Search Results

Search found 4176 results on 168 pages for 'graph algorithms'.

Page 18/168 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • Grading an algorithm: Readability vs. Compactness

    - by amiregelz
    Consider the following question in a test \ interview: Implement the strcpy() function in C: void strcpy(char *destination, char *source); The strcpy function copies the C string pointed by source into the array pointed by destination, including the terminating null character. Assume that the size of the array pointed by destination is long enough to contain the same C string as source, and does not overlap in memory with source. Say you were the tester, how would you grade the following answers to this question? 1) void strcpy(char *destination, char *source) { while (*source != '\0') { *destination = *source; source++; destionation++; } *destionation = *source; } 2) void strcpy(char *destination, char *source) { while (*(destination++) = *(source++)) ; } The first implementation is straightforward - it is readable and programmer-friendly. The second implementation is shorter (one line of code) but less programmer-friendly; it's not so easy to understand the way this code is working, and if you're not familiar with the priorities in this code then it's a problem. I'm wondering if the first answer would show more complexity and more advanced thinking, in the tester's eyes, even though both algorithms behave the same, and although code readability is considered to be more important than code compactness. It seems to me that since making an algorithm this compact is more difficult to implement, it will show a higher level of thinking as an answer in a test. However, it is also possible that a tester would consider the first answer not good because it's not readable. I would also like to mention that this is not specific to this example, but general for code readability vs. compactness when implementing an algorithm, specifically in tests \ interviews.

    Read the article

  • Analyzing Memory Usage: Java vs C++ Negligible?

    - by Anthony
    How does the memory usage of an integer object written in Java compare\contrast with the memory usage of a integer object written in C++? Is the difference negligible? No difference? A big difference? I'm guessing it's the same because an int is an int regardless of the language (?) The reason why I asked this is because I was reading about the importance of knowing when a program's memory requirements will prevent the programmer from solving a given problem. What fascinated me is the amount of memory required for creating a single Java object. Take for example, an integer object. Correct me if I'm wrong but a Java integer object requires 24 bytes of memory: 4 bytes for its int instance variable 16 bytes of overhead (reference to the object's class, garbage collection info & synchronization info) 4 bytes of padding As another example, a Java array (which is implemented as an object) requires 48+bytes: 24 bytes of header info 16 bytes of object overhead 4 bytes for length 4 bytes for padding plus the memory needed to store the values How do these memory usages compare with the same code written in C++? I used to be oblivious about the memory usage of the C++ and Java programs I wrote, but now that I'm beginning to learn about algorithms, I'm having a greater appreciation for the computer's resources.

    Read the article

  • Location tagging facebook open graph actions so that only friends in that location view in their feeds

    - by Arvind Srinivasan
    Is there a way to tag open graph actions so as to target certain recipients and not others? For example, if my app talks about new coffee shop openings in various cities, is there a way to publish the 'opening' action to the graph, perhaps with location / coordinates, such that this is only seen by friends in that locality? I really don't want to spam my friends in London about an opening I'm excited about in Portland. How can I help facebook with the feed relevance in these cases? I noticed that there is a "place" property on open graph objects - could this somehow be used?

    Read the article

  • What is wrong with my logic for the divide and conquer algorithm for Closest pair problem?

    - by Programming Noob
    I have been following Coursera's course on Algorithms and came up with a thought about the divide/conquer algorithm for the closest pair problem, that I want clarified. As per Prof Roughgarden's algorithm (which you can see here if you're interested): For a given set of points P, of which we have two copies - sorted in X and Y direction - Px and Py, the algorithm can be given as closestPair(Px,Py): Divide points into left half - Q, and right half - R, and form sorted copies of both halves along x and y directions - Qx,Qy,Rx,Ry Let closestPair(Qx,Qy) be points p1 and q1 Let closestPair(Rx,Ry) be p2,q2 Let delta be minimum of dist(p1,q1) and dist(p2,q2) This is the unfortunate case, let p3,q3 be the closestSplitPair(Px,Py,delta) Return the best result Now, the clarification that I want is related to step 5. I should say this beforehand, that what I'm suggesting, is barely any improvement at all, but if you're still interested, read ahead. Prof R says that since the points are already sorted in X and Y directions, to find the best pair in step 5, we need to iterate over points in the strip of width 2*delta, starting from bottom to up, and in the inner loop we need only 7 comparisions. Can this be bettered to just one? How I think is possible seemed a little difficult to explain in plain text, so I drew a diagram and wrote it on paper and uploaded it here: Since no one else came up with is, I'm pretty sure there's some error in my line of thought. But I have literally been thinking about this for HOURS now, and I just HAD to post this. It's all that is in my head. Can someone point out where I'm going wrong?

