Search Results

Search found 1308 results on 53 pages for 'texture'.

Page 18/53 | < Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >

  • OpenGL : Keeping alpha in a render buffer

    - by Cyan
    In my current task, i need to render a texture into a render buffer, in order to work on it (apply special filters) there. The result is then considered a "new texture", which is later displayed. This works fine, except when the texture contains some transparent/semi-transparent parts. My current guess it that, within the render buffer, the texture is "merged" with a kind of "grey background". In this case, it obviously impacts the R,G,B color components of transparent pixels. I've yet to find a way around this. Even manually assigning alpha after the rendering process doesn't save the day for semi-transparent pixels, which RGB are "tainted" by the grey background.

    Read the article

  • How to add two textures ,one is used as background and another one is used in a rotating cube!

    - by VampirEMufasa
    I am working in OpenGL ES 2.0. Now I am writing a demo for my project, I load two png images as my textures with the libSOIL But now I need to use one of them as the texture of my demo's background and another one as the texture of a rotating cube. In OpenGL ES 2.0, the adding texture operation is in the shader But now I don't know how to add the different textures to the different place in a shader Who can help me! Thank you very much!

    Read the article

  • ipad full screen (1024x768) animation with around 1800 frames fps problem

    - by Muhammad Farhan
    Hi there. what i am trying to do is to play a full screen(1024x768) animation on ipad with an fps of around 20. i have got a scene with 1800 full screen frames. till now i have tried a lot of approaches but have encountered a lot of problems. my first approach was to get the texture using the following function t = [[CCTexture2D alloc] initWithImage:[UIImage imageWithContentsOfFile:[[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"(%d)",startIndex] ofType:type]]]; give it to sprite by using setTexture method and then release the texture then create a new texture with next frame and repeat the procedure but by using this approach i only get an FPS of about 7. my second approach was to preload about 10 textures in texturecache save them in an array and give them to sprite using setTexture and on the back end i am replacing the old textures with the new texture in a thread but the problem i face is that creating new texture and adding to array takes some time and when the settexture method is called the sprite displays the old texture because the new one is not loaded yet but after some time new texture get loaded. Is there any way i can run a full screen animation on ipad at around 20 fps plesae help me out. Thanks Farhan

    Read the article

  • Why can't I render objects to texture properly using FBO?

    - by Brett
    Hello, I'm trying to implement a simple program using 3 FBO's to render a scene to a texture and display a textured quad. I've successfully done this previously using fragment shaders before projecting to the textured quad but can't get it to work without a shader. What could be wrong? First I set up my textures glGenTextures(3, renderTextureID); for (GLint i = 0; i < 3; i++) { glBindTexture(GL_TEXTURE_2D, renderTextureID[i]); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // this may change with window size changes glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, fboWidth, fboHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); } Next some framebuffer state glGenFramebuffersEXT(3, framebufferID); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[0]); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, renderTextureID[0], 0); GLenum fboStatus = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if(fboStatus != GL_FRAMEBUFFER_COMPLETE_EXT) { fprintf(stderr, "FBO Error!"); } glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[1]); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, renderTextureID[1], 0); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[2]); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, renderTextureID[2], 0); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); Then I render the scene glViewport(0, 0, fboWidth, fboHeight); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, framebufferID[0]); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); drawModels(); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); glBindTexture(GL_TEXTURE_2D, renderTextureID[0]); glEnable(GL_SCISSOR_TEST); glViewport(windowWidth/2, 0, fboWidth, fboHeight); glScissor(windowWidth/2, 0, fboWidth, fboHeight); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glBegin(GL_QUADS); glTexCoord2i(0, 0); glVertex2f(-1.0f, -1.0f); glTexCoord2i(1, 0); glVertex2f(1.0f, -1.0f); glTexCoord2i(1, 1); glVertex2f(1.0f, 1.0f); glTexCoord2i(0, 1); glVertex2f(-1.0f, 1.0f); glEnd(); glDisable(GL_SCISSOR_TEST); glutSwapBuffers(); The result is a yellow square. Draw models draws yellow wireframe cubes if not using the FBO so the problem is not that. I've read a previous similar post that talks about using glTexParameterf after generating and binding textures but i've done this. Thanks...

    Read the article

  • Is there anything wrong with my texture loading method ?

    - by José Joel.
    I'm a noob in openGL and trying to learn as much as possible. I'm using this method to load my openGL textures, loading every .png as RGBA4444. I'm doing anything incorrect ? - (void)loadTexture:(NSString*)nombre { CGImageRef textureImage =[UIImage imageWithContentsOfFile:[[NSBundle mainBundle] pathForResource:nombre ofType:nil]].CGImage; if (textureImage == nil) { NSLog(@"Failed to load texture image"); return; } textureWidth = NextPowerOfTwo(CGImageGetWidth(textureImage)); textureHeight = NextPowerOfTwo(CGImageGetHeight(textureImage)); imageSizeX= CGImageGetWidth(textureImage); imageSizeY= CGImageGetHeight(textureImage); GLubyte *textureData = (GLubyte *)calloc(1,textureWidth * textureHeight * 4); // Por 4 pues cada pixel necesita 4 bytes, RGBA CGContextRef textureContext = CGBitmapContextCreate(textureData, textureWidth,textureHeight,8, textureWidth * 4,CGImageGetColorSpace(textureImage),kCGImageAlphaPremultipliedLast ); CGContextDrawImage(textureContext, CGRectMake(0.0, 0.0, (float)textureWidth, (float)textureHeight), textureImage); //Convert "RRRRRRRRRGGGGGGGGBBBBBBBBAAAAAAAA" to "RRRRGGGGBBBBAAAA" void *tempData = malloc(textureWidth * textureHeight * 2); unsigned int* inPixel32 = (unsigned int*)textureData; unsigned short* outPixel16 = (unsigned short*)tempData; for(int i = 0; i < textureWidth * textureHeight ; ++i, ++inPixel32) *outPixel16++ = ((((*inPixel32 >> 0) & 0xFF) >> 4) << 12) | // R ((((*inPixel32 >> 8) & 0xFF) >> 4) << 8) | // G ((((*inPixel32 >> 16) & 0xFF) >> 4) << 4) | // B ((((*inPixel32 >> 24) & 0xFF) >> 4) << 0); // A free(textureData); textureData = tempData; CGContextRelease(textureContext); glGenTextures(1, &textures[0]); glBindTexture(GL_TEXTURE_2D, textures[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 , textureData); free(textureData); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } And this is my dealloc method: - (void)dealloc { glDeleteTextures(1,textures); [super dealloc]; }

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Libgdx - 2D Mesh rendering overlap glitch

    - by user46858
    I am trying to render a 2D circle segment mesh (quarter circle)using Libgdx/Opengl ES 2.0 but I seem to be getting an overlapping issue as seen in the picture attached. I cant seem to find the cause of the problem but the overlapping disappears/reappears if I drag and resize the window to random sizes. The problem occurs on both pc and android. The strange thing is the first two segments atleast dont seem to be causing any overlapping only the third and/or forth segment.......even though they are all rendered using the same mesh object..... I have spent ages trying to find the cause of the problem before posting here for help so ANY help/advice in finding the cause of this problem would be really appreciated. public class MyGdxGame extends Game { private SpriteBatch batch; private Texture texture; private OrthographicCamera myCamera; private float w; private float h; private ShaderProgram circleSegShader; private Mesh circleScaleSegMesh; private Stage stage; private float TotalSegments; Vector3 virtualres; @Override public void create() { w = Gdx.graphics.getWidth(); h = Gdx.graphics.getHeight(); batch = new SpriteBatch(); ViewPortsize = new Vector2(); TotalSegments = 4.0f; virtualres = new Vector3(1280.0f, 720.0f, 0.0f); myCamera = new OrthographicCamera(); myCamera.setToOrtho(false, w, h); texture = new Texture(Gdx.files.internal("data/libgdx.png")); texture.setFilter(TextureFilter.Linear, TextureFilter.Linear); circleScaleSegMesh = createCircleMesh_V3(0.0f,0.0f,200.0f, 30.0f,3, (360.0f /TotalSegments) ); circleSegShader = loadShaderFromFile(new String("circleseg.vert"), new String("circleseg.frag")); shaderProgram.pedantic = false; stage = new Stage(); stage.setViewport(new ExtendViewport(w, h)); Gdx.input.setInputProcessor(stage); } @Override public void render() { .... //render renderInit(); renderCircleScaledSegment(); } @Override public void resize(int width, int height) { stage.getViewport().update(width, height, true); myCamera.position.set( virtualres.x/2.0f, virtualres.y/2.0f, 0.0f); myCamera.update(); } public void renderInit(){ Gdx.gl20.glClearColor(1.0f, 1.0f, 1.0f, 0.0f); Gdx.gl20.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT); batch.setShader(null); batch.setProjectionMatrix(myCamera.combined); } public void renderCircleScaledSegment(){ Gdx.gl20.glEnable(GL20.GL_DEPTH_TEST); Gdx.gl20.glBlendFunc(GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA); Gdx.gl20.glEnable(GL20.GL_BLEND); batch.begin(); circleSegShader.begin(); Matrix4 modelMatrix = new Matrix4(); Matrix4 cameraMatrix = new Matrix4(); Matrix4 cameraMatrix2 = new Matrix4(); Matrix4 cameraMatrix3 = new Matrix4(); Matrix4 cameraMatrix4 = new Matrix4(); cameraMatrix = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f)).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix.mul(modelMatrix); cameraMatrix2 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(360.0f /TotalSegments) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix2.mul(modelMatrix); cameraMatrix3 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(2*(360.0f /TotalSegments))).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix3.mul(modelMatrix); cameraMatrix4 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f),0.0f - ((360.0f /TotalSegments)/ 2.0f) +(3*(360.0f /TotalSegments)) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix4.mul(modelMatrix); Vector3 box2dpos = new Vector3(0.0f, 0.0f, 0.0f); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix2); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix3); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix4); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.end(); batch.flush(); batch.end(); Gdx.gl20.glDisable(GL20.GL_DEPTH_TEST); Gdx.gl20.glDisable(GL20.GL_BLEND); } public Mesh createCircleMesh_V3(float cx, float cy, float r_out, float r_in, int num_segments, float segmentSizeDegrees){ float theta = (float) (2.0f * MathUtils.PI / (num_segments * (360.0f / segmentSizeDegrees))); float c = MathUtils.cos(theta);//precalculate the sine and cosine float s = MathUtils.sin(theta); float t,t2; float x = r_out;//we start at angle = 0 float y = 0; float x2 = r_in;//we start at angle = 0 float y2 = 0; float[] meshCoords = new float[num_segments *2 *3 *7]; int arrayIndex = 0; //array for triangles without indices for(int ii = 0; ii < num_segments; ii++) { meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t = x; x = c * x - s * y; y = s * t + c * y; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t2 = x2; x2 = c * x2 - s * y2; y2 = s * t2 + c * y2; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; } Mesh myMesh = new Mesh(VertexDataType.VertexArray, false, meshCoords.length, 0, new VertexAttribute(VertexAttributes.Usage.Position, 3, "a_position"), new VertexAttribute(VertexAttributes.Usage.Color, 4, "a_color")); myMesh.setVertices(meshCoords); return myMesh; } }

    Read the article

  • libgdx rotation (animation, arrays) issues and help needed

    - by johnny-b
    well i am a noob at java and libgdx. i got the homing bullet working with the help of someone. now i am smashing my head as to how i can make it rotate so it faces the ball (which is the main character) when it goes around it or when it is coming towards it. the bullet is facing <--- and the code below is what i have done so far. also i used sprites for the bullet and also animation method. Also how do i make it an array/arraylist which is best so i can have multiple bullets at random or placed places. i tried many things nothing workd :( thank you for the help. // below is the bullet or enemy if you want to call it. public class Bullet extends Sprite { public static final float BULLET_HOMING = 6000; public static final float BULLET_SPEED = 300; private Vector2 velocity; private float lifetime; public Bullet(float x, float y) { velocity = new Vector2(0, 0); setPosition(x, y); } public void update(float delta) { float targetX = GameWorld.getBall().getX(); float targetY = GameWorld.getBall().getY(); float dx = targetX - getX(); float dy = targetY - getY(); float distToTarget = (float) Math.sqrt(dx * dx + dy * dy); dx /= distToTarget; dy /= distToTarget; dx *= BULLET_HOMING; dy *= BULLET_HOMING; velocity.x += dx * delta; velocity.y += dy * delta; float vMag = (float) Math.sqrt(velocity.x * velocity.x + velocity.y * velocity.y); velocity.x /= vMag; velocity.y /= vMag; velocity.x *= BULLET_SPEED; velocity.y *= BULLET_SPEED; Vector2 v = velocity.cpy().scl(delta); setPosition(getX() + v.x, getY() + v.y); setOriginCenter(); setRotation(velocity.angle()); lifetime += delta; setRegion(AssetLoader.bulletAnimation.getKeyFrame(lifetime)); } } // this is where i load the images. public class AssetLoader { public static Animation bulletAnimation; public static Sprite bullet1, bullet2; public static void load() { texture = new Texture(Gdx.files.internal("SpriteN1.png")); texture.setFilter(TextureFilter.Nearest, TextureFilter.Nearest); bullet1 = new Sprite(texture, 380, 350, 45, 20); bullet1.flip(false, true); bullet2 = new Sprite(texture, 425, 350, 45, 20); bullet2.flip(false, true); Sprite[] bullets = { bullet1, bullet2 }; bulletAnimation = new Animation(0.06f, aims); bulletAnimation.setPlayMode(Animation.PlayMode.LOOP); } public static void dispose() { // We must dispose of the texture when we are finished. texture.dispose(); } // this is for the rendering of the images etc public class GameRenderer { private Bullet bullet; private Ball ball; public GameRenderer(GameWorld world) { myWorld = world; cam = new OrthographicCamera(); cam.setToOrtho(true, 480, 320); batcher = new SpriteBatch(); // Attach batcher to camera batcher.setProjectionMatrix(cam.combined); shapeRenderer = new ShapeRenderer(); shapeRenderer.setProjectionMatrix(cam.combined); // Call helper methods to initialize instance variables initGameObjects(); initAssets(); } private void initGameObjects() { ball = GameWorld.getBall(); bullet = myWorld.getBullet(); scroller = myWorld.getScroller(); } private void initAssets() { ballAnimation = AssetLoader.ballAnimation; bulletAnimation = AssetLoader.bulletAnimation; } public void render(float runTime) { Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL30.GL_COLOR_BUFFER_BIT); batcher.begin(); // Disable transparency // This is good for performance when drawing images that do not require // transparency. batcher.disableBlending(); // The ball needs transparency, so we enable that again. batcher.enableBlending(); batcher.draw(AssetLoader.ballAnimation.getKeyFrame(runTime), ball.getX(), ball.getY(), ball.getWidth(), ball.getHeight()); batcher.draw(AssetLoader.bulletAnimation.getKeyFrame(runTime), bullet.getX(), bullet.getY()); // End SpriteBatch batcher.end(); } } // this is to load the image etc on the screen i guess public class GameWorld { public static Ball ball; private Bullet bullet; private ScrollHandler scroller; public GameWorld() { ball = new Ball(480, 273, 32, 32); bullet = new Bullet(10, 10); scroller = new ScrollHandler(0); } public void update(float delta) { ball.update(delta); bullet.update(delta); scroller.update(delta); } public static Ball getBall() { return ball; } public ScrollHandler getScroller() { return scroller; } public Bullet getBullet() { return bullet; } } so there is the whole thing. the images are loaded via the AssetLoader then to the GameRenderer and GameWorld via the Bullet class. i am guessing that is how it is. sorry newbie so still learning. thank you in advace for the help or any advice.

    Read the article

  • 3ds collada UV mapping problem in Papervision

    - by MonsieurOreilles
    Hi everyone, as I briefly explained in the title, my prblem concerns texturing a collada export in papervision. Basically I was exporting collada models from Cinema 4d with its uv map. I was able to see everything, but the texture was not displaying properly (hidden polygons). So I decided to try with 3dsMax. I used the same code to display the texture : var materials:MaterialsList = new MaterialsList(); var torusMaterial:BitmapFileMaterial = new BitmapFileMaterial("model/tex.png"); torusMaterial.precise = true; materials.addMaterial(torusMaterial, "ID1"); Again, I can see every elements, but this time my model uses only one pixel of my texture. So if I use a red texture and if I color only the pixel at the left bottom corner in green, all my model will be green. Any advice about how to properly wrap the texture around a 3ds export model ? Thank you.

    Read the article

  • How to add texture to fill colors in ggplot2?

    - by rhh
    I'm currently using scale_brewer for fill and these look beautiful in color (on screen and via color printer) but print relatively uniformly as greys when using a black and white printer. I searched the online ggplot2 documentation but didn't see anything about adding textures to fill colors. Is there an official ggplot2 way to do this or does anyone have a hack that they use? By textures I mean things like diagonal bars, reverse diagonal bars, dot patterns, etc that would differentiate fill colors when printed in black and white. Thanks for thoughts! Robert

    Read the article

  • Cocos2d-xna memory management for WP8

    - by Arkiliknam
    I recently upgraded to VS2012 and try my in dev game out on the new WP8 emulators but was dismayed to find out the emulator now crashes and throws an out of memory exception during my sprite loading procedure (funnily, it still works in WP7 emulators and on my WP7). Regardless of whether the problem is the emulator or not, I want to get a clear understanding of how I should be managing memory in the game. My game consists of a character whom has 4 or more different animations. Each animation consists of 4 to 7 frames. On top of that, the character has up to 8 stackable visualization modifications (eg eye type, nose type, hair type, clothes type). Pre memory issue, I preloaded all textures for each animation frame and customization and created animate action out of them. The game then plays animations using the customizations applied to that current character. I re-looked at this implementation when I received the out of memory exceptions and have started playing with RenderTexture instead, so instead of pre loading all possible textures, it on loads textures needed for the character, renders them onto a single texture, from which the animation is built. This means the animations use 1/8th of the sprites they were before. I thought this would solve my issue, but it hasn't. Here's a snippet of my code: var characterTexture = CCRenderTexture.Create((int)width, (int)height); characterTexture.BeginWithClear(0, 0, 0, 0); // stamp a body onto my texture var bodySprite = MethodToCreateSpecificSprite(); bodySprite.Position = centerPoint; bodySprite.Visit(); bodySprite.Cleanup(); bodySprite = null; // stamp eyes, nose, mouth, clothes, etc... characterTexture.End(); As you can see, I'm calling CleanUp and setting the sprite to null in the hope of releasing the memory, though I don't believe this is the right way, nor does it seem to work... I also tried using SharedTextureCache to load textures before Stamping my texture out, and then clearing the SharedTextureCache with: CCTextureCache.SharedTextureCache.RemoveAllTextures(); But this didn't have an effect either. Any tips on what I'm not doing? I used VS to do a memory profile of the emulation causing the crash. Both WP7.1 and WP8 emulators peak at about 150mb of usage. WP8 crashes and throws an out of memory exception. Each customisation/frame is 15kb at the most. Lets say there are 8 layers of customisation = 120kb but I render then onto one texture which I would assume is only 15kb again. Each animation is 8 frames at the most. That's 15kb for 1 texture, or 960kb for 8 textures of customisation. There are 4 animation sets. That's 60Kb for 4 sets of 1 texture, or 3.75MB for 4 sets of 8 textures of customisation. So even if its storing every layer, its 3.75MB.... no where near the 150mb breaking point my profiler seems to suggest :( WP 7.1 Memory Profile (max 150MB) WP8 Memory Profile (max 150MB and crashes)

    Read the article

  • Collisions not working as intended

    - by Stan
    I'm making a game, it's a terraria-like game, with 20x20 blocks, and you can place and remove those blocks. Now, I am trying to write collisions, but it isn't working as I want, the collision succesfully stops the player from going through the ground, but, when I press a key like A + S, that means if I walk down and left (Noclip is on atm), my player will go into the ground, bug up, and exit the ground somewhere else in the level. I made a video of it. The red text means which buttons I am pressing. http://www.youtube.com/watch?v=mo4frZyNwOs You see, if I press A and S together, I go into the ground. Here is my collision code: Vector2 collisionDist, normal; private bool IsColliding(Rectangle body1, Rectangle body2) { normal = Vector2.Zero; Vector2 body1Centre = new Vector2(body1.X + (body1.Width / 2), body1.Y + (body1.Height / 2)); Vector2 body2Centre = new Vector2(body2.X + (body2.Width / 2), body2.Y + (body2.Height / 2)); Vector2 distance, absDistance; float xMag, yMag; distance = body1Centre - body2Centre; float xAdd = ((body1.Width) + (body2.Width)) / 2.0f; float yAdd = ((body1.Height) + (body2.Height)) / 2.0f; absDistance.X = (distance.X < 0) ? -distance.X : distance.X; absDistance.Y = (distance.Y < 0) ? -distance.Y : distance.Y; if (!((absDistance.X < xAdd) && (absDistance.Y < yAdd))) return false; xMag = xAdd - absDistance.X; yMag = yAdd - absDistance.Y; if (xMag < yMag) normal.X = (distance.X > 0) ? xMag : -xMag; else normal.Y = (distance.Y > 0) ? yMag : -yMag; return true; } private void PlayerCollisions() { foreach (Block blocks in allTiles) { collisionDist = Vector2.Zero; if (blocks.Texture != airTile && blocks.Texture != stoneDarkTexture && blocks.Texture != stoneDarkTextureSelected && blocks.Texture != airTileSelected && blocks.Texture != doorTexture && blocks.Texture != doorTextureSelected) { if (IsColliding(player.plyRect, blocks.tileRect)) { if (normal.Length() > collisionDist.Length()) { collisionDist = normal; } player.Position.X += collisionDist.X; player.Position.Y += collisionDist.Y; break; } } } } I got PlayerCollisions() running in my Update method. As you can see it works partly, but if it runs perfectly, it would be awesome, though I have no idea how to fix this problem. Help would be greatly appreciated. EDIT: If I remove the break; it works partly, then it is just the thing that it spasms when it hits two or more blocks at once, like, if I touch 2/3 blocks at once, it does twice the force up. How can I make it so that it only does the force for one block, so it stays correct, and does not spasm? Thanks.

    Read the article

  • How do I use setFilmSize in panda3d to achieve the correct view?

    - by lhk
    I'm working with Panda3d and recently switched my game to isometric rendering. I moved the virtual camera accordingly and set an orthographic lens. Then I implemented the classes "Map" and "Canvas". A canvas is a dynamically generated mesh: a flat quad. I'm using it to render the ingame graphics. Since the game itself is still set in a 3d coordinate system I'm planning to rely on these canvases to draw sprites. I could have named this class "Tile" but as I'd like to use it for non-tile sketches (enemies, environment) as well I thought canvas would describe it's function better. Map does exactly what it's name suggests. Its constructor receives the number of rows and columns and then creates a standard isometric map. It uses the canvas class for tiles. I'm planning to write a map importer that reads a file to create maps on the fly. Here's the canvas implementation: class Canvas: def __init__(self, texture, vertical=False, width=1,height=1): # create the mesh format=GeomVertexFormat.getV3t2() format = GeomVertexFormat.registerFormat(format) vdata=GeomVertexData("node-vertices", format, Geom.UHStatic) vertex = GeomVertexWriter(vdata, 'vertex') texcoord = GeomVertexWriter(vdata, 'texcoord') # add the vertices for a flat quad vertex.addData3f(1, 0, 0) texcoord.addData2f(1, 0) vertex.addData3f(1, 1, 0) texcoord.addData2f(1, 1) vertex.addData3f(0, 1, 0) texcoord.addData2f(0, 1) vertex.addData3f(0, 0, 0) texcoord.addData2f(0, 0) prim = GeomTriangles(Geom.UHStatic) prim.addVertices(0, 1, 2) prim.addVertices(2, 3, 0) self.geom = Geom(vdata) self.geom.addPrimitive(prim) self.node = GeomNode('node') self.node.addGeom(self.geom) # this is the handle for the canvas self.nodePath=NodePath(self.node) self.nodePath.setSx(width) self.nodePath.setSy(height) if vertical: self.nodePath.setP(90) # the most important part: "Drawing" the image self.texture=loader.loadTexture(""+texture+".png") self.nodePath.setTexture(self.texture) Now the code for the Map class class Map: def __init__(self,rows,columns,size): self.grid=[] for i in range(rows): self.grid.append([]) for j in range(columns): # create a canvas for the tile. For testing the texture is preset tile=Canvas(texture="../assets/textures/flat_concrete",width=size,height=size) x=(i-1)*size y=(j-1)*size # set the tile up for rendering tile.nodePath.reparentTo(render) tile.nodePath.setX(x) tile.nodePath.setY(y) # and store it for later access self.grid[i].append(tile) And finally the usage def loadMap(self): self.map=Map(10, 10, 1) this function is called within the constructor of the World class. The instantiation of world is the entry point to the execution. The code is pretty straightforward and runs good. Sadly the output is not as expected: Please note: The problem is not the white rectangle, it's my player object. The problem is that although the map should have equal width and height it's stretched weirdly. With orthographic rendering I expected the map to be a perfect square. What did I do wrong ? UPDATE: I've changed the viewport. This is how I set up the orthographic camera: lens = OrthographicLens() lens.setFilmSize(40, 20) base.cam.node().setLens(lens) You can change the "aspect" by modifying the parameters of setFilmSize. I don't know exactly how they are related to window size and screen resolution but after testing a little the values above seem to work for me. Now everything is rendered correctly as long as I don't resize the window. Every change of the window's size as well as switching to fullscreen destroys the correct rendering. I know that implementing a listener for resize events is not in the scope of this question. However I wonder why I need to make the Film's height two times bigger than its width. My window is quadratic ! Can you tell me how to find out correct setting for the FilmSize ? UPDATE 2: I can imagine that it's hard to envision the behaviour of the game. At first glance the obvious solution is to pass the window's width and height in pixels to setFilmSize. There are two problems with that approach. The parameters for setFilmSize are ingame units. You'll get a way to big view if you pass the pixel size For some strange reason the image is distorted if you pass equal values for width and height. Here's the output for setFilmSize(800,800) You'll have to stress your eyes but you'll see what I mean

    Read the article

  • delete multi-line block of text with internal flag in povray file

    - by Sibo Lin
    I have a pov-ray file, which defines a lot of cylinders and spheres. Sometimes these shapes are defined to have "color@", which makes the povray unrenderable. One solution I've found is to delete the offending cylinders and spheres. So a file that contains this text cylinder { < -0.17623, 0.24511, -0.27947>, < -0.15220, 0.22658, -0.26472>, 0.00716 texture { colorO } } sphere { < -0.00950, 0.00357, 0.00227>, 0.00716 texture { color@ } } cylinder { < -0.00950, 0.00357, 0.00227>, < 0.00327, 0.00169, 0.00108>, 0.00716 texture { color@ } } sphere { < 0.15373, 0.00601, 0.18223>, 0.00716 texture { colorO } } would turn into this text cylinder { < -0.17623, 0.24511, -0.27947>, < -0.15220, 0.22658, -0.26472>, 0.00716 texture { colorO } } sphere { < 0.15373, 0.00601, 0.18223>, 0.00716 texture { colorO } } Is there some way to do this replacement with a shell script? Preferably in tcsh. Thanks!

    Read the article

  • Pixel Shader, YUV-RGB Conversion failing

    - by TomTom
    I am tasked with playing back a video hthat comes in in a YUV format as an overlay in a larger game. I am not a specialist in Direct3d, so I am struggling. I managed to get a shader working and am rendering 3 textures (Y, V, U). Sadly I am totally unable to get anything like a decent image. Documentation is also failing me. I am currently loading the different data planes (Y,V,U) in three different textures: m_Textures = new Texture[3]; // Y Plane m_Textures[0] = new Texture(m_Device, w, h, 1, Usage.None, Format.L8, Pool.Managed); // V Plane m_Textures[1] = new Texture(m_Device, w2, h2, 1, Usage.None, Format.L8, Pool.Managed); // U Plane m_Textures[2] = new Texture(m_Device, w2, h2, 1, Usage.None, Format.L8, Pool.Managed); When I am rendering them as R, G and B respectively with the following code: float4 Pixel( float2 texCoord: TEXCOORD0) : COLOR0 { float y = tex2D (ytexture, texCoord); float v = tex2D (vtexture, texCoord); float u = tex2D (utexture, texCoord); //R = Y + 1.140 (V -128) //G = Y - 0.395 (U-128) - 0.581 (V-128) //B = Y + 2.028 (U-128) float r = y; //y + 1.140 * v; float g = v; //y - 0.395 * u - 0.581 * v; float b = u; //y + 2.028 * u; float4 result; result.a = 255; result.r = r; //clamp (r, 0, 255); result.g = g; //clamp (g, 0, 255); result.b = b; //clamp (b, 0, 255); return result; } Then the resulting image is - quite funny. I can see the image, but colors are totally distorted, as it should be. The formula I should apply shows up in the comment of the pixel shader, but when I do it, the resulting image is pretty brutally magenta only. This gets me to the question - when I read out an L8 texture into a float, with float y = tex2D (ytexture, texCoord); what is the range of values? The "origin" values are 1 byte, 0 to 255, and the forum I have assumes this. Naturally I am totally off when the values returned are somehow normalized. My Clamp operation at the end also will fail if for example colors in a pixel shader are normalized 0 to 1. Anyone an idea how that works? Please point me also to documentation - I have not found anything in this regard.

    Read the article

  • Monogame/SharpDX - Shader parameters missing

    - by Layoric
    I am currently working on a simple game that I am building in Windows 8 using MonoGame (develop3d). I am using some shader code from a tutorial (made by Charles Humphrey) and having an issue populating a 'texture' parameter as it appears to be missing. Edit I have also tried 'Texture2D' and using it with a register(t0), still no luck I'm not well versed writing shaders, so this might be caused by a more obvious problem. I have debugged through MonoGame's Content processor to see how this shader is being parsed, all the non 'texture' parameters are there and look to be loading correctly. Edit This seems to go back to D3D compiler. Shader code below: #include "PPVertexShader.fxh" float2 lightScreenPosition; float4x4 matVP; float2 halfPixel; float SunSize; texture flare; sampler2D Scene: register(s0){ AddressU = Clamp; AddressV = Clamp; }; sampler Flare = sampler_state { Texture = (flare); AddressU = CLAMP; AddressV = CLAMP; }; float4 LightSourceMaskPS(float2 texCoord : TEXCOORD0 ) : COLOR0 { texCoord -= halfPixel; // Get the scene float4 col = 0; // Find the suns position in the world and map it to the screen space. float2 coord; float size = SunSize / 1; float2 center = lightScreenPosition; coord = .5 - (texCoord - center) / size * .5; col += (pow(tex2D(Flare,coord),2) * 1) * 2; return col * tex2D(Scene,texCoord); } technique LightSourceMask { pass p0 { VertexShader = compile vs_4_0 VertexShaderFunction(); PixelShader = compile ps_4_0 LightSourceMaskPS(); } } I've removed default values as they are currently not support in MonoGame and also changed ps and vs to v4 instead of 2. Could this be causing the issue? As I debug through 'DXConstantBufferData' constructor (from within the MonoGameContentProcessing project) I find that the 'flare' parameter does not exist. All others seem to be getting created fine. Any help would be appreciated. Update 1 I have discovered that SharpDX D3D compiler is what seems to be ignoring this parameter (perhaps by design?). The ConstantBufferDescription.VariableCount seems to be not counting the texture variable. Update 2 SharpDX function 'GetConstantBuffer(int index)' returns the parameters (minus textures) which is making is impossible to set values to these variables within the shader. Any one know if this is normal for DX11 / Shader Model 4.0? Or am I missing something else?

    Read the article

  • OpenGL position from depth is wrong

    - by CoffeeandCode
    My engine is currently implemented using a deferred rendering technique, and today I decided to change it up a bit. First I was storing 5 textures as so: DEPTH24_STENCIL8 - Depth and stencil RGBA32F - Position RGBA10_A2 - Normals RGBA8 x 2 - Specular & Diffuse I decided to minimize it and reconstruct positions from the depth buffer. Trying to figure out what is wrong with my method currently has not been fun :/ Currently I get this: which changes whenever I move the camera... weird Vertex shader really simple #version 150 layout(location = 0) in vec3 position; layout(location = 1) in vec2 uv; out vec2 uv_f; void main(){ uv_f = uv; gl_Position = vec4(position, 1.0); } Fragment shader Where the fun (and not so fun) stuff happens #version 150 uniform sampler2D depth_tex; uniform sampler2D normal_tex; uniform sampler2D diffuse_tex; uniform sampler2D specular_tex; uniform mat4 inv_proj_mat; uniform vec2 nearz_farz; in vec2 uv_f; ... other uniforms and such ... layout(location = 3) out vec4 PostProcess; vec3 reconstruct_pos(){ float z = texture(depth_tex, uv_f).x; vec4 sPos = vec4(uv_f * 2.0 - 1.0, z, 1.0); sPos = inv_proj_mat * sPos; return (sPos.xyz / sPos.w); } void main(){ vec3 pos = reconstruct_pos(); vec3 normal = texture(normal_tex, uv_f).rgb; vec3 diffuse = texture(diffuse_tex, uv_f).rgb; vec4 specular = texture(specular_tex, uv_f); ... do lighting ... PostProcess = vec4(pos, 1.0); // Just for testing } Rendering code probably nothing wrong here, seeing as though it always worked before this->gbuffer->bind(); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Enable(gl::DEPTH_TEST); gl::Enable(gl::CULL_FACE); ... bind geometry shader and draw models and shiz ... gl::Disable(gl::DEPTH_TEST); gl::Disable(gl::CULL_FACE); gl::Enable(gl::BLEND); ... bind textures and lighting shaders shown above then draw each light ... gl::BindFramebuffer(gl::FRAMEBUFFER, 0); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Disable(gl::BLEND); ... bind screen shaders and draw quad with PostProcess texture ... Rinse_and_repeat(); // not actually a function ;) Why are my positions being output like they are?

    Read the article

  • Drawing lots of tiles with OpenGL, the modern way

    - by Nic
    I'm working on a small tile/sprite-based PC game with a team of people, and we're running into performance issues. The last time I used OpenGL was around 2004, so I've been teaching myself how to use the core profile, and I'm finding myself a little confused. I need to draw in the neighborhood of 250-750 48x48 tiles to the screen every frame, as well as maybe around 50 sprites. The tiles only change when a new level is loaded, and the sprites are changing all the time. Some of the tiles are made up of four 24x24 pieces, and most (but not all) of the sprites are the same size as the tiles. A lot of the tiles and sprites use alpha blending. Right now I'm doing all of this in immediate mode, which I know is a bad idea. All the same, when one of our team members tries to run it, he gets very bad frame rates (~20-30 fps), and it's much worse when there are more tiles, especially when a lot of those tiles are the kind that are cut into pieces. This all makes me think that the problem is the number of draw calls being made. I've thought of a few possible solutions to this, but I wanted to run them by some people who know what they're talking about so I don't waste my time on something stupid: TILES: When a level is loaded, draw all the tiles once into a frame buffer attached to a big honking texture, and just draw a big rectangle with that texture on it every frame. Put all the tiles into a static vertex buffer when the level is loaded, and draw them that way. I don't know if there's a way to draw objects with different textures with a single call to glDrawElements, or if this is even something I'd want to do. Maybe just put all the tiles into a big giant texture and use funny texture coordinates in the VBO? SPRITES: Draw each sprite with a separate call to glDrawElements. Use a dynamic VBO somehow. Same texture question as number 2 above. Point sprites? This is probably silly. Are any of these ideas sensible? Is there a good implementation somewhere I could look over?

    Read the article

  • ssao implementation

    - by Irbis
    I try to implement a ssao based on this tutorial: link I use a deferred rendering and world coordinates for shading calculations. When saving gbuffer a vertex shader output looks like this: worldPosition = vec3(ModelMatrix * vec4(inPosition, 1.0)); normal = normalize(normalModelMatrix * inNormal); gl_Position = ProjectionMatrix * ViewMatrix * ModelMatrix * vec4(inPosition, 1.0); Next for a ssao calculations I render a scene as a full screen quad and I save an occlusion parameter in a texture. (Vertex positions in the world space: link Normals in the world space: link) SSAO implementation: subroutine (RenderPassType) void ssao() { vec2 texCoord = CalcTexCoord(); vec3 worldPos = texture(texture0, texCoord).xyz; vec3 normal = normalize(texture(texture1, texCoord).xyz); vec2 noiseScale = vec2(screenSize.x / 4, screenSize.y / 4); vec3 rvec = texture(texture2, texCoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); mat3 tbn = mat3(tangent, bitangent, normal); float occlusion = 0.0; float radius = 4.0; for (int i = 0; i < kernelSize; ++i) { vec3 pix = tbn * kernel[i]; pix = pix * radius + worldPos; vec4 offset = vec4(pix, 1.0); offset = ProjectionMatrix * ViewMatrix * offset; offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; float sample_depth = texture(texture0, offset.xy).z; float range_check = abs(worldPos.z - sample_depth) < radius ? 1.0 : 0.0; occlusion += (sample_depth <= pix.z ? 1.0 : 0.0); } outputColor = vec4(occlusion, occlusion, occlusion, 1); } That code gives following results: camera looking towards -z world space: link camera looking towards +z world space: link I wonder if it is possible to use world coordinates in the above code ? When I move camera I get different results because world space positions don't change. Can I treat worldPos.z as a linear depth ? What should I change to get a correct results ? I except the white areas in place of occlusion, so the ground should has the white areas only near to the object.

    Read the article

  • What is the recommended way to output values to FBO targets? (OpenGL 3.3 + GLSL 330)

    - by datSilencer
    I'll begin by apologizing for any dumb assumptions you might find in the code below since I'm still pretty much green when it comes to OpenGL programming. I'm currently trying to implement deferred shading by using FBO's and their associated targets (textures in my case). I have a simple (I think :P) geometry+fragment shader program and I'd like to write its Fragment Shader stage output to three different render targets (previously bound by a call to glDrawBuffers()), like so: #version 330 in vec3 WorldPos0; in vec2 TexCoord0; in vec3 Normal0; in vec3 Tangent0; layout(location = 0) out vec3 WorldPos; layout(location = 1) out vec3 Diffuse; layout(location = 2) out vec3 Normal; uniform sampler2D gColorMap; uniform sampler2D gNormalMap; vec3 CalcBumpedNormal() { vec3 Normal = normalize(Normal0); vec3 Tangent = normalize(Tangent0); Tangent = normalize(Tangent - dot(Tangent, Normal) * Normal); vec3 Bitangent = cross(Tangent, Normal); vec3 BumpMapNormal = texture(gNormalMap, TexCoord0).xyz; BumpMapNormal = 2 * BumpMapNormal - vec3(1.0, 1.0, -1.0); vec3 NewNormal; mat3 TBN = mat3(Tangent, Bitangent, Normal); NewNormal = TBN * BumpMapNormal; NewNormal = normalize(NewNormal); return NewNormal; } void main() { WorldPos = WorldPos0; Diffuse = texture(gColorMap, TexCoord0).xyz; Normal = CalcBumpedNormal(); } If my render target textures are configured as: RT1:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE0, GL_COLOR_ATTACHMENT0) RT2:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE1, GL_COLOR_ATTACHMENT1) RT3:(GL_RGB32F, GL_RGB, GL_FLOAT, GL_TEXTURE2, GL_COLOR_ATTACHMENT2) And assuming that each texture has an internal format capable of contaning the incoming data, will the fragment shader write the corresponding values to the expected texture targets? On a related note, do the textures need to be bound to the OpenGL context when they are Multiple Render Targets? From some Googling, I think there are two other ways to output to MRTs: 1: Output each component to gl_FragData[n]. Some forum posts say this method is deprecated. However, looking at the latest OpenGL 3.3 and 4.0 specifications at opengl.org, the core profiles still mention this approach. 2: Use a typed output array variable for the expected type. In this case, I think it would be something like this: out vec3 [3] output; void main() { output[0] = WorldPos0; output[1] = texture(gColorMap, TexCoord0).xyz; output[2] = CalcBumpedNormal(); } So which is then the recommended approach? Is there a recommended approach at all if I plan to code on top of OpenGL 3.3? Thanks for your time and help!

    Read the article

  • Problem texturing with opengl

    - by Killrazor
    Hello! I'm having problems making a simple sprite rendering. I load 2 different textures. Then, I bind these textures and draw 2 squares, one with each texture. But only the texture of the first rendered object is drawn in both squares. Its like if I'd only use a texture or as if glBindTexture don't work properly. I know that GL is a state machine, but I think that you only need to change active texture with glBindTexture. I load texture with this method: bool CTexture::generate( utils::CImageBuff* img ) { assert(img); m_image = img; CHECKGL(glGenTextures(1,&m_textureID)); CHECKGL(glBindTexture(GL_TEXTURE_2D,m_textureID)); CHECKGL(glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR)); CHECKGL(glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR)); //CHECKGL(glTexImage2D(GL_TEXTURE_2D,0,img->getBpp(),img->getWitdh(),img->getHeight(),0,img->getFormat(),GL_UNSIGNED_BYTE,img->getImgData())); CHECKGL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img->getWitdh(), img->getHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img->getImgData())); return true; } And I bind textures with this function: void CTexture::bind() { CHECKGL(glBindTexture(GL_TEXTURE_2D,m_textureID)); } Also, I draw sprites with this method void CSprite2D::render() { CHECKGL(glLoadIdentity()); CHECKGL(glEnable(GL_TEXTURE_2D)); CHECKGL(glEnable(GL_BLEND)); CHECKGL(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); m_texture->bind(); CHECKGL(glPushMatrix()); CHECKGL(glBegin(GL_QUADS)); CHECKGL(glTexCoord2f(m_textureAreaStart.s,m_textureAreaStart.t)); // 0,0 by default CHECKGL(glVertex3i(m_position.x,m_position.y,0)); CHECKGL(glTexCoord2f(m_textureAreaEnd.s,m_textureAreaStart.t)); // 1,0 by default CHECKGL(glVertex3i( m_position.x + m_dimensions.x, m_position.y, 0)); CHECKGL(glTexCoord2f(m_textureAreaEnd.s, m_textureAreaEnd.t)); // 1,1 by default CHECKGL(glVertex3i( m_position.x + m_dimensions.x, m_position.y + m_dimensions.y, 0)); CHECKGL(glTexCoord2f(m_textureAreaStart.s, m_textureAreaEnd.t)); // 0,1 by default CHECKGL(glVertex3i( m_position.x, m_position.y + m_dimensions.y,0)); CHECKGL(glPopMatrix()); CHECKGL(glDisable(GL_BLEND)); } Could you help me? All help is welcome. Thanks!!

    Read the article

  • drawing thick, textured lines in OpenGL

    - by NateS
    I need to draw thick textured line segments in OpenGL. Actually I need curves made out of short line segments. Here is what I have: In the upper left is an example of two connected line segments. The second image shows once the lines are given width, they overlap. If I apply a texture that uses translucency, the overlap looks terrible. The third image shows that both lines are shortened by half the amount necessary to make the thick line corners just touch. This way I can fill the space between the lines with a triangle. On the right you can see this works well (ignore the horizontal line when the crappy texture repeats). But it doesn't always work well. In the bottom left the curve is made of many short line segments. Note the incorrect texture application. My program is written in Java, making use of the LWJGL OpenGL binding (and minor use of Slick, a 2D helper framework). I've made a zip file that contains an executable JAR so you can easily see the problem. It also has the Java code (there is only one source file) and an Eclipse project, so you can instantly run it through Eclipse and hack at it if you like. Here she is: http://n4te.com/temp/lines.zip To run, execute "java -jar lines.jar". You may need "-Djava.library.path=." before -jar if you are not on Windows. Press space to toggle texture/wireframe. The wireframe only shows the line segments, the triangle between them isn't drawn. I don't need to draw arbitrary lines, just bezier curves similar to what you see in the program. Sorry the code is a bit messy, once I have a solution I will refactor. I have investigated using GLUtessellator. It greatly simplified construction of the line, but I found that applying the texture was perfect. It worked most of the time (top image below), but long vertical curves would have severe texture distortion (bottom image below): This turned out to be much easier to code, but in the end worse than my approach. I believe what I'm trying to do is called "line tessellation" or "stroke tessellation". I assume this has been solved already? Is there standard code I can leverage? Otherwise, how can I fix my code so that the texture does not freak out on short, vertical curves?

    Read the article

  • What are the valid DepthBuffer Texture formats in DirectX 11? And which are also valid for a staging resource?

    - by sebf
    I am trying to read the contents of the depth buffer into main memory so that my CPU side code can do Some Stuff™ with it. I am attempting to do this by creating a staging resource which can be read by the CPU, which I will copy the contents of the depth buffer into before reading it. I keep encountering errors however, because of, I believe, incompatibilities between the resource format and the view formats. Threads like these lead me to believe it is possible in DX11 to access the depth buffer as a resource, and that I can create a resource with a typeless format and have it interpreted in the view as another, but I cannot get it to work. What are the valid formats for the resource to be used as the depth buffer? Which of these are also valid for a CPU accessible staging resource?

    Read the article

  • Implementing fog of war in opengl es 2.0 game

    - by joxnas
    Hi game development community, this is my first question here! ;) I'm developing a tactics/strategy real time android game and I've been wondering for some time what's the best way to implement an efficient and somewhat nice looking fog of war to incorporate in it. My experience with OpenGL or Android is not vast by any means, but I think it is sufficient for what I'm asking here. So far I have thought in some solutions: Draw white circles to a dark background, corresponding to the units visibility, then render to a texture, and then drawing a quad with that texture with blend mode set to multiply. Will this approach be efficient? Will it take too much memory? (I don't know how to render to texture and then use the texture. Is it too messy?) Have a grid object with a vertex shader which has an array of uniforms having the coordinates of all units, and another array which has their visibility range. The number of units will very probably never be bigger then 100. The vertex shader needs to test for each considered vertex, if there is some unit which can see it. In order to do this it, will have to loop the array with the coordinates and do some calculations based on distance. The efficiency of this is inversely proportional to the looks of it. A more dense grid will result in a more beautiful fog of war... but will require a greater amount of vertexes to be checked. Is it possible to find a nice compromise or is this a bad solution from the start? Which solution is the best? Are there better alternatives? Which ones? Thank you for your time.

    Read the article

  • Monogame - Shader parameters missing

    - by Layoric
    I am currently working on a simple game that I am building in Windows 8 using MonoGame (develop3d). I am using some shader code from a tutorial (made by Charles Humphrey) and having an issue populating a 'texture' parameter. I'm not well versed writing shaders, so this might be caused by a more obvious problem. I have debugged through MonoGame's Content processor to see how this shader is being parsed, all the non 'texture' parameters are there and look to be loading correctly. Shader code below #include "PPVertexShader.fxh" float2 lightScreenPosition; float4x4 matVP; float2 halfPixel; float SunSize; texture flare; sampler2D Scene: register(s0){ AddressU = Clamp; AddressV = Clamp; }; sampler Flare = sampler_state { Texture = (flare); AddressU = CLAMP; AddressV = CLAMP; }; float4 LightSourceMaskPS(float2 texCoord : TEXCOORD0 ) : COLOR0 { texCoord -= halfPixel; // Get the scene float4 col = 0; // Find the suns position in the world and map it to the screen space. float2 coord; float size = SunSize / 1; float2 center = lightScreenPosition; coord = .5 - (texCoord - center) / size * .5; col += (pow(tex2D(Flare,coord),2) * 1) * 2; return col * tex2D(Scene,texCoord); } technique LightSourceMask { pass p0 { VertexShader = compile vs_4_0 VertexShaderFunction(); PixelShader = compile ps_4_0 LightSourceMaskPS(); } } I've removed default values as they are currently not support in MonoGame and also changed ps and vs to v4 instead of 2. Could this be causing the issue? As I debug through 'DXConstantBufferData' constructor (from within the MonoGameContentProcessing project) I find that the 'flare' parameter does not exist. All others seem to be getting created fine. Any help would be appreciated.

    Read the article

< Previous Page | 14 15 16 17 18 19 20 21 22 23 24 25  | Next Page >