Search Results

Search found 3390 results on 136 pages for 'func delegate'.

Page 18/136 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • Please help! Delegate returns null via Dipendency Injection.

    - by Raj Aththanayake
    Can someone please help? I use Google code’s Moq framework for mocking within my Unit Tests and Unity for Dependency Injection. In my Test class private Mock<ICustomerSearchService> CustomerSearchServiceMock = null; private CustomerService customerService = null; private void SetupMainData() { CustomerSearchServiceMock = new Mock<ICustomerSearchService>(); customerService = new CustomerService (); // CustomerSearchService is a property in CustomerService and dependency is configuered via Unity customerService.CustomerSearchService = CustomerSearchServiceMock.Object; Customer c = new Customer () { ID = "AT" }; CustomerSearchServiceMock.Setup(s => s.GetCustomer(EqualsCondition)).Returns(c); } [TestMethod] public void GetCustomerData_Test_Method() { SetupMainData() var customer = customerService.GetCustomerData("AT"); } public static bool EqualsCondition(Customer customer) { return customer.ID.Equals("AT"); } In my Test class CustomerService class public class CustomerService : ICustomerService { [Dependency] public ICustomerSearchService CustomerSearchService { get; set; } public IEnumerable<SomeObject> GetCustomerData(string custID) { I GET Null for customer ?????} var customer = CustomerSearchService.GetCustomer (c => c.ID.Equals(custID)); //Do more things } } When I debug the code I can see CustomerSearchService has a proxy object, but the customer returns as null. Any ideas? Or is there something missing here? Note: ICustomerSearchService I have implemented below method. Customer GetCustomer(Func<Customer, bool> predicate);

    Read the article

  • How to goup EC2 instances in order to delegate administrations to differents teams?

    - by Olivier
    Is it possible (using ARN) to make severals groups of instances. Then using differents policy to grant some access to a group of instance only and not the other instances? For example : { "Statement": [ { "Action": "ec2:*", "Effect": "Allow", "Resource": "*" }, { "Effect": "Allow", "Action": "elasticloadbalancing:*", "Resource": "*" }, { "Effect": "Allow", "Action": "cloudwatch:*", "Resource": "*" }, { "Effect": "Allow", "Action": "autoscaling:*", "Resource": "*" } ] } Instead of "*" could we use a group or something like that? like a specific subnet? a Tag? or whatever... Thanks for your help

    Read the article

  • Why not systematically attach event in WPF instead of using delegate ?

    - by user310291
    For a button to handle event, we can add a delegate to the click property of the button: this.button1.Click += new System.EventHandler(this.button1_Click); But in WPF contrary to Winform, you can also attach a handler http://msdn.microsoft.com/en-us/magazine/cc785480.aspx So why not do so for the button ? Is performance better in first case maybe ? Update: I mean this Attached Events In order to enable elements to handle events that are declared in a different element, WPF supports something called attached events. Attached events are routed events that support a hookup in XAML on elements other than the type on which the event is declared. For example, if you want the Grid element to listen for a Button.Click event to bubble past, you would simply hook it up like the following: <Grid Button.Click="myButton_Click"> <Button Name="myButton" >Click Me</Button> </Grid> The resulting code in the compile-time-generated partial class now looks like this: #line 5 "..\..\Window1.xaml" ((System.Windows.Controls.Grid)(target)).AddHandler( System.Windows.Controls.Primitives.ButtonBase.ClickEvent, new System.Windows.RoutedEventHandler(this.myButton_Click));

    Read the article

  • Where do I attach the StoreKit delegate and observer in a Cocos2d App?

    - by Jeff B
    I have figured out how all of the StoreKit stuff works and have actually tested working code... however, I have a problem. I made my "store" layer/scene the SKProductsRequestDelegate. Is this the correct thing to do? I get the initial product info like so: SKProductsRequest *productRequest = [[SKProductsRequest alloc] initWithProductIdentifiers: productIDs]; [productRequest setDelegate: self]; [productRequest start]; The problem is that if I transition to a new scene when a request is in progress, the current layer is retained by the productRequest. This means that touches on my new scene/layer are handled by both the new layer and the old layer. I could cancel the productRequest when leaving the scene, but: I do not know if it is in progress at that point. I cannot release it because it may or may not have been released by the request delegates. There has got to be a better way to do this. I could make the delegate a class external to the current layer, but then I do not know how to easily update the layer with the product information when the handler is called.

    Read the article

  • C++ template member specialization - is this a compiler limitation?

    - by LoudNPossiblyRight
    Is it possible to do this kind of specialization? If so, how? The specialization in question is marked //THIS SPECIALIZATION WILL NOT COMPILE I have used VS2008, VS2010, gcc 4.4.3 and neither can compile this. #include<iostream> #include<string> using namespace std; template <typename ALPHA> class klass{ public: template <typename BETA> void func(BETA B); }; template <typename ALPHA> template <typename BETA> void klass<ALPHA>::func(BETA B){ cout << "I AM A BETA FUNC: " << B <<endl; } //THIS SPECIALIZATION WILL NOT COMPILE template <typename ALPHA> template <> void klass<ALPHA>::func(string B){ cout << "I AM A SPECIAL BETA FUNC: " << B <<endl; } int main(){ klass<string> k; k.func(1); k.func("hello"); return 0; }

    Read the article

  • Is there a nice way of having static generic parameters is Java?

    - by Chris
    Hello, recently I'm writing some functions that I take from Haskell and translate into Java. One of the main problems I have is I cannot easily create a static property with a generic type. Let me explain by a little example... // An interface to implement functions public interface Func<P, R> { public R apply(P p); } // What I want to do... (incorrect in Java) public class ... { public static <T> Func<T, T> identity = new Func<T, T>() { public T apply(T p) { return p; } } } // What I do right now public class ... { private static Func<Object, Object> identity = new Func<Object, Object>() { public Object apply(Object p) { return p; } } @SuppressWarnings("unchecked") public static <T> Func<T, T> getIdentity() { return (Func<T, T>)identity; } } Are there any easier ways to do something like that? What kind of problems might arise if the syntax I used would be valid?

    Read the article

  • Dynamic function arguments in C++, possible?

    - by Jeshwanth Kumar N K
    I am little new to C++, I have one doubt in variable argument passing. As I mentioned in a sample code below ( This code won't work at all, just for others understanding of my question I framed it like this), I have two functions func with 1 parameter and 2 parameters(parameter overloading). I am calling the func from main, before that I am checking whether I needs to call 2 parameter or 1 parameter. Here is the problem, as I know I can call two fuctions in respective if elseif statements, but I am curious to know whether I can manage with only one function. (In below code I am passing string not int, as I mentioned before this is just for others understanding purpose. #include<iostream.h> #include <string> void func(int, int); void func(int); void main() { int a, b,in; cout << "Enter the 2 for 2 arg, 1 for 1 arg\n"; cin << in; if ( in == 2) { string pass = "a,b"; } elseif ( in == 1) { string pass = "a"; } else { return 0; } func(pass); cout<<"In main\n"<<endl; } void func(int iNum1) { cout<<"In func1 "<<iNum1<<endl; } void func(int iNum1, int iNum2) { cout<<"In func2 "<<iNum1<<" "<<iNum2<<endl; }

    Read the article

  • Custom Gesture in cocos2d

    - by Lewis
    I've found a little tutorial that would be useful for my game: http://blog.mellenthin.de/archives/2012/02/13/an-one-finger-rotation-gesture-recognizer/ But I can't work out how to convert that gesture to work with cocos2d, I have found examples of pre made gestures in cocos2d, but no custom ones, is it possible? EDIT STILL HAVING PROBLEMS WITH THIS: I've added the code from Sentinel below (from SO), the Gesture and RotateGesture have both been added to my solution and are compiling. Although In the rotation class now I only see selectors, how do I set those up? As the custom gesture found in that project above looks like: header file for custom gesture: #import <Foundation/Foundation.h> #import <UIKit/UIGestureRecognizerSubclass.h> @protocol OneFingerRotationGestureRecognizerDelegate <NSObject> @optional - (void) rotation: (CGFloat) angle; - (void) finalAngle: (CGFloat) angle; @end @interface OneFingerRotationGestureRecognizer : UIGestureRecognizer { CGPoint midPoint; CGFloat innerRadius; CGFloat outerRadius; CGFloat cumulatedAngle; id <OneFingerRotationGestureRecognizerDelegate> target; } - (id) initWithMidPoint: (CGPoint) midPoint innerRadius: (CGFloat) innerRadius outerRadius: (CGFloat) outerRadius target: (id) target; - (void)reset; - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; @end .m for custom gesture file: #include <math.h> #import "OneFingerRotationGestureRecognizer.h" @implementation OneFingerRotationGestureRecognizer // private helper functions CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2); CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB); - (id) initWithMidPoint: (CGPoint) _midPoint innerRadius: (CGFloat) _innerRadius outerRadius: (CGFloat) _outerRadius target: (id <OneFingerRotationGestureRecognizerDelegate>) _target { if ((self = [super initWithTarget: _target action: nil])) { midPoint = _midPoint; innerRadius = _innerRadius; outerRadius = _outerRadius; target = _target; } return self; } /** Calculates the distance between point1 and point 2. */ CGFloat distanceBetweenPoints(CGPoint point1, CGPoint point2) { CGFloat dx = point1.x - point2.x; CGFloat dy = point1.y - point2.y; return sqrt(dx*dx + dy*dy); } CGFloat angleBetweenLinesInDegrees(CGPoint beginLineA, CGPoint endLineA, CGPoint beginLineB, CGPoint endLineB) { CGFloat a = endLineA.x - beginLineA.x; CGFloat b = endLineA.y - beginLineA.y; CGFloat c = endLineB.x - beginLineB.x; CGFloat d = endLineB.y - beginLineB.y; CGFloat atanA = atan2(a, b); CGFloat atanB = atan2(c, d); // convert radiants to degrees return (atanA - atanB) * 180 / M_PI; } #pragma mark - UIGestureRecognizer implementation - (void)reset { [super reset]; cumulatedAngle = 0; } - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesBegan:touches withEvent:event]; if ([touches count] != 1) { self.state = UIGestureRecognizerStateFailed; return; } } - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesMoved:touches withEvent:event]; if (self.state == UIGestureRecognizerStateFailed) return; CGPoint nowPoint = [[touches anyObject] locationInView: self.view]; CGPoint prevPoint = [[touches anyObject] previousLocationInView: self.view]; // make sure the new point is within the area CGFloat distance = distanceBetweenPoints(midPoint, nowPoint); if ( innerRadius <= distance && distance <= outerRadius) { // calculate rotation angle between two points CGFloat angle = angleBetweenLinesInDegrees(midPoint, prevPoint, midPoint, nowPoint); // fix value, if the 12 o'clock position is between prevPoint and nowPoint if (angle > 180) { angle -= 360; } else if (angle < -180) { angle += 360; } // sum up single steps cumulatedAngle += angle; // call delegate if ([target respondsToSelector: @selector(rotation:)]) { [target rotation:angle]; } } else { // finger moved outside the area self.state = UIGestureRecognizerStateFailed; } } - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesEnded:touches withEvent:event]; if (self.state == UIGestureRecognizerStatePossible) { self.state = UIGestureRecognizerStateRecognized; if ([target respondsToSelector: @selector(finalAngle:)]) { [target finalAngle:cumulatedAngle]; } } else { self.state = UIGestureRecognizerStateFailed; } cumulatedAngle = 0; } - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event { [super touchesCancelled:touches withEvent:event]; self.state = UIGestureRecognizerStateFailed; cumulatedAngle = 0; } @end Then its initialised like this: // calculate center and radius of the control CGPoint midPoint = CGPointMake(image.frame.origin.x + image.frame.size.width / 2, image.frame.origin.y + image.frame.size.height / 2); CGFloat outRadius = image.frame.size.width / 2; // outRadius / 3 is arbitrary, just choose something >> 0 to avoid strange // effects when touching the control near of it's center gestureRecognizer = [[OneFingerRotationGestureRecognizer alloc] initWithMidPoint: midPoint innerRadius: outRadius / 3 outerRadius: outRadius target: self]; [self.view addGestureRecognizer: gestureRecognizer]; The selector below is also in the same file where the initialisation of the gestureRecogonizer: - (void) rotation: (CGFloat) angle { // calculate rotation angle imageAngle += angle; if (imageAngle > 360) imageAngle -= 360; else if (imageAngle < -360) imageAngle += 360; // rotate image and update text field image.transform = CGAffineTransformMakeRotation(imageAngle * M_PI / 180); [self updateTextDisplay]; } I can't seem to get this working in the RotateGesture class can anyone help me please I've been stuck on this for days now. SECOND EDIT: Here is the users code from SO that was suggested to me: Here is projec on GitHub: SFGestureRecognizers It uses builded in iOS UIGestureRecognizer, and don't needs to be integrated into cocos2d sources. Using it, You can make any gestures, just like you could, if you whould work with UIGestureRecognizer. For example: I made a base class Gesture, and subclassed it for any new gesture: //Gesture.h @interface Gesture : NSObject <UIGestureRecognizerDelegate> { UIGestureRecognizer *gestureRecognizer; id delegate; SEL preSolveSelector; SEL possibleSelector; SEL beganSelector; SEL changedSelector; SEL endedSelector; SEL cancelledSelector; SEL failedSelector; BOOL preSolveAvailable; CCNode *owner; } - (id)init; - (void)addGestureRecognizerToNode:(CCNode*)node; - (void)removeGestureRecognizerFromNode:(CCNode*)node; -(void)recognizer:(UIGestureRecognizer*)recognizer; @end //Gesture.m #import "Gesture.h" @implementation Gesture - (id)init { if (!(self = [super init])) return self; preSolveAvailable = YES; return self; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer shouldRecognizeSimultaneouslyWithGestureRecognizer:(UIGestureRecognizer *)otherGestureRecognizer { return YES; } - (BOOL)gestureRecognizer:(UIGestureRecognizer *)recognizer shouldReceiveTouch:(UITouch *)touch { //! For swipe gesture recognizer we want it to be executed only if it occurs on the main layer, not any of the subnodes ( main layer is higher in hierarchy than children so it will be receiving touch by default ) if ([recognizer class] == [UISwipeGestureRecognizer class]) { CGPoint pt = [touch locationInView:touch.view]; pt = [[CCDirector sharedDirector] convertToGL:pt]; for (CCNode *child in owner.children) { if ([child isNodeInTreeTouched:pt]) { return NO; } } } return YES; } - (void)addGestureRecognizerToNode:(CCNode*)node { [node addGestureRecognizer:gestureRecognizer]; owner = node; } - (void)removeGestureRecognizerFromNode:(CCNode*)node { [node removeGestureRecognizer:gestureRecognizer]; } #pragma mark - Private methods -(void)recognizer:(UIGestureRecognizer*)recognizer { CCNode *node = recognizer.node; if (preSolveSelector && preSolveAvailable) { preSolveAvailable = NO; [delegate performSelector:preSolveSelector withObject:recognizer withObject:node]; } UIGestureRecognizerState state = [recognizer state]; if (state == UIGestureRecognizerStatePossible && possibleSelector) { [delegate performSelector:possibleSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateBegan && beganSelector) [delegate performSelector:beganSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateChanged && changedSelector) [delegate performSelector:changedSelector withObject:recognizer withObject:node]; else if (state == UIGestureRecognizerStateEnded && endedSelector) { preSolveAvailable = YES; [delegate performSelector:endedSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateCancelled && cancelledSelector) { preSolveAvailable = YES; [delegate performSelector:cancelledSelector withObject:recognizer withObject:node]; } else if (state == UIGestureRecognizerStateFailed && failedSelector) { preSolveAvailable = YES; [delegate performSelector:failedSelector withObject:recognizer withObject:node]; } } @end Subclass example: //RotateGesture.h #import "Gesture.h" @interface RotateGesture : Gesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed; @end //RotateGesture.m #import "RotateGesture.h" @implementation RotateGesture - (id)initWithTarget:(id)target preSolveSelector:(SEL)preSolve possibleSelector:(SEL)possible beganSelector:(SEL)began changedSelector:(SEL)changed endedSelector:(SEL)ended cancelledSelector:(SEL)cancelled failedSelector:(SEL)failed { if (!(self = [super init])) return self; preSolveSelector = preSolve; delegate = target; possibleSelector = possible; beganSelector = began; changedSelector = changed; endedSelector = ended; cancelledSelector = cancelled; failedSelector = failed; gestureRecognizer = [[UIRotationGestureRecognizer alloc] initWithTarget:self action:@selector(recognizer:)]; gestureRecognizer.delegate = self; return self; } @end Use example: - (void)addRotateGesture { RotateGesture *rotateRecognizer = [[RotateGesture alloc] initWithTarget:self preSolveSelector:@selector(rotateGesturePreSolveWithRecognizer:node:) possibleSelector:nil beganSelector:@selector(rotateGestureStateBeganWithRecognizer:node:) changedSelector:@selector(rotateGestureStateChangedWithRecognizer:node:) endedSelector:@selector(rotateGestureStateEndedWithRecognizer:node:) cancelledSelector:@selector(rotateGestureStateCancelledWithRecognizer:node:) failedSelector:@selector(rotateGestureStateFailedWithRecognizer:node:)]; [rotateRecognizer addGestureRecognizerToNode:movableAreaSprite]; } I dont understand how to implement the custom gesture code at the start of this post into the rotateGesture class which is a subclass of the gesture class written by the SO user. Any ideas please? When I get 6 more rep I'll add a bounty to this.

    Read the article

  • Problems extracting information from RSS feed description field

    - by Graeme
    Hi, I've built an iPhone application using the parsing code from the TopSongs sample iPhone application. I've hit a problem though - the feed I'm trying to parse data from doesn't have a separate field for every piece of information (i.e. if it was for a feed about dogs, all the information such as dog type, dog age and dog price is contained in the feed. However, the TopSongs app relies on information having its own tags, so instead of using it uses and . So my question is this. How do I extract this information from the description field so that it can be parsed using the TopSongs parser? Can you somehow extract the dog age, price and type information using Yahoo Pipes and use that RSS feed for the feed? Or is there code that I can add to do it in application? Update: To view the code of my application parser (based on the TopSongs Core Data Apple provided application, see below. Here's a sample of one item from the the actual RSS feed I'm using (the description is longer, and has status,size, and a couple of other fields, but they're all formatted the same.: <item> <title>MOE, MARGRET STREET</title> <description> <b>District/Region:</b>&nbsp;REGION 09</br><b>Location:</b>&nbsp;MOE</br><b>Name:</b>&nbsp;MARGRET STREET</br></description> <pubDate>Thu,11 Mar 2010 05:43:03 GMT</pubDate> <guid>1266148</guid> </item> /* File: iTunesRSSImporter.m Abstract: Downloads, parses, and imports the iTunes top songs RSS feed into Core Data. Version: 1.1 Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under Apple's copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Copyright (C) 2009 Apple Inc. All Rights Reserved. */ #import "iTunesRSSImporter.h" #import "Song.h" #import "Category.h" #import "CategoryCache.h" #import <libxml/tree.h> // Function prototypes for SAX callbacks. This sample implements a minimal subset of SAX callbacks. // Depending on your application's needs, you might want to implement more callbacks. static void startElementSAX(void *context, const xmlChar *localname, const xmlChar *prefix, const xmlChar *URI, int nb_namespaces, const xmlChar **namespaces, int nb_attributes, int nb_defaulted, const xmlChar **attributes); static void endElementSAX(void *context, const xmlChar *localname, const xmlChar *prefix, const xmlChar *URI); static void charactersFoundSAX(void *context, const xmlChar *characters, int length); static void errorEncounteredSAX(void *context, const char *errorMessage, ...); // Forward reference. The structure is defined in full at the end of the file. static xmlSAXHandler simpleSAXHandlerStruct; // Class extension for private properties and methods. @interface iTunesRSSImporter () @property BOOL storingCharacters; @property (nonatomic, retain) NSMutableData *characterBuffer; @property BOOL done; @property BOOL parsingASong; @property NSUInteger countForCurrentBatch; @property (nonatomic, retain) Song *currentSong; @property (nonatomic, retain) NSURLConnection *rssConnection; @property (nonatomic, retain) NSDateFormatter *dateFormatter; // The autorelease pool property is assign because autorelease pools cannot be retained. @property (nonatomic, assign) NSAutoreleasePool *importPool; @end static double lookuptime = 0; @implementation iTunesRSSImporter @synthesize iTunesURL, delegate, persistentStoreCoordinator; @synthesize rssConnection, done, parsingASong, storingCharacters, currentSong, countForCurrentBatch, characterBuffer, dateFormatter, importPool; - (void)dealloc { [iTunesURL release]; [characterBuffer release]; [currentSong release]; [rssConnection release]; [dateFormatter release]; [persistentStoreCoordinator release]; [insertionContext release]; [songEntityDescription release]; [theCache release]; [super dealloc]; } - (void)main { self.importPool = [[NSAutoreleasePool alloc] init]; if (delegate && [delegate respondsToSelector:@selector(importerDidSave:)]) { [[NSNotificationCenter defaultCenter] addObserver:delegate selector:@selector(importerDidSave:) name:NSManagedObjectContextDidSaveNotification object:self.insertionContext]; } done = NO; self.dateFormatter = [[[NSDateFormatter alloc] init] autorelease]; [dateFormatter setDateStyle:NSDateFormatterLongStyle]; [dateFormatter setTimeStyle:NSDateFormatterNoStyle]; // necessary because iTunes RSS feed is not localized, so if the device region has been set to other than US // the date formatter must be set to US locale in order to parse the dates [dateFormatter setLocale:[[[NSLocale alloc] initWithLocaleIdentifier:@"US"] autorelease]]; self.characterBuffer = [NSMutableData data]; NSURLRequest *theRequest = [NSURLRequest requestWithURL:iTunesURL]; // create the connection with the request and start loading the data rssConnection = [[NSURLConnection alloc] initWithRequest:theRequest delegate:self]; // This creates a context for "push" parsing in which chunks of data that are not "well balanced" can be passed // to the context for streaming parsing. The handler structure defined above will be used for all the parsing. // The second argument, self, will be passed as user data to each of the SAX handlers. The last three arguments // are left blank to avoid creating a tree in memory. context = xmlCreatePushParserCtxt(&simpleSAXHandlerStruct, self, NULL, 0, NULL); if (rssConnection != nil) { do { [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate distantFuture]]; } while (!done); } // Display the total time spent finding a specific object for a relationship NSLog(@"lookup time %f", lookuptime); // Release resources used only in this thread. xmlFreeParserCtxt(context); self.characterBuffer = nil; self.dateFormatter = nil; self.rssConnection = nil; self.currentSong = nil; [theCache release]; theCache = nil; NSError *saveError = nil; NSAssert1([insertionContext save:&saveError], @"Unhandled error saving managed object context in import thread: %@", [saveError localizedDescription]); if (delegate && [delegate respondsToSelector:@selector(importerDidSave:)]) { [[NSNotificationCenter defaultCenter] removeObserver:delegate name:NSManagedObjectContextDidSaveNotification object:self.insertionContext]; } if (self.delegate != nil && [self.delegate respondsToSelector:@selector(importerDidFinishParsingData:)]) { [self.delegate importerDidFinishParsingData:self]; } [importPool release]; self.importPool = nil; } - (NSManagedObjectContext *)insertionContext { if (insertionContext == nil) { insertionContext = [[NSManagedObjectContext alloc] init]; [insertionContext setPersistentStoreCoordinator:self.persistentStoreCoordinator]; } return insertionContext; } - (void)forwardError:(NSError *)error { if (self.delegate != nil && [self.delegate respondsToSelector:@selector(importer:didFailWithError:)]) { [self.delegate importer:self didFailWithError:error]; } } - (NSEntityDescription *)songEntityDescription { if (songEntityDescription == nil) { songEntityDescription = [[NSEntityDescription entityForName:@"Song" inManagedObjectContext:self.insertionContext] retain]; } return songEntityDescription; } - (CategoryCache *)theCache { if (theCache == nil) { theCache = [[CategoryCache alloc] init]; theCache.managedObjectContext = self.insertionContext; } return theCache; } - (Song *)currentSong { if (currentSong == nil) { currentSong = [[Song alloc] initWithEntity:self.songEntityDescription insertIntoManagedObjectContext:self.insertionContext]; } return currentSong; } #pragma mark NSURLConnection Delegate methods // Forward errors to the delegate. - (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error { [self performSelectorOnMainThread:@selector(forwardError:) withObject:error waitUntilDone:NO]; // Set the condition which ends the run loop. done = YES; } // Called when a chunk of data has been downloaded. - (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data { // Process the downloaded chunk of data. xmlParseChunk(context, (const char *)[data bytes], [data length], 0); } - (void)connectionDidFinishLoading:(NSURLConnection *)connection { // Signal the context that parsing is complete by passing "1" as the last parameter. xmlParseChunk(context, NULL, 0, 1); context = NULL; // Set the condition which ends the run loop. done = YES; } #pragma mark Parsing support methods static const NSUInteger kImportBatchSize = 20; - (void)finishedCurrentSong { parsingASong = NO; self.currentSong = nil; countForCurrentBatch++; // Periodically purge the autorelease pool and save the context. The frequency of this action may need to be tuned according to the // size of the objects being parsed. The goal is to keep the autorelease pool from growing too large, but // taking this action too frequently would be wasteful and reduce performance. if (countForCurrentBatch == kImportBatchSize) { [importPool release]; self.importPool = [[NSAutoreleasePool alloc] init]; NSError *saveError = nil; NSAssert1([insertionContext save:&saveError], @"Unhandled error saving managed object context in import thread: %@", [saveError localizedDescription]); countForCurrentBatch = 0; } } /* Character data is appended to a buffer until the current element ends. */ - (void)appendCharacters:(const char *)charactersFound length:(NSInteger)length { [characterBuffer appendBytes:charactersFound length:length]; } - (NSString *)currentString { // Create a string with the character data using UTF-8 encoding. UTF-8 is the default XML data encoding. NSString *currentString = [[[NSString alloc] initWithData:characterBuffer encoding:NSUTF8StringEncoding] autorelease]; [characterBuffer setLength:0]; return currentString; } @end #pragma mark SAX Parsing Callbacks // The following constants are the XML element names and their string lengths for parsing comparison. // The lengths include the null terminator, to ensure exact matches. static const char *kName_Item = "item"; static const NSUInteger kLength_Item = 5; static const char *kName_Title = "title"; static const NSUInteger kLength_Title = 6; static const char *kName_Category = "category"; static const NSUInteger kLength_Category = 9; static const char *kName_Itms = "itms"; static const NSUInteger kLength_Itms = 5; static const char *kName_Artist = "description"; static const NSUInteger kLength_Artist = 7; static const char *kName_Album = "description"; static const NSUInteger kLength_Album = 6; static const char *kName_ReleaseDate = "releasedate"; static const NSUInteger kLength_ReleaseDate = 12; /* This callback is invoked when the importer finds the beginning of a node in the XML. For this application, out parsing needs are relatively modest - we need only match the node name. An "item" node is a record of data about a song. In that case we create a new Song object. The other nodes of interest are several of the child nodes of the Song currently being parsed. For those nodes we want to accumulate the character data in a buffer. Some of the child nodes use a namespace prefix. */ static void startElementSAX(void *parsingContext, const xmlChar *localname, const xmlChar *prefix, const xmlChar *URI, int nb_namespaces, const xmlChar **namespaces, int nb_attributes, int nb_defaulted, const xmlChar **attributes) { iTunesRSSImporter *importer = (iTunesRSSImporter *)parsingContext; // The second parameter to strncmp is the name of the element, which we known from the XML schema of the feed. // The third parameter to strncmp is the number of characters in the element name, plus 1 for the null terminator. if (prefix == NULL && !strncmp((const char *)localname, kName_Item, kLength_Item)) { importer.parsingASong = YES; } else if (importer.parsingASong && ( (prefix == NULL && (!strncmp((const char *)localname, kName_Title, kLength_Title) || !strncmp((const char *)localname, kName_Category, kLength_Category))) || ((prefix != NULL && !strncmp((const char *)prefix, kName_Itms, kLength_Itms)) && (!strncmp((const char *)localname, kName_Artist, kLength_Artist) || !strncmp((const char *)localname, kName_Album, kLength_Album) || !strncmp((const char *)localname, kName_ReleaseDate, kLength_ReleaseDate))) )) { importer.storingCharacters = YES; } } /* This callback is invoked when the parse reaches the end of a node. At that point we finish processing that node, if it is of interest to us. For "item" nodes, that means we have completed parsing a Song object. We pass the song to a method in the superclass which will eventually deliver it to the delegate. For the other nodes we care about, this means we have all the character data. The next step is to create an NSString using the buffer contents and store that with the current Song object. */ static void endElementSAX(void *parsingContext, const xmlChar *localname, const xmlChar *prefix, const xmlChar *URI) { iTunesRSSImporter *importer = (iTunesRSSImporter *)parsingContext; if (importer.parsingASong == NO) return; if (prefix == NULL) { if (!strncmp((const char *)localname, kName_Item, kLength_Item)) { [importer finishedCurrentSong]; } else if (!strncmp((const char *)localname, kName_Title, kLength_Title)) { importer.currentSong.title = importer.currentString; } else if (!strncmp((const char *)localname, kName_Category, kLength_Category)) { double before = [NSDate timeIntervalSinceReferenceDate]; Category *category = [importer.theCache categoryWithName:importer.currentString]; double delta = [NSDate timeIntervalSinceReferenceDate] - before; lookuptime += delta; importer.currentSong.category = category; } } else if (!strncmp((const char *)prefix, kName_Itms, kLength_Itms)) { if (!strncmp((const char *)localname, kName_Artist, kLength_Artist)) { NSString *string = importer.currentSong.artist; NSArray *strings = [string componentsSeparatedByString: @", "]; //importer.currentSong.artist = importer.currentString; } else if (!strncmp((const char *)localname, kName_Album, kLength_Album)) { importer.currentSong.album = importer.currentString; } else if (!strncmp((const char *)localname, kName_ReleaseDate, kLength_ReleaseDate)) { NSString *dateString = importer.currentString; importer.currentSong.releaseDate = [importer.dateFormatter dateFromString:dateString]; } } importer.storingCharacters = NO; } /* This callback is invoked when the parser encounters character data inside a node. The importer class determines how to use the character data. */ static void charactersFoundSAX(void *parsingContext, const xmlChar *characterArray, int numberOfCharacters) { iTunesRSSImporter *importer = (iTunesRSSImporter *)parsingContext; // A state variable, "storingCharacters", is set when nodes of interest begin and end. // This determines whether character data is handled or ignored. if (importer.storingCharacters == NO) return; [importer appendCharacters:(const char *)characterArray length:numberOfCharacters]; } /* A production application should include robust error handling as part of its parsing implementation. The specifics of how errors are handled depends on the application. */ static void errorEncounteredSAX(void *parsingContext, const char *errorMessage, ...) { // Handle errors as appropriate for your application. NSCAssert(NO, @"Unhandled error encountered during SAX parse."); } // The handler struct has positions for a large number of callback functions. If NULL is supplied at a given position, // that callback functionality won't be used. Refer to libxml documentation at http://www.xmlsoft.org for more information // about the SAX callbacks. static xmlSAXHandler simpleSAXHandlerStruct = { NULL, /* internalSubset */ NULL, /* isStandalone */ NULL, /* hasInternalSubset */ NULL, /* hasExternalSubset */ NULL, /* resolveEntity */ NULL, /* getEntity */ NULL, /* entityDecl */ NULL, /* notationDecl */ NULL, /* attributeDecl */ NULL, /* elementDecl */ NULL, /* unparsedEntityDecl */ NULL, /* setDocumentLocator */ NULL, /* startDocument */ NULL, /* endDocument */ NULL, /* startElement*/ NULL, /* endElement */ NULL, /* reference */ charactersFoundSAX, /* characters */ NULL, /* ignorableWhitespace */ NULL, /* processingInstruction */ NULL, /* comment */ NULL, /* warning */ errorEncounteredSAX, /* error */ NULL, /* fatalError //: unused error() get all the errors */ NULL, /* getParameterEntity */ NULL, /* cdataBlock */ NULL, /* externalSubset */ XML_SAX2_MAGIC, // NULL, startElementSAX, /* startElementNs */ endElementSAX, /* endElementNs */ NULL, /* serror */ }; Thanks.

    Read the article

  • Tableview reload data problem iphone sdk

    - by neha
    Hi all, I have a class A which is a subclass of uitableviewcontroller and one more class B which actually displays my tableview with its content is a subclass of A. There's an xml parser which parses my xml and stores the content in an nsmutablearray of application delegate. Now, I fetch this delegate array into a local nsmutablearray in class B to minimise the communication between the two classes i.e. delegate and class B and display that. After certain condition is met in class A, I'm calling xml parser to refill the delegate array and I'm calling class B's tableview reload method. The problem is when I call the tableview's reload data, class B's delegate methods are called. But before that I need to grab this delegate array in local array in class B. How shall I do that? Can anybody please help? Thanx in advance.

    Read the article

  • Strange Syntax Parsing Error in Python?

    - by user213060
    Am I missing something here? Why shouldn't the code under the "Broken" section work? I'm using Python 2.6. #!/usr/bin/env python def func(a,b,c): print a,b,c #Working: p={'c':3} func(1, b=2, c=3, ) #Working: func(1, b=2, **p,) #Broken: func(1, b=2, **p, )

    Read the article

  • Mutable global variables don't get hide in python functions, right?

    - by aXqd
    Please see the following code: def good(): foo[0] = 9 # why this foo isn't local variable who hides the global one def bad(): foo = [9, 2, 3] # foo is local, who hides the global one for func in [good, bad]: foo = [1,2,3] print('Before "{}": {}'.format(func.__name__, foo)) func() print('After "{}": {}'.format(func.__name__, foo)) The result is as below: # python3 foo.py Before "good": [1, 2, 3] After "good": [9, 2, 3] Before "bad" : [1, 2, 3] After "bad" : [1, 2, 3]

    Read the article

  • In c++ is there any Events/delegates/interfaces/notifications! anything?

    - by Bach
    Say i have these classes ViewA and ViewB In objective C using the delegate pattern I could do @protocol ViewBDelegate{ - (void) doSomething(); } then in ViewB interface: id<ViewBDelegate> delegate; then in ViewA implementation i set the delegate: viewB.delegate = self; and now I can call in doSomething from viewB onto any that unknown type delegate. [delegate doSomething]; "C++ How to Program" has been the worse read an can't find simple examples that demonstrates basic design patterns. What i'm looking for in C++ is: events ActionScript and java either delegates or notifications in Objective C anything that allows class A, Class B and Class C to know that ClassX didSomething()!!! thanks

    Read the article

  • C++ choose function by return type.

    - by anon
    I realize standard C++ only picks functions by argument type, not return type. I.e I can do something like: void func(int); void func(double); but not double func(); int func(); Where in the former, it's clear, in the latter, it's ambigious. Are there any extensions that lets me tell C++ to pick which function to use also by return type? Thanks!

    Read the article

  • Can CoffeeScript Be Translated into This Piece of JavaScript?

    - by tangrui
    function abc() { var a = 1; var func = function() { var a = 2; } func(); alert(a); } Pay attention to the var, in the piece of code, the result of a will be 1, but if the var is omitted, the result will be 2, but I found Coffee not able to translate to this. For example the following: abc = -> a = 1 func = -> a = 2 return func() alert(a) return

    Read the article

  • Is it possible to create a throttle function that can take in as parameters another function (that also has parameters), and the time delay

    - by Stan Quinn
    So I've already written a function that works (based on underscores throttle) for functions that don't take in a parameter, but I'd like to make it generic enough to pass in a function with a variable number of parameters. Here's what I have: (function () { var lastTime = new Date().getTime(); function foo() { var newTime = new Date().getTime(); var gap = newTime - lastTime; // Travels up scope chain to use parents lastTime. Function has access to variables declared in the same scope console.log('foo called, gap:' + gap); lastTime = newTime; // Updates lastTime //console.log(x); //x++; } var throttle = function(func, wait) { var result; var timeout = null; // flag updated through closure var previous = 0; // time last run updated through closure return function() { //func, wait, timeout, previous available through scope var now = new Date().getTime(); var remaining = wait - (now - previous); if (remaining <= 0) { clearTimeout(timeout); timeout = null; previous = now; result = func.apply(this, arguments); //func is available through closure } return result; }; }; document.addEventListener("scroll", throttle(foo, 1000)); //document.addEventListener("scroll", throttle(foo(5), 2000)); }()); But I'd like to modify foo to foo(x) and get this to work (function () { var lastTime = new Date().getTime(); function foo(x) { var newTime = new Date().getTime(); var gap = newTime - lastTime; // Travels up scope chain to use parents lastTime. Function has access to variables declared in the same scope console.log('foo called, gap:' + gap); lastTime = newTime; // Updates lastTime console.log(x); x++; } var throttle = function(func, wait) { var result; var timeout = null; // flag updated through closure var previous = 0; // time last run updated through closure return function() { //func, wait, timeout, previous available through scope var now = new Date().getTime(); var remaining = wait - (now - previous); if (remaining <= 0) { clearTimeout(timeout); timeout = null; previous = now; result = func.apply(this, arguments); //func is available through closure } return result; }; }; document.addEventListener("scroll", throttle(foo(5), 2000)); }());

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Adding SQL Cache Dependencies to the Loosely coupled .NET Cache Provider