    Read the article

  • Beginners guide to developing optimization software

    - by Florenc
    I am novice in "serious" programming i.e. applications that deal with real-life applications and software projects that go beyond school assignments. My interests include optimization, operations research, algorithms and lately i discovered how much I do like software design/development/engineering. I have already developed some simple desktop applications for some "famous" problems like TSP using heuristc approaches, a VRP solver (in progress) and so on. While developing this kind of software I actually used basic concepts taught at school such as object-orientation analysis and design. But, I found these courses rather elementary and quite boring (for my expectations). So I decided to go a little further and start developing "real" software (and this is where I realized how important and interesting software engineering/design is.) Now, here's my issue: I can not find a "study guide" for developing software of this kind. Currently, there are numerous resources out there (books, websites, tutorials) in designing and developing complex IS, web applications, smartphone apps but I can't find a book for example entitled "optimization software development". Definetly, someone could claim that "design patterns apply to software in general" but that's not my point. My point is that I could simply use my imagination for "simple" implementations, but what happens, when my imagination can not go further? In other words I'm looking for a guide/path to bridge the gap between: Mathematics-Algorithm Design-Software Engineering-Optimization-Software development

    Read the article

  • In a graph, how to find the nearest node to a group of nodes?

    - by Nikola
    Hello, I have an undirected, unweighted graph, which doesn't have to be planar. I also have a subset of graph's nodes (true subset) and I need to find a node not belonging to the subset, with minimum sum of distances to all nodes in the subset. So far, I have implemented breath-first search starting from each node in the subset, and the intersection that occurs first is the node I am looking for. Unfortunately, it is running too slow since the graph contains a large number of nodes. Any advice or comment will be appreciated. Thank you, Nikola

    Read the article

  • How to detect if breaking an edge will make a graph disjoint?

    - by the_graph_guy
    I have a graph that starts off with a single, root node. Nodes are added one by one to the graph. At node creation time, they have to be linked either to the root node, or to another node, by a single edge. Edges can also be created and deleted (one by one, between any two nodes). Nodes can be deleted one at a time. Node and edge creation, deletion operations can happen in any arbitrary order. OK, so here's my question: When an edge is deleted, is it possible do determine, in constant time (i.e. with an O(1) algorithm), if doing this will divide the graph into two disjoint subgraphs? If it will, then which side of the edge will the root node belong? I'm willing to maintain, within reasonable limits, any additional data structure that can facilitate the derivation of this information. Maybe it is not possible to do it in O(1), if so any pointers to literature will be appreciated.

    Read the article

  • Trying to sort the coefficients of the polynomial (z-a)(z-b)(z-c)...(z-n) into a vector

    - by pajamas
    So I have a factored polynomial of the form (z-a)(z-b)(z-c)...(z-n) for n an even positive integer. Thus the coefficient of z^k for 0 <= k < n will be the sum of all distinct n-k element products taken from the set {a,b,...,n} multiplied by (-1)^k, I hope that makes sense, please ask if you need more clarification. I'm trying to put these coefficients into a row vector with the first column containing the constant coefficient (which would be abc...n) and the last column containing the coefficient for z^n (which would be 1). I imagine there is a way to brute force this with a ton of nested loops, but I'm hoping there is a more efficient way. This is being done in Matlab (which I'm not that familiar with) and I know Matlab has a ton of algorithms and functions, so maybe its got something I can use. Can anyone think of a way to do this? Example: (z-1)(z-2)(z-3) = z^3 - (1 + 2 + 3)z^2 + (1*2 + 1*3 + 2*3)z - 1*2*3 = z^3 - 6z^2 + 11z - 6. Note that this example is n=3 odd, but n=4 would have taken too long to do by hand. Edit: Let me know if you think this would be better posted at TCS or Math Stack Exchange.

    Read the article

  • Google Analytics show zero for "Search Engine Optimizations" graph

    - by Saeed Neamati
    In Google Analytics new design, there is an area related to the queries and impressions related to your site. You can get there by following Traffic Sources = Search Engine Optimization = Queries. However, it now shows zero for the "Site Usage" graph, at the top section, while other areas of Google Analytics definitely show that site has visitors and has been used. No matter how much I search, I can't find the source of the problem. Does anyone know where the problem might be?

    Read the article

  • Count unique visitors by group of visited places

    - by Mathieu
    I'm facing the problem of counting the unique visitors of groups of places. Here is the situation: I have visitors that can visit places. For example, that can be internet users visiting web pages, or customers going to restaurants. A visitor can visit as much places as he wishes, and a place can be visited by several visitors. A visitor can come to the same place several times. The places belong to groups. A group can obviously contain several places, and places can belong to several groups. Given that, for each visitor, we can have a list of visited places, how can I have the number of unique visitors per group of places? Example: I have visitors A, B, C and D; and I have places x, y and z. I have these visiting lists: [ A -> [x,x,y,x], B -> [], C -> [z,z], D -> [y,x,x,z] ] Having these number of unique visitors per place is quite easy: [ x -> 2, // A and D visited x y -> 2, // A and D visited y z -> 2 // C and D visited z ] But if I have these groups: [ G1 -> [x,y,z], G2 -> [x,z], G3 -> [x,y] ] How can I have this information? [ G1 -> 3, // A, C and D visited x or y or z G2 -> 3, // A, C and D visited x or z G3 -> 2 // A and D visited x or y ] Additional notes : There are so many places that it is not possible to store information about every possible group; It's not a problem if approximation are made. I don't need 100% precision. Having a fast algorithm that tells me that there were 12345 visits in a group instead of 12543 is better than a slow algorithm telling the exact number. Let's say there can be ~5% deviation. Is there an algorithm or class of algorithms that addresses this type of problem?

    Read the article

  • Applying the Knuth-Plass algorithm (or something better?) to read two books with different length and amount of chapters in parallel

    - by user147133
    I have a Bible reading plan that covers the whole Bible in 180 days. For the most of the time, I read 5 chapters in the Old Testament and 1 or 2 (1.5) chapters in the New Testament each day. The problem is that some chapters are longer than others (for example Psalm 119 which is 7 times longer than a average chapter in the Bible), and the plan I'm following doesn't take that in count. I end up with some days having a lot more to read than others. I thought I could use programming to make myself a better plan. I have a datastructure with a list of all chapters in the bible and their length in number of lines. (I found that the number of lines is the best criteria, but it could have been number of verses or number of words as well) I then started to think about this problem as a line wrap problem. Think of a chapter like a word, a day like a line and the whole plan as a paragraph. The "length" of a word (a chapter) is the number of lines in that chapter. I could then generate the best possible reading plan by applying a simplified Knuth-Plass algorithm to find the best breakpoints. This works well if I want to read the Bible from beginning to end. But I want to read a little from the new testament each day in parallel with the old testament. Of course I can run the Knuth-Plass algorithm on the Old Testament first, then on the New Testament and get two separate plans. But those plans merged is not a optimal plan. Worst-case days (days with extra much reading) in the New Testament plan will randomly occur on the same days as the worst-case days in the Old Testament. Since the New Testament have about 180*1.5 chapters, the plan is generally to read one chapter the first day, two the second, one the third etc... And I would like the plan for the Old Testament to compensate for this alternating length. So I will need a new and better algorithm, or I will have to use the Knuth-Plass algorithm in a way that I've not figured out. I think this could be a interesting and challenging nut for people interested in algorithms, so therefore I wanted to see if any of you have a good solution in mind.

    Read the article

  • How to view the filter graph used by Windows Media Player

    - by Ian Boyd
    i have a video that i cannot render in Graph Edit: GSpot cannot render: and AVISynth's DirectShowSource cannot open: And yet Windows Media Player (12) can play it fine. How can i figure out the filters that Windows Media Player is using, when DirectShow itself cannot render the file? i tried running GraphEdit as an adminstrator and connecting to a remote graph, but Windows Media Player does not register its graph in the running objects table: Related question: How can i access a file in AviSynth that Windows Media Player can play, but DirectShow cannot?

    Read the article

  • Simple tool to graph memory usage?

    - by dbr
    Is there a script that will show memory usage as a graph, for example as a pie-chart, with each process being being a separate slice? I'm not looking for something like Munin to graph memory usage over time, but rather show the memory usage per-process at a single point in time. To make my request even more obscure, it is for a headless server (so no X applications). The simplest way would be to write a PNG file, or possibly an HTML file (which could use Javascript to allow the filtering of processes, changing between graph-types and so on)

    Read the article

  • MRTG + RRDTool Hourly Graph

    - by SuperMicro321
    I am using MRTG + RRDtool to monitor the bandwidth on each switchport of a Cisco Catalyst 2950 via snmp. Is MRTG capable of generating an hourly graph? With RRDtool I was able to set the interval to 1 minute in hopes of getting a more detailed graph, but the shortest timeframe the graph is 'Daily' graph (5 Minute Average) and the image is too small. What I am looking to get out of this: I am looking to be able to visually monitor all of the switch ports and tell when port begins to have unusually high traffic, in real time (1 minute interval of snmp poll, graphs generated, and page refreshed).

    Read the article

  • Multidimensional multiple-choice knapsack problem: find a feasible solution

    - by Onheiron
    My assignment is to use local search heuristics to solve the Multidimensional multiple-choice knapsack problem, but to do so I first need to find a feasible solution to start with. Here is an example problem with what I tried so far. Problem R1 R2 R3 RESOUCES : 8 8 8 GROUPS: G1: 11.0 3 2 2 12.0 1 1 3 G2: 20.0 1 1 3 5.0 2 3 2 G3: 10.0 2 2 3 30.0 1 1 3 Sorting strategies To find a starting feasible solution for my local search I decided to ignore maximization of gains and just try to fit the resources requirements. I decided to sort the choices (strategies) in each group by comparing their "distance" from the multidimensional space origin, thus calculating SQRT(R1^2 + R2^2 + ... + RN^2). I felt like this was a keen solution as it somehow privileged those choices with resouce usages closer to each other (e.g. R1:2 R2:2 R3:2 < R1:1 R2:2 R3:3) even if the total sum is the same. Doing so and selecting the best choice from each group proved sufficent to find a feasible solution for many[30] different benchmark problems, but of course I knew it was just luck. So I came up with the problem presented above which sorts like this: R1 R2 R3 RESOUCES : 8 8 8 GROUPS: G1: 12.0 1 1 3 < select this 11.0 3 2 2 G2: 20.0 1 1 3 < select this 5.0 2 3 2 G3: 30.0 1 1 3 < select this 10.0 2 2 3 And it is not feasible because the resources consmption is R1:3, R2:3, R3:9. The easy solution is to pick one of the second best choices in group 1 or 2, so I'll need some kind of iteration (local search[?]) to find the starting feasible solution for my local search solution. Here are the options I came up with Option 1: iterate choices I tried to find a way to iterate all the choices with a specific order, something like G1 G2 G3 1 1 1 2 1 1 1 2 1 1 1 2 2 2 1 ... believeng that feasible solutions won't be that far away from the unfeasible one I start with and thus the number of iterations will keep quite low. Does this make any sense? If yes, how can I iterate the choices (grouped combinations) of each group keeping "as near as possibile" to the previous iteration? Option 2: Change the comparation term I tried to think how to find a better variable to sort the choices on. I thought at a measure of how "precious" a resource is based on supply and demand, so that an higer demand of a more precious resource will push you down the list, but this didn't help at all. Also I thought there probably isn't gonna be such a comparsion variable which assures me a feasible solution at first strike. I there such a variable? If not, is there a better sorting criteria anyways? Option 3: implement any known sub-optimal fast solving algorithm Unfortunately I could not find any of such algorithms online. Any suggestion?

    Read the article

  • Parallelism in .NET – Part 12, More on Task Decomposition

    - by Reed
    Many tasks can be decomposed using a Data Decomposition approach, but often, this is not appropriate.  Frequently, decomposing the problem into distinctive tasks that must be performed is a more natural abstraction. However, as I mentioned in Part 1, Task Decomposition tends to be a bit more difficult than data decomposition, and can require a bit more effort.  Before we being parallelizing our algorithm based on the tasks being performed, we need to decompose our problem, and take special care of certain considerations such as ordering and grouping of tasks. Up to this point in this series, I’ve focused on parallelization techniques which are most appropriate when a problem space can be decomposed by data.  Using PLINQ and the Parallel class, I’ve shown how problem spaces where there is a collection of data, and each element needs to be processed, can potentially be parallelized. However, there are many other routines where this is not appropriate.  Often, instead of working on a collection of data, there is a single piece of data which must be processed using an algorithm or series of algorithms.  Here, there is no collection of data, but there may still be opportunities for parallelism. As I mentioned before, in cases like this, the approach is to look at your overall routine, and decompose your problem space based on tasks.  The idea here is to look for discrete “tasks,” individual pieces of work which can be conceptually thought of as a single operation. Let’s revisit the example I used in Part 1, an application startup path.  Say we want our program, at startup, to do a bunch of individual actions, or “tasks”.  The following is our list of duties we must perform right at startup: Display a splash screen Request a license from our license manager Check for an update to the software from our web server If an update is available, download it Setup our menu structure based on our current license Open and display our main, welcome Window Hide the splash screen The first step in Task Decomposition is breaking up the problem space into discrete tasks. This, naturally, can be abstracted as seven discrete tasks.  In the serial version of our program, if we were to diagram this, the general process would appear as: These tasks, obviously, provide some opportunities for parallelism.  Before we can parallelize this routine, we need to analyze these tasks, and find any dependencies between tasks.  In this case, our dependencies include: The splash screen must be displayed first, and as quickly as possible. We can’t download an update before we see whether one exists. Our menu structure depends on our license, so we must check for the license before setting up the menus. Since our welcome screen will notify the user of an update, we can’t show it until we’ve downloaded the update. Since our welcome screen includes menus that are customized based off the licensing, we can’t display it until we’ve received a license. We can’t hide the splash until our welcome screen is displayed. By listing our dependencies, we start to see the natural ordering that must occur for the tasks to be processed correctly. The second step in Task Decomposition is determining the dependencies between tasks, and ordering tasks based on their dependencies. Looking at these tasks, and looking at all the dependencies, we quickly see that even a simple decomposition such as this one can get quite complicated.  In order to simplify the problem of defining the dependencies, it’s often a useful practice to group our tasks into larger, discrete tasks.  The goal when grouping tasks is that you want to make each task “group” have as few dependencies as possible to other tasks or groups, and then work out the dependencies within that group.  Typically, this works best when any external dependency is based on the “last” task within the group when it’s ordered, although that is not a firm requirement.  This process is often called Grouping Tasks.  In our case, we can easily group together tasks, effectively turning this into four discrete task groups: 1. Show our splash screen – This needs to be left as its own task.  First, multiple things depend on this task, mainly because we want this to start before any other action, and start as quickly as possible. 2. Check for Update and Download the Update if it Exists - These two tasks logically group together.  We know we only download an update if the update exists, so that naturally follows.  This task has one dependency as an input, and other tasks only rely on the final task within this group. 3. Request a License, and then Setup the Menus – Here, we can group these two tasks together.  Although we mentioned that our welcome screen depends on the license returned, it also depends on setting up the menu, which is the final task here.  Setting up our menus cannot happen until after our license is requested.  By grouping these together, we further reduce our problem space. 4. Display welcome and hide splash - Finally, we can display our welcome window and hide our splash screen.  This task group depends on all three previous task groups – it cannot happen until all three of the previous groups have completed. By grouping the tasks together, we reduce our problem space, and can naturally see a pattern for how this process can be parallelized.  The diagram below shows one approach: The orange boxes show each task group, with each task represented within.  We can, now, effectively take these tasks, and run a large portion of this process in parallel, including the portions which may be the most time consuming.  We’ve now created two parallel paths which our process execution can follow, hopefully speeding up the application startup time dramatically. The main point to remember here is that, when decomposing your problem space by tasks, you need to: Define each discrete action as an individual Task Discover dependencies between your tasks Group tasks based on their dependencies Order the tasks and groups of tasks

    Read the article

  • What are some good algorithms for drawing lines between graph nodes?

    - by ApplePieIsGood
    What I'm specifically grappling with is not just the layout of a graph, but when a user selects a graph node and starts to drag it around the screen area, the line has to constantly be redrawn to reflect what it would look like if the user were to release the node. I suppose this is part of the layout algorithm? Also some applications get a bit fancy and don't simply draw the line in a nice curvy way, but also bend the line around the square shaped node in almost right angles. See attached image and keep in mind that as a node is dragged, the line is drawn as marching ants, and re-arranged nicely, while retaining its curved style.

    Read the article

  • Map Generation Algorithms for Minecraft Clone

    - by Danjen
    I'm making a Minecraft clone for the sake of it (with some inspriation from Dwarf Fortress) and had a few questions about the way the world generation is handled. Things I want it to cover: Biomes such as hills, mountains, forests, etc. Caves/caverns/tunnels Procedural (so it stretches to infinity... is wrap-around a possibility?) Breaking the map into smaller chunks Moddable (ie, new terrain types) Multiplayer compatible In particular, I've seen things such as Perlin Noise, Heightmaps, and Marching Cubes thrown around. These are like different tools to use, but I don't know when or why I would use them. Are there any other techniques that are useful for map generation? I realize this is borderline subjective and open-ended, but I am looking for some more insight into the processes involved.

    Read the article

  • How to apply numerical integration on a graph layout

    - by Cumatru
    I've done some basic 1 D integration, but i can't wrap my head around things and apply it to my graph layout. So, consider the picture below: if i drag the red node to the right, i'm forcing his position to my mouse position the other nodes will "follow" him, but how ? For Verlet, to compute the newPosition, i need the acceleration for every node and the currentPosition. That is what i don't understand. How to i compute the acceleration and the currentPosition ? The currentPosition will be the position of the RedNode ? If yes, doesn't that means that they will all overlap ? http://i.stack.imgur.com/NCKmO.jpg

    Read the article

  • Reading 'Index Status' graph in Google Webmaster tools

    - by sam
    I recently found a bunch of old files that had been ftp'ed to a live production server by mistake on a static (html / css / js) site. I manually deleted these files, but today when checking in Google Webmaster tools i found this graph below. The 'update' marker is from 3/9/14, what i can work out is what Google is trying to tell me, are they saying that : There was a ranking update like Penguin or Panda and they penalized my site and un-indexed a load of pages which they thought were junk.. OR Is this showing that I updated the site by deleting the files on the server on 3/9/14 OR Is this something else ?

    Read the article

  • Recommened design pattern to handle multiple compression algorithms for a class hierarchy

    - by sgorozco
    For all you OOD experts. What would be the recommended way to model the following scenario? I have a certain class hierarchy similar to the following one: class Base { ... } class Derived1 : Base { ... } class Derived2 : Base { ... } ... Next, I would like to implement different compression/decompression engines for this hierarchy. (I already have code for several strategies that best handle different cases, like file compression, network stream compression, legacy system compression, etc.) I would like the compression strategy to be pluggable and chosen at runtime, however I'm not sure how to handle the class hierarchy. Currently I have a tighly-coupled design that looks like this: interface ICompressor { byte[] Compress(Base instance); } class Strategy1Compressor : ICompressor { byte[] Compress(Base instance) { // Common compression guts for Base class ... // if( instance is Derived1 ) { // Compression guts for Derived1 class } if( instance is Derived2 ) { // Compression guts for Derived2 class } // Additional compression logic to handle other class derivations ... } } As it is, whenever I add a new derived class inheriting from Base, I would have to modify all compression strategies to take into account this new class. Is there a design pattern that allows me to decouple this, and allow me to easily introduce more classes to the Base hierarchy and/or additional compression strategies?

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >