just a skill, that is of very little use for application development? Please understand, that I am not questioning the value of C and assembly. It's just that in my everyday life, I am quite happy that all the intricacies of that world are abstracted away and managed for me (mostly by layers written in C/C++ and assembly themselves). I just don't see any concepts, that could be new to me, only details I would have to stuff my head with. So what's in it for me? My Conclusion Thanks to everyone for their answers. I must say, nobody really surprised me, but at least now I am quite sure I will drop this area of interest until any need for it arises. To my understanding, writing assembly these days for processors as they are in use in today's CPUs is not only unneccesarily complicated, but risks to result in poorer runtime performance than a C counterpart. Optimizing by hand is nearly impossible due to OOE, while you do not get all kinds of optimizations a compiler can do automatically. Also, the code is either portable, because it uses a small subset of available commands, or it is optimized, but then it probably works on one architecture only. Writing C is not nearly as neccessary anymore, as it was in the past. If I were to write an application in C, I would just as much use tested and established libraries and frameworks, that would spare me implementing string copy routines, sorting algorithms and other kind of stuff serving as exercise at university. My own code would execute faster at the cost of type safety. I am neither keen on reeinventing the wheel in the course of normal app development, nor trying to debug by looking at core dumps :D I am currently experimenting with languages and interpreters, so if there is anything I would like to publish, I suppose I'd port a working concept to C, although C++ might just as well do the trick. Again, thanks to everyone for your answers and your insight.

    Read the article

  • How do you educate your teammates without seeming condescending or superior?

    - by Dan Tao
    I work with three other guys; I'll call them Adam, Brian, and Chris. Adam and Brian are bright guys. Give them a problem; they will figure out a way to solve it. When it comes to OOP, though, they know very little about it and aren't particularly interested in learning. Pure procedural code is their MO. Chris, on the other hand, is an OOP guy all the way -- and a cocky, condescending one at that. He is constantly criticizing the work Adam and Brian do and talking to me as if I must share his disdain for the two of them. When I say that Adam and Brian aren't interested in learning about OOP, I suspect Chris is the primary reason. This hasn't bothered me too much for the most part, but there have been times when, looking at some code Adam or Brian wrote, it has pained me to think about how a problem could have been solved so simply using inheritance or some other OOP concept instead of the unmaintainable mess of 1,000 lines of code that ended up being written instead. And now that the company is starting a rather ambitious new project, with Adam assigned to the task of getting the core functionality in place, I fear the result. Really, I just want to help these guys out. But I know that if I come across as just another holier-than-thou developer like Chris, it's going to be massively counterproductive. I've considered: Team code reviews -- everybody reviews everybody's code. This way no one person is really in a position to look down on anyone else; besides, I know I could learn plenty from the other members on the team as well. But this would be time-consuming, and with such a small team, I have trouble picturing it gaining much traction as a team practice. Periodic e-mails to the team -- this would entail me sending out an e-mail every now and then discussing some concept that, based on my observation, at least one team member would benefit from learning about. The downside to this approach is I do think it could easily make me come across as a self-appointed expert. Keeping a blog -- I already do this, actually; but so far my blog has been more about esoteric little programming tidbits than straightforward practical advice. And anyway, I suspect it would get old pretty fast if I were constantly telling my coworkers, "Hey guys, remember to check out my new blog post!" This question doesn't need to be specifically about OOP or any particular programming paradigm or technology. I just want to know: how have you found success in teaching new concepts to your coworkers without seeming like a condescending know-it-all? It's pretty clear to me there isn't going to be a sure-fire answer, but any helpful advice (including methods that have worked as well as those that have proved ineffective or even backfired) would be greatly appreciated. UPDATE: I am not the Team Lead on this team. Chris is. UPDATE 2: Made community wiki to accord with the general sentiment of the community (fancy that).

    Read the article

  • Two small issues with Windows Phone 7 ApplicationBar buttons (and workaround)

    - by Laurent Bugnion
    When you work with the ApplicationBar in Windows Phone 7, you notice very fast that it is not quite a component like the others. For example, the ApplicationBarIconButton element is not a dependency object, which causes issues because it is not possible to add attached properties to it. Here are two other issues I stumbled upon, and what workaround I used to make it work anyway. Finding a button by name returns null Since the ApplicationBar is not in the tree of the Silverlight page, finding an element by name fails. For example consider the following code: <phoneNavigation:PhoneApplicationPage.ApplicationBar> <shell:ApplicationBar> <shell:ApplicationBar.Buttons> <shell:ApplicationBarIconButton IconUri="/Resources/edit.png" Click="EditButtonClick" x:Name="EditButton"/> <shell:ApplicationBarIconButton IconUri="/Resources/cancel.png" Click="CancelButtonClick" x:Name="CancelButton"/> </shell:ApplicationBar.Buttons> </shell:ApplicationBar> </phoneNavigation:PhoneApplicationPage.ApplicationBar> with private void EditButtonClick( object sender, EventArgs e) { CancelButton.IsEnabled = false; // Fails, CancelButton is always null } The CancelButton, even though it is named through an x:Name attribute, and even though it appears in Intellisense in the code behind, is null when it is needed. To solve the issue, I use the following code: public enum IconButton { Edit = 0, Cancel = 1 } public ApplicationBarIconButton GetButton( IconButton which) { return ApplicationBar.Buttons[(int) which] as ApplicationBarIconButton; } private void EditButtonClick( object sender, EventArgs e) { GetButton(IconButton.Cancel).IsEnabled = false; } Updating a Binding when the icon button is clicked In Silverlight, a Binding on a TextBox’s Text property can only be updated in two circumstances: When the TextBox loses the focus. Explicitly by placing a call in code. In WPF, there is a third option, updating the Binding every time that the Text property changes (i.e. every time that the user types a character). Unfortunately this option is not available in Silverlight). To select option 1, 2 (and in WPF, 3), you use the Mode property of the Binding class. The issue here is that pressing a button on the ApplicationBar does not remove the focus from the TextBox where the user is currently typing. If the button is a Save button, this is super annoying: The Binding does not get updated on the data object, the object is saved anyway with the old state, and noone understands what just happened. In order to solve this, you can make sure that the Binding is updated explicitly when the button is pressed, with the following code: private void SaveButtonClick(object sender, EventArgs e) { // Force update binding first var binding = MessageTextBox.GetBindingExpression( TextBox.TextProperty); binding.UpdateSource(); // Property was updated for sure, now we can save var vm = DataContext as MainViewModel; vm.Save(); } Obviously this is less maintainable than the usual way to do things in Silverlight. So be careful when using the ApplicationBar and remember that it is not a Silverlight element like the others!! Happy coding! Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • The Latest News About SAP

    - by jmorourke
    Like many professionals, I get a lot of my news from Google e-mail alerts that I’ve set up to keep track of key industry trends and competitive news.  In the past few weeks, I’ve been getting a number of news alerts about SAP.  Below are a few recent examples: Warm weather cuts short US maple sugaring season – by Toby Talbot, AP MILWAUKEE – Temperatures in Wisconsin had already hit the high 60s when Gretchen Grape and her family began tapping their 850 maple trees. They had waited for the state's ceremonial tapping to kick off the maple sugaring season. It was moved up five days, but that didn't make much difference. For Grape, the typically month-long season ended nine days later. The SAP had stopped flowing in a record-setting heat wave, and the 5-quart collection bags that in a good year fill in a day were still half-empty. Instead of their usual 300 gallons of syrup, her family had about 40. Maple syrup producers across the North have had their season cut short by unusually warm weather. While those with expensive, modern vacuum systems say they've been able to suck a decent amount of sap from their trees, producers like Grape, who still rely on traditional taps and buckets, have seen their year ruined. "It's frustrating," said the 69-year-old retiree from Holcombe, Wis. "You put in the same amount of work, equipment, investment, and then all of a sudden, boom, you have no SAP." Home & Garden: Too-Early Spring Means Sugaring Woes  - by Georgeanne Davis for The Free Press Over this past weekend, forsythia and daffodils were blooming in the southern parts of the state as temperatures climbed to 85 degrees, and trees began budding out, putting an end to this year's maple syrup production even as the state celebrated Maine Maple Sunday. Maple sugaring needs cold nights and warm days to induce SAP flows. Once the trees begin budding, SAP can still flow, but the SAP is bitter and has an off taste. Many farmers and dairymen count on sugaring for extra income, so the abbreviated season is a real financial loss for them, akin to the shortened shrimping season's effect on Maine lobstermen. SAP season comes to a sugary Sunday finale – Kennebec Journal, March 26th, 2012 Rebecca Manthey stood out in the rain at the entrance of Old Fort Western keeping watch over a cast iron kettle of boiling SAP hooked to a tripod over a wood fire.  Manthey and the rest of the Old Fort Western staff -- decked out in 18th-century attire -- joined sugar houses across the state in observance of Maine Maple Sunday. The annual event is sponsored by the Department of Agriculture and the Maine Maple Producers Association.  She said the rain hadn't kept people from coming to enjoy all the events at the fort surrounding the production of Maple syrup.  "In the 18th century, you would be boiling SAP in the woods, so I would be in the woods," Manthey explained to the families who circled around her. "People spent weeks and weeks in the woods. You don't want to cook it to fast or it would burn. When it looks like the right consistency then you send it (into the kitchen) to be made into sugar." Manthey said she enjoyed portraying an 18th-century woman, even in the rain, which didn't seem to bother visitors either. There was a steady stream of families touring the fort and enjoying the maple syrup demonstrations. I hope you enjoy these updates on SAP – Happy April Fool’s Day!

    Read the article

  • IE9 Beta

    - by Daniel Moth
    I've been using Internet Explorer 8 since the early pre-release bits, but I never tried IE9 until today – the day the Beta is available. I downloaded it from here: http://www.beautyoftheweb.com/ The download took longer than what I expected, but I was doing other stuff, so no bother. After coming down, it asked me to reboot my computer. Really hate when apps do that, but I did it anyway. The first time I launched it, it prompted me with a list of add-ons I should disable including the start-up time that I could save fore each one. It even let me configure the prompt so, for example, it won't prompt me again unless an add-on contributes to more than 1 second of the startup time. Cool. First thing I noticed is that the search bar had gone and, as you'd expect, you have to search from the address box. I totally despise this feature. The first thing I've been doing with all versions of IE is to turn off the automatic searching from the address bar and now I have no way of searching if I do that. Ridiculous. The second thing I notice is that the tabs are next to the address bar and cannot be moved to go below it. One word for that decision: appalling (and, no, I didn't accidentally drop an 'e' and added an 'l' in the previous word). The third thing I notice to the right is the favorites button (star icon) and when I click on it, it brings up the favorites explorer under it on the right; then I pin the explorer and it jumps to the left(!). Why move the entry point to this feature to the right instead of leaving it on the left is beyond me (other than wanting to retrain me on what I've been used to for all this time), but the fact that pinning it makes it jump sides is… an "astonishing" design decision. As I browse I notice a little annoying pop up in the bottom left every time I hover over a link; there is no status bar. I correctly guessed to right click at the top and turn on the status bar (which also got rid of the popup thereafter) and while I am at it, I bring back my favorites bar which was hidden by default (and am pleased to see that all my favorites are still there). The next thing I notice, I like: IE9 is fast. No joke, I visit sites and they seem to be loading visibly much faster – try it! Beyond the speed, I am interested to find out what else is new. I searched and found a few good links: What's new in Internet Explorer 9 Internet Explorer 9 Features (check out the links under "Clean") Top Features If you are a developer, check out IE's msdn home for many articles, e.g. this section on Canvas and SVG. Either way: wherever you are, get IE9 Beta now and judge for yourself. If you don't like it, you can always uninstall (which auto-restores the previous version). Comments about this post welcome at the original blog.

    Read the article

  • Improve Playback Using Enhancements in Windows Media Player 12

    - by DigitalGeekery
    Are you looking for ways to improve the playback of your media in Windows Media Player 12? We’ll show you how to do that by using the enhancements in WMP 12. If you are in Library mode, you’ll need to click the icon at the lower right to switch to Now Playing mode. Right-click anywhere in Media Player while in Now Playing mode, select Enhancements, and select any of the available options.   You can switch between the individual enhancements by clicking the right and left buttons at the top left.   Crossfading and Auto Volume Leveling The Auto Volume Leveling setting is just a simple toggle on and off. If your MP3 or WMA files have volume leveling information values.   You can automatically add volume leveling information values to all files you add to your library by switching to Library view, going to Tools > Options, and selecting Add volume leveling information values for new files on the Library tab. Click OK when finished.   Crossfading will gradually decrease the volume of the song that is ending (fade out) and increase volume of the song that is beginning. Click Turn on Crossfading and then click and drag the slider left or right change the amount of overlap between tracks. Graphic Equalizer The graphic equalizer is toggled on and off by clicking Turn on / Turn off at the top left. You can select pre-defined equalizer settings by music genre by clicking the Default list. The radio buttons on the left allow you to move the sliders individually, in a loose group or a tight group. You can always return to the default settings by clicking Reset. Play Speed Settings Choose a pre-defined settings by clicking Slow, Normal, or Fast. Uncheck the Snap slider to common speeds the move the slider right and left to your desired speed. If nothing else, these settings provide a little fun and amusement. Quiet Mode Quiet mode will level out any sharp volume highs and lows within a single track. Simply toggle the setting on or off and select whether you prefer Medium difference or Little difference by selecting one of the radio buttons. SRS WOW effects SRS WOW effects enhance low-frequency and stereo sound performance. Click Turn on to enable the TruBass and WOW Effect sliders. You can also optimize for your speaker type. Click to switch between Regular, Large, and Headphones. Video Settings Video Settings allow you to adjust the Hue, Brightness, Saturation, and Contrast.   You can also adjust the zoom settings by clicking Select video zoom settings.   Dolby Digital Settings Choose between Normal, Night, and Theater settings to adjust the audio for Dolby Digital content. This setting will only effect media with Dolby Digital sound. Looking for more ways to improve your media experience in WMP 12? Check out how to update metadata and cover art and how to share media with other Windows 7 computers on your home network. Similar Articles Productive Geek Tips Fixing When Windows Media Player Library Won’t Let You Add FilesInstall and Use the VLC Media Player on Ubuntu LinuxHow To Rip a Music CD in Windows 7 Media CenterStream Media from Windows 7 to XP with VLC Media PlayerInstalling Windows Media Player Plugin for Firefox TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Check these Awesome Chrome Add-ons iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor

    Read the article

< Previous Page | 175 176 177 178 179 180 181 182 183 184 185 186  | Next Page >