    - by Rhames
    This post adds SQL Cache Dependency support to the loosely coupled .NET Cache Provider that I described in the previous post (http://geekswithblogs.net/Rhames/archive/2012/09/11/loosely-coupled-.net-cache-provider-using-dependency-injection.aspx). The sample code is available on github at https://github.com/RobinHames/CacheProvider.git. Each time we want to apply a cache dependency to a call to fetch or cache a data item we need to supply an instance of the relevant dependency implementation. This suggests an Abstract Factory will be useful to create cache dependencies as needed. We can then use Dependency Injection to inject the factory into the relevant consumer. Castle Windsor provides a typed factory facility that will be utilised to implement the cache dependency abstract factory (see http://docs.castleproject.org/Windsor.Typed-Factory-Facility-interface-based-factories.ashx). Cache Dependency Interfaces First I created a set of cache dependency interfaces in the domain layer, which can be used to pass a cache dependency into the cache provider. ICacheDependency The ICacheDependency interface is simply an empty interface that is used as a parent for the specific cache dependency interfaces. This will allow us to place a generic constraint on the Cache Dependency Factory, and will give us a type that can be passed into the relevant Cache Provider methods. namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheDependency { } }   ISqlCacheDependency.cs The ISqlCacheDependency interface provides specific SQL caching details, such as a Sql Command or a database connection and table. It is the concrete implementation of this interface that will be created by the factory in passed into the Cache Provider. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace CacheDiSample.Domain.CacheInterfaces { public interface ISqlCacheDependency : ICacheDependency { ISqlCacheDependency Initialise(string databaseConnectionName, string tableName); ISqlCacheDependency Initialise(System.Data.SqlClient.SqlCommand sqlCommand); } } If we want other types of cache dependencies, such as by key or file, interfaces may be created to support these (the sample code includes an IKeyCacheDependency interface). Modifying ICacheProvider to accept Cache Dependencies Next I modified the exisitng ICacheProvider<T> interface so that cache dependencies may be passed into a Fetch method call. I did this by adding two overloads to the existing Fetch methods, which take an IEnumerable<ICacheDependency> parameter (the IEnumerable allows more than one cache dependency to be included). I also added a method to create cache dependencies. This means that the implementation of the Cache Provider will require a dependency on the Cache Dependency Factory. It is pretty much down to personal choice as to whether this approach is taken, or whether the Cache Dependency Factory is injected directly into the repository or other consumer of Cache Provider. I think, because the cache dependency cannot be used without the Cache Provider, placing the dependency on the factory into the Cache Provider implementation is cleaner. ICacheProvider.cs using System; using System.Collections.Generic;   namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheProvider<T> { T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies);   IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry); IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies);   U CreateCacheDependency<U>() where U : ICacheDependency; } }   Cache Dependency Factory Next I created the interface for the Cache Dependency Factory in the domain layer. ICacheDependencyFactory.cs namespace CacheDiSample.Domain.CacheInterfaces { public interface ICacheDependencyFactory { T Create<T>() where T : ICacheDependency;   void Release<T>(T cacheDependency) where T : ICacheDependency; } }   I used the ICacheDependency parent interface as a generic constraint on the create and release methods in the factory interface. Now the interfaces are in place, I moved on to the concrete implementations. ISqlCacheDependency Concrete Implementation The concrete implementation of ISqlCacheDependency will need to provide an instance of System.Web.Caching.SqlCacheDependency to the Cache Provider implementation. Unfortunately this class is sealed, so I cannot simply inherit from this. Instead, I created an interface called IAspNetCacheDependency that will provide a Create method to create an instance of the relevant System.Web.Caching Cache Dependency type. This interface is specific to the ASP.NET implementation of the Cache Provider, so it should be defined in the same layer as the concrete implementation of the Cache Provider (the MVC UI layer in the sample code). IAspNetCacheDependency.cs using System.Web.Caching;   namespace CacheDiSample.CacheProviders { public interface IAspNetCacheDependency { CacheDependency CreateAspNetCacheDependency(); } }   Next, I created the concrete implementation of the ISqlCacheDependency interface. This class also implements the IAspNetCacheDependency interface. This concrete implementation also is defined in the same layer as the Cache Provider implementation. AspNetSqlCacheDependency.cs using System.Web.Caching; using CacheDiSample.Domain.CacheInterfaces;   namespace CacheDiSample.CacheProviders { public class AspNetSqlCacheDependency : ISqlCacheDependency, IAspNetCacheDependency { private string databaseConnectionName;   private string tableName;   private System.Data.SqlClient.SqlCommand sqlCommand;   #region ISqlCacheDependency Members   public ISqlCacheDependency Initialise(string databaseConnectionName, string tableName) { this.databaseConnectionName = databaseConnectionName; this.tableName = tableName; return this; }   public ISqlCacheDependency Initialise(System.Data.SqlClient.SqlCommand sqlCommand) { this.sqlCommand = sqlCommand; return this; }   #endregion   #region IAspNetCacheDependency Members   public System.Web.Caching.CacheDependency CreateAspNetCacheDependency() { if (sqlCommand != null) return new SqlCacheDependency(sqlCommand); else return new SqlCacheDependency(databaseConnectionName, tableName); }   #endregion   } }   ICacheProvider Concrete Implementation The ICacheProvider interface is implemented by the CacheProvider class. This implementation is modified to include the changes to the ICacheProvider interface. First I needed to inject the Cache Dependency Factory into the Cache Provider: private ICacheDependencyFactory cacheDependencyFactory;   public CacheProvider(ICacheDependencyFactory cacheDependencyFactory) { if (cacheDependencyFactory == null) throw new ArgumentNullException("cacheDependencyFactory");   this.cacheDependencyFactory = cacheDependencyFactory; }   Next I implemented the CreateCacheDependency method, which simply passes on the create request to the factory: public U CreateCacheDependency<U>() where U : ICacheDependency { return this.cacheDependencyFactory.Create<U>(); }   The signature of the FetchAndCache helper method was modified to take an additional IEnumerable<ICacheDependency> parameter:   private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) and the following code added to create the relevant System.Web.Caching.CacheDependency object for any dependencies and pass them to the HttpContext Cache: CacheDependency aspNetCacheDependencies = null;   if (cacheDependencies != null) { if (cacheDependencies.Count() == 1) // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aspNetCacheDependencies = ((IAspNetCacheDependency)cacheDependencies.ElementAt(0)).CreateAspNetCacheDependency(); else if (cacheDependencies.Count() > 1) { AggregateCacheDependency aggregateCacheDependency = new AggregateCacheDependency(); foreach (ICacheDependency cacheDependency in cacheDependencies) { // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aggregateCacheDependency.Add(((IAspNetCacheDependency)cacheDependency).CreateAspNetCacheDependency()); } aspNetCacheDependencies = aggregateCacheDependency; } }   HttpContext.Current.Cache.Insert(key, value, aspNetCacheDependencies, absoluteExpiry.Value, relativeExpiry.Value);   The full code listing for the modified CacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching; using CacheDiSample.Domain.CacheInterfaces;   namespace CacheDiSample.CacheProviders { public class CacheProvider<T> : ICacheProvider<T> { private ICacheDependencyFactory cacheDependencyFactory;   public CacheProvider(ICacheDependencyFactory cacheDependencyFactory) { if (cacheDependencyFactory == null) throw new ArgumentNullException("cacheDependencyFactory");   this.cacheDependencyFactory = cacheDependencyFactory; }   public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) { return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry, null); }   public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry, cacheDependencies); }   public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry) { return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry, null); }   public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry, cacheDependencies); }   public U CreateCacheDependency<U>() where U : ICacheDependency { return this.cacheDependencyFactory.Create<U>(); }   #region Helper Methods   private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry, IEnumerable<ICacheDependency> cacheDependencies) { U value; if (!TryGetValue<U>(key, out value)) { value = retrieveData(); if (!absoluteExpiry.HasValue) absoluteExpiry = Cache.NoAbsoluteExpiration;   if (!relativeExpiry.HasValue) relativeExpiry = Cache.NoSlidingExpiration;   CacheDependency aspNetCacheDependencies = null;   if (cacheDependencies != null) { if (cacheDependencies.Count() == 1) // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aspNetCacheDependencies = ((IAspNetCacheDependency)cacheDependencies.ElementAt(0)).CreateAspNetCacheDependency(); else if (cacheDependencies.Count() > 1) { AggregateCacheDependency aggregateCacheDependency = new AggregateCacheDependency(); foreach (ICacheDependency cacheDependency in cacheDependencies) { // We know that the implementations of ICacheDependency will also implement IAspNetCacheDependency // so we can use a cast here and call the CreateAspNetCacheDependency() method aggregateCacheDependency.Add( ((IAspNetCacheDependency)cacheDependency).CreateAspNetCacheDependency()); } aspNetCacheDependencies = aggregateCacheDependency; } }   HttpContext.Current.Cache.Insert(key, value, aspNetCacheDependencies, absoluteExpiry.Value, relativeExpiry.Value);   } return value; }   private bool TryGetValue<U>(string key, out U value) { object cachedValue = HttpContext.Current.Cache.Get(key); if (cachedValue == null) { value = default(U); return false; } else { try { value = (U)cachedValue; return true; } catch { value = default(U); return false; } } }   #endregion } }   Wiring up the DI Container Now the implementations for the Cache Dependency are in place, I wired them up in the existing Windsor CacheInstaller. First I needed to register the implementation of the ISqlCacheDependency interface: container.Register( Component.For<ISqlCacheDependency>() .ImplementedBy<AspNetSqlCacheDependency>() .LifestyleTransient());   Next I registered the Cache Dependency Factory. Notice that I have not implemented the ICacheDependencyFactory interface. Castle Windsor will do this for me by using the Type Factory Facility. I do need to bring the Castle.Facilities.TypedFacility namespace into scope: using Castle.Facilities.TypedFactory;   Then I registered the factory: container.AddFacility<TypedFactoryFacility>();   container.Register( Component.For<ICacheDependencyFactory>() .AsFactory()); The full code for the CacheInstaller class is: using Castle.MicroKernel.Registration; using Castle.MicroKernel.SubSystems.Configuration; using Castle.Windsor; using Castle.Facilities.TypedFactory;   using CacheDiSample.Domain.CacheInterfaces; using CacheDiSample.CacheProviders;   namespace CacheDiSample.WindsorInstallers { public class CacheInstaller : IWindsorInstaller { public void Install(IWindsorContainer container, IConfigurationStore store) { container.Register( Component.For(typeof(ICacheProvider<>)) .ImplementedBy(typeof(CacheProvider<>)) .LifestyleTransient());   container.Register( Component.For<ISqlCacheDependency>() .ImplementedBy<AspNetSqlCacheDependency>() .LifestyleTransient());   container.AddFacility<TypedFactoryFacility>();   container.Register( Component.For<ICacheDependencyFactory>() .AsFactory()); } } }   Configuring the ASP.NET SQL Cache Dependency There are a couple of configuration steps required to enable SQL Cache Dependency for the application and database. From the Visual Studio Command Prompt, the following commands should be used to enable the Cache Polling of the relevant database tables: aspnet_regsql -S <servername> -E -d <databasename> –ed aspnet_regsql -S <servername> -E -d CacheSample –et –t <tablename>   (The –t option should be repeated for each table that is to be made available for cache dependencies). Finally the SQL Cache Polling needs to be enabled by adding the following configuration to the <system.web> section of web.config: <caching> <sqlCacheDependency pollTime="10000" enabled="true"> <databases> <add name="BloggingContext" connectionStringName="BloggingContext"/> </databases> </sqlCacheDependency> </caching>   (obviously the name and connection string name should be altered as required). Using a SQL Cache Dependency Now all the coding is complete. To specify a SQL Cache Dependency, I can modify my BlogRepositoryWithCaching decorator class (see the earlier post) as follows: public IList<Blog> GetAll() { var sqlCacheDependency = cacheProvider.CreateCacheDependency<ISqlCacheDependency>() .Initialise("BloggingContext", "Blogs");   ICacheDependency[] cacheDependencies = new ICacheDependency[] { sqlCacheDependency };   string key = string.Format("CacheDiSample.DataAccess.GetAll");   return cacheProvider.Fetch(key, () => { return parentBlogRepository.GetAll(); }, null, null, cacheDependencies) .ToList(); }   This will add a dependency of the “Blogs” table in the database. The data will remain in the cache until the contents of this table change, then the cache item will be invalidated, and the next call to the GetAll() repository method will be routed to the parent repository to refresh the data from the database.

    Read the article

  • Yet another UITableView Question

    - by barbgal
    Hi, I have a strange issue in my iPhone application. I have created a UITableView with 4 Sections and 3 Rows so totally 12 Rows. But - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath The above method only gets called for 9 times instead of 12 times.why this happenning. My 4th section is not getting constructed but my 1st section gets duplicated as 4th section. Thanks for your time and help. Plese refer my code below @interface MainViewController : UITableViewController<UITextFieldDelegate,UITableViewDelegate,UITableViewDataSource> { } @end // Implement viewDidLoad to do additional setup after loading the view, typically from a nib. - (void)viewDidLoad { CGRect frameRect = CGRectMake(0,0,320,460); UITableView *tableView = [[UITableView alloc] initWithFrame:frameRect style:UITableViewStyleGrouped]; tableView.delegate = self; tableView.dataSource = self; tableView.backgroundColor = [UIColor purpleColor]; tableView.scrollEnabled = YES; self.view = tableView; [tableView release]; [super viewDidLoad]; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { // Return the number of rows in the section. return 3; } - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { // Return the number of sections. return 4; } // Customize the appearance of table view cells. - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { NSLog(@"CELL IS NIL %i", indexPath.section); static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease]; if (indexPath.section == 0) { if(indexPath.row == 0) { cell.text = @"Tmail"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else if ( indexPath.row == 1 ) { cell.text = @"English"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else { cell.text = @"Hindi"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } } else if (indexPath.section == 1) { if(indexPath.row == 0) { cell.text = @"Street"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else if ( indexPath.row == 1 ) { cell.text = @"City"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else { cell.text = @"State"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } } else if (indexPath.section == 2) { if(indexPath.row == 0) { cell.text = @"Salem"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else if ( indexPath.row == 1 ) { cell.text = @"Samalpatti"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else { cell.text = @"Chennai"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } } else if (indexPath.section == 3) { if(indexPath.row == 0) { cell.text = @"NOKIA"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else if ( indexPath.row == 1) { cell.text = @"SAMSUNG"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } else { cell.text = @"SONY"; UITextField *aField = [[UITextField alloc]initWithFrame:CGRectMake(100,10,200,40)]; aField.placeholder = @"Mandatory"; aField.delegate = self; aField.textColor = [UIColor blackColor]; [cell addSubview:aField]; [aField release]; } } } return cell; }

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • MVC and delegation

    - by timjver
    I am a beginning iOS programmer and use the Model-View-Controller model as a design pattern: my model doesn't know anything about my view (in order to make it compatible with any view), my view doesn't know anything about my model so they interact via my controller. A very usual way for a view to interact with the controller is through delegation: when the user interacts with the app, my view will notify my controller, which can call some methods of my model and update my view, if necessary. However, would it make sense to also make my controller the delegate of my model? I'm not convinced this is the way to go. It could be handy for my model to notify my controller of some process being finished, for example, or to ask for extra input of the user if it doesn't have enough information to complete the task. The downside of this, though, is that my controller would be the delegate for both my controller and my model, so there wouldn't be really a proper way to notify my model of changes in my view, and vice versa. (correct me if I'm wrong.) Conclusion: I don't really think it's a good idea to to have my controller to be the delegate of my model, but just being the delegate of my view would be fine. Is this the way most MVC models handle? Or is there a way to have the controller be the delegate of both the controller and the model, with proper communication between them? Like I said, I'm a beginner, so I want to do such stuff the right way immediately, rather than spending loads of hours on models that won't work anyway. :)

    Read the article

  • UITableView crashes when trying to scroll

    - by Ondrej
    Hi, I have a problem with data in UITableView. I have UIViewController, that contains UITableView outlet and few more things I am using and ... It works :) ... it works lovely, but ... I've created an RSS reader class that is using delegates to deploy the data to the table ... and once again, If I'll just create dummy data in the main controller everything works! problem is with this line: rss.delegate = self; Preview looks a little bit broken than here are those RSS reader files on Google code: (Link to the header file on GoogleCode) (Link to the implementation file on Google code) viewDidLoad function of my controller: IGDataRss20 *rss = [[[IGDataRss20 alloc] init] autorelease]; rss.delegate = self; [rss initWithContentsOfUrl:@"http://rss.cnn.com/rss/cnn_topstories.rss"]; and my delegate methods: - (void)parsingEnded:(NSArray *)result { super.data = [[NSMutableArray alloc] initWithArray:result]; NSLog(@"My Items: %d", [super.data count]); [super.table reloadData]; NSLog(@"Parsing ended"); } (void)parsingError:(NSString *)message { NSLog(@"MyMessage: %@", message); } (void)parsingStarted:(NSXMLParser *)parser { NSLog(@"Parsing started"); } Just to clarify, NSLog(@"Parsing ended"); is being executed and I have 10 items in the array. Ok, here's my RSS reader header file: @class IGDataRss20; @protocol IGDataRss20Delegate @optional (void)parsingStarted:(NSXMLParser *)parser; (void)parsingError:(NSString *)message; (void)parsingEnded:(NSArray *)result; @end @interface IGDataRss20 : NSObject { NSXMLParser *rssParser; NSMutableArray *data; NSMutableDictionary *currentItem; NSString *currentElement; id <IGDataRss20Delegate> delegate; } @property (nonatomic, retain) NSMutableArray *data; @property (nonatomic, assign) id delegate; (void)initWithContentsOfUrl:(NSString *)rssUrl; (void)initWithContentsOfData:(NSData *)inputData; @end And this RSS reader implementation file: #import "IGDataRss20.h" @implementation IGDataRss20 @synthesize data, delegate; (void)initWithContentsOfUrl:(NSString *)rssUrl { self.data = [[NSMutableArray alloc] init]; NSURL *xmlURL = [NSURL URLWithString:rssUrl]; rssParser = [[NSXMLParser alloc] initWithContentsOfURL:xmlURL]; [rssParser setDelegate:self]; [rssParser setShouldProcessNamespaces:NO]; [rssParser setShouldReportNamespacePrefixes:NO]; [rssParser setShouldResolveExternalEntities:NO]; [rssParser parse]; } (void)initWithContentsOfData:(NSData *)inputData { self.data = [[NSMutableArray alloc] init]; rssParser = [[NSXMLParser alloc] initWithData:inputData]; [rssParser setDelegate:self]; [rssParser setShouldProcessNamespaces:NO]; [rssParser setShouldReportNamespacePrefixes:NO]; [rssParser setShouldResolveExternalEntities:NO]; [rssParser parse]; } (void)parserDidStartDocument:(NSXMLParser *)parser { [[self delegate] parsingStarted:parser]; } (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError { NSString * errorString = [NSString stringWithFormat:@"Unable to parse RSS feed (Error code %i )", [parseError code]]; NSLog(@"Error parsing XML: %@", errorString); if ([parseError code] == 31) NSLog(@"Error code 31 is usually caused by encoding problem."); [[self delegate] parsingError:errorString]; } (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName attributes:(NSDictionary *)attributeDict { currentElement = [elementName copy]; if ([elementName isEqualToString:@"item"]) currentItem = [[NSMutableDictionary alloc] init]; } (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName { if ([elementName isEqualToString:@"item"]) { [data addObject:(NSDictionary *)[currentItem copy]]; } } (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string { if (![currentItem objectForKey:currentElement]) [currentItem setObject:[[[NSMutableString alloc] init] autorelease] forKey:currentElement]; [[currentItem objectForKey:currentElement] appendString:string]; } (void)parserDidEndDocument:(NSXMLParser *)parser { //NSLog(@"RSS array has %d items: %@", [data count], data); [[self delegate] parsingEnded:(NSArray *)self.data]; } (void)dealloc { [data, delegate release]; [super dealloc]; } @end Hope someone will be able to help me as I am becoming to be quite desperate, and I thought I am not already such a greenhorn :) Thanks, Ondrej

    Read the article

  • Mutating the expression tree of a predicate to target another type

    - by Jon
    Intro In the application I 'm currently working on, there are two kinds of each business object: the "ActiveRecord" type, and the "DataContract" type. So for example, we have: namespace ActiveRecord { class Widget { public int Id { get; set; } } } namespace DataContracts { class Widget { public int Id { get; set; } } } The database access layer takes care of "translating" between hierarchies: you can tell it to update a DataContracts.Widget, and it will magically create an ActiveRecord.Widget with the same property values and save that. The problem I have surfaced when attempting to refactor this database access layer. The Problem I want to add methods like the following to the database access layer: // Widget is DataContract.Widget interface DbAccessLayer { IEnumerable<Widget> GetMany(Expression<Func<Widget, bool>> predicate); } The above is a simple general-use "get" method with custom predicate. The only point of interest is that I 'm not passing in an anonymous function but rather an expression tree. This is done because inside DbAccessLayer we have to query ActiveRecord.Widget efficiently (LINQ to SQL) and not have the database return all ActiveRecord.Widget instances and then filter the enumerable collection. We need to pass in an expression tree, so we ask for one as the parameter for GetMany. The snag: the parameter we have needs to be magically transformed from an Expression<Func<DataContract.Widget, bool>> to an Expression<Func<ActiveRecord.Widget, bool>>. This is where I haven't managed to pull it off... Attempted Solution What we 'd like to do inside GetMany is: IEnumerable<DataContract.Widget> GetMany( Expression<Func<DataContract.Widget, bool>> predicate) { var lambda = Expression.Lambda<Func<ActiveRecord.Widget, bool>>( predicate.Body, predicate.Parameters); // use lambda to query ActiveRecord.Widget and return some value } This won't work because in a typical scenario, for example if: predicate == w => w.Id == 0; ...the expression tree contains a MemberAccessExpression instance which has a MemberInfo property (named Member) that point to members of DataContract.Widget. There are also ParameterExpression instances both in the expression tree and in its parameter expression collection (predicate.Parameters); After searching a bit, I found System.Linq.Expressions.ExpressionVisitor (its source can be found here in the context of a how-to, very helpful) which is a convenient way to modify an expression tree. Armed with this, I implemented a visitor. This simple visitor only takes care of changing the types in member access and parameter expressions. It may not be complete, but it's fine for the expression w => w.Id == 0. internal class Visitor : ExpressionVisitor { private readonly Func<Type, Type> dataContractToActiveRecordTypeConverter; public Visitor(Func<Type, Type> dataContractToActiveRecordTypeConverter) { this.dataContractToActiveRecordTypeConverter = dataContractToActiveRecordTypeConverter; } protected override Expression VisitMember(MemberExpression node) { var dataContractType = node.Member.ReflectedType; var activeRecordType = this.dataContractToActiveRecordTypeConverter(dataContractType); var converted = Expression.MakeMemberAccess( base.Visit(node.Expression), activeRecordType.GetProperty(node.Member.Name)); return converted; } protected override Expression VisitParameter(ParameterExpression node) { var dataContractType = node.Type; var activeRecordType = this.dataContractToActiveRecordTypeConverter(dataContractType); return Expression.Parameter(activeRecordType, node.Name); } } With this visitor, GetMany becomes: IEnumerable<DataContract.Widget> GetMany( Expression<Func<DataContract.Widget, bool>> predicate) { var visitor = new Visitor(...); var lambda = Expression.Lambda<Func<ActiveRecord.Widget, bool>>( visitor.Visit(predicate.Body), predicate.Parameters.Select(p => visitor.Visit(p)); var widgets = ActiveRecord.Widget.Repository().Where(lambda); // This is just for reference, see below Expression<Func<ActiveRecord.Widget, bool>> referenceLambda = w => w.Id == 0; // Here we 'd convert the widgets to instances of DataContract.Widget and // return them -- this has nothing to do with the question though. } Results The good news is that lambda is constructed just fine. The bad news is that it isn't working; it's blowing up on me when I try to use it (the exception messages are really not helpful at all). I have examined the lambda my code produces and a hardcoded lambda with the same expression; they look exactly the same. I spent hours in the debugger trying to find some difference, but I can't. When predicate is w => w.Id == 0, lambda looks exactly like referenceLambda. But the latter works with e.g. IQueryable<T>.Where, while the former does not (I have tried this in the immediate window of the debugger). I should also mention that when predicate is w => true, it all works just fine. Therefore I am assuming that I 'm not doing enough work in Visitor, but I can't find any more leads to follow on. Can someone point me in the right direction? Thanks in advance for your help!

    Read the article

  • What are CFI directives in Gnu Assembler (GAS) used for?

    - by claws
    There seem to be a .CFI directive after every line and also there are wide varities of these ex.,.cfi_startproc , .cfi_endproc etc.. more here. .file "temp.c" .text .globl main .type main, @function main: .LFB0: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 movq %rsp, %rbp .cfi_offset 6, -16 .cfi_def_cfa_register 6 movl $0, %eax leave ret .cfi_endproc .LFE0: .size main, .-main .globl func .type func, @function func: .LFB1: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 movq %rsp, %rbp .cfi_offset 6, -16 .cfi_def_cfa_register 6 movl %edi, -4(%rbp) movl %esi, %eax movb %al, -8(%rbp) leave ret .cfi_endproc .LFE1: .size func, .-func .ident "GCC: (Ubuntu 4.4.1-4ubuntu9) 4.4.1" .section .note.GNU-stack,"",@progbits I didn't get the purpose of these.

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >