Search Results

Search found 22717 results on 909 pages for 'load operation'.

Page 182/909 | < Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >

  • How to REALLY start thinking in terms of objects?

    - by Mr Grieves
    I work with a team of developers who all have several years of experience with languages such as C# and Java. Most of them are young enough to have been shown OOP as a standard way to develop software in university and are very comfortable with concepts such as inheritance, abstraction, encapsulation and polymorphism. Yet, many of them, and I have to include myself, still tend to create classes which are meant to be used in a very functional fashion. The resulting software is often several smaller classes which correctly represent business objects which get passed through larger classes which only supply ways to modify and use those objects (functions). Large complex difficult-to-maintain classes named Manager are usually the result of such behaviour. I can see two theoretical reasons why people might write this type of code: It's easy to start thinking of everything in terms of the database Deep down, for me, a computer handling a web request feels more like a functional operation than an object oriented operation when you think about Request Handlers, Threads, Processes, CPU Cores and CPU operations... I want source code which is easy to read and easy to modify. I have seen excellent examples of OO code which meet these objectives. How can I start writing code like this? How I can I really start thinking in an object oriented fashion? How can I share such a mentality with my colleagues?

    Read the article

  • How do I increase the open files limit for a non-root user?

    - by iCode
    This is happening on Ubuntu Release 12.04 (precise) 64-bit Kernel Linux 3.2.0-25-virtual I'm trying to increase the number of open files allowed for a user. This is for an my ecplise java application where the current limit of 1024 is not enough. According to the posts I've found so far, I should be able to put lines into /etc/security/limits.conf like this; soft nofile 4096 hard nofile 4096 to increase the number of open files allowed for all users. But, that's not working for me, and I think the problem is not related to that file. For all users, the default limit is 1024, regardless of what is in /etc/security/limits.conf (I have been rebooting after changing that file) $ ulimit -n 1024 Now, despite the entries in /etc/security/limits.conf I can't increase that; $ ulimit -n 2048 -bash: ulimit: open files: cannot modify limit: Operation not permitted The weird part is that I can change the limit downwards, but can't change it upwards - even to go back to a number which is below the original limit; $ ulimit -n 800 $ ulimit -n 800 $ ulimit -n 900 -bash: ulimit: open files: cannot modify limit: Operation not permitted As root, I can change that limit to whatever I want, up or down. It doesn't even seem to care about the supposedly system-wide limit in /proc/sys/fs/file-max # cat /proc/sys/fs/file-max 188897 # ulimit -n 188898 # ulimit -n 188898 So far, I haven't found any way to increase the open files limit for a non-root user, and I really don't want to be running my application as root. How should I properly do this? I have looked at all the posted and tried the given options but no luck!

    Read the article

  • Is encoding needed in this decryption?

    - by Lijo
    I have a Encryption – Decryption scenario as shown below. //[Clear text ID string as input] -- [(ASCII GetByte) + Encoding] -- [Encrption as byte array] -- [Database column is in VarBinary] -- [Pass byte[] as VarBinary parameter to SP for comparison] //[ID stored as VarBinary in Database] -- [Read as byte array] -- [(Decrypt as byte array) + Encoding + (ASCII Get String)] -- Show as string in the UI My question is in the decryption scenario. After decryption I get a byte array. I am doing an encoding (IBM037) after that. Is it correct? Is there something wrong in the flow shown above? private static byte[] GetEncryptedID(string id) { Interface_Request input = new Interface_Request(); input.RequestText = Encodeto64(id); input.RequestType = Encryption; ProgramInterface inputRequest = new ProgramInterface(); inputRequest.Test_Trial_Request = input; using (KTestService operation = new KTestService()) { return ((operation.KTrialOperation(inputRequest)).Test_Trial_Response.ResponseText); } } private static string GetDecryptedID(byte[] id) { Interface_Request input = new Interface_Request(); input.RequestText = id; input.RequestType = Decryption; ProgramInterface request = new ProgramInterface(); request.Test_Trial_Request = input; using (KTestService operationD = new KTestService()) { ProgramInterface1 response = operationD.KI014Operation(request); byte[] decryptedValue = response.ICSF_AES_Response.ResponseText; Encoding sourceByteFormat = Encoding.GetEncoding("IBM037"); Encoding destinationByteFormat = Encoding.ASCII; //Convert from one byte format to other (IBM to ASCII) byte[] ibmEncodedBytes = Encoding.Convert(sourceByteFormat, destinationByteFormat,decryptedValue); return System.Text.ASCIIEncoding.ASCII.GetString(ibmEncodedBytes); } } private static byte[] EncodeTo64(string toEncode) { byte[] dataInBytes = System.Text.ASCIIEncoding.ASCII.GetBytes(toEncode); Encoding destinationByteFormat = Encoding.GetEncoding("IBM037"); Encoding sourceByteFormat = Encoding.ASCII; //Convert from one byte format to other (ASCII to IBM) byte[] asciiBytes = Encoding.Convert(sourceByteFormat, destinationByteFormat, dataInBytes); return asciiBytes; }

    Read the article

  • Oracle Worldwide Product Translation Group and Applications User Experience Working Together

    - by ultan o'broin
    The Applications User Experience (UX) Mobile team has been extending its ethnographic research to even more countries. Recently, the team conducted research in Sweden, and I am pleased to say I made the connection for the UX team with the Oracle's Worldwide Translation Product Group (WPTG) local (that is, in-country) language specialists. It struck me that WPTG's local market knowledge and insight that we heard about at an Oracle Usability Advisory Board meeting in the UK in 2011 would be very valuable to the UX efforts while, at the same time, UX could afford WPTG an opportunity to understand our design and development direction so that linguistic resources (terminology, style guides, translatability guidelines, and so on) for any translation of our mobile solutions could be prepared in advance. Brent White of the Mobile UX team takes notes as ethnography participant Capri Norman uses mobile technology to work in Stockholm. Pic credit: Oracle Applications UX. The UX team acknowledges Capri's kind permission to use this image. I'm told by Brent White of the Mobile UX team that the co-operation was a big success.  A WPTG Swedish language specialist joined a couple of ethnographic sessions, taking great notes and turning them around very fast for the UX team. And of course, a great local insight into Swedish culture and ways of working was provided too, along with some nice socializing!  More research in more countries is planned. Watch out for future blog posts and other communications about this great co-operation worldwide.

    Read the article

  • What determines which Javascript functions are blocking vs non-blocking?

    - by Sean
    I have been doing web-based Javascript (vanilla JS, jQuery, Backbone, etc.) for a few years now, and recently I've been doing some work with Node.js. It took me a while to get the hang of "non-blocking" programming, but I've now gotten used to using callbacks for IO operations and whatnot. I understand that Javascript is single-threaded by nature. I understand the concept of the Node "event queue". What I DON'T understand is what determines whether an individual javascript operation is "blocking" vs. "non-blocking". How do I know which operations I can depend on to produce an output synchronously for me to use in later code, and which ones I'll need to pass callbacks to so I can process the output after the initial operation has completed? Is there a list of Javascript functions somewhere that are asynchronous/non-blocking, and a list of ones that are synchronous/blocking? What is preventing my Javascript app from being one giant race condition? I know that operations that take a long time, like IO operations in Node and AJAX operations on the web, require them to be asynchronous and therefore use callbacks - but who is determining what qualifies as "a long time"? Is there some sort of trigger within these operations that removes them from the normal "event queue"? If not, what makes them different from simple operations like assigning values to variables or looping through arrays, which it seems we can depend on to finish in a synchronous manner? Perhaps I'm not even thinking of this correctly - hoping someone can set me straight. Thanks!

    Read the article

  • Ubuntu 12.04 slow boot on ASUS, attached with dmesg and bootchart

    - by stanleyhunk
    I heard that Ubuntu can boot up around 30sec, but I take more than 60sec every time my Ubuntu boot. I also read some forum said need to post the dmesg and bootchart to identify which process slowing down the booting time, as I'm not expert in Ubuntu and wish to learn more about it, I humbly ask any pro here to teach me how. My laptop specs: Model : ASUS K45VS RAM : 8MB CPU : Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz x 8 Graphic Card : nVidia GeForce GT 645M HDD : 750GB OS : Single boot Ubuntu 12.04LTS System.uname : Linux 3.8.0-39-generic #58~precise1-Ubuntu SMP Fri May 2 21:33:40 UTC 2014 x86_64 System.release : Ubuntu 12.04.4 LTS System.kernel.options : BOOT_IMAGE=/boot/vmlinuz-3.8.0-39-generic root=UUID=c8a71503-bce8-406c-9a5f-5aa8284f5c7c ro quiet splash My dmesg (which highlighted to the huge time frame gap): [ 30.772656] cgroup: libvirtd (1961) created nested cgroup for controller "memory" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 30.772659] cgroup: "memory" requires setting use_hierarchy to 1 on the root. [ 30.772683] cgroup: libvirtd (1961) created nested cgroup for controller "devices" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 30.772710] cgroup: libvirtd (1961) created nested cgroup for controller "blkio" which has incomplete hierarchy support. Nested cgroups may change behavior in the future. [ 32.140335] nvidia 0000:01:00.0: irq 46 for MSI/MSI-X [ 32.505619] ACPI Error: Field [TMPB] at 1081344 exceeds Buffer [ROM1] size 262144 (bits) (20121018/dsopcode-236) [ 32.505624] ACPI Error: Method parse/execution failed [\_SB_.PCI0.PEG0.PEGP._ROM] (Node ffff880224e91f00), AE_AML_BUFFER_LIMIT (20121018/psparse-537) [ 802.034422] audit_printk_skb: 69 callbacks suppressed [ 802.034428] type=1400 audit(1400914804.392:35): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=1683 comm="cupsd" pid=1683 comm="cupsd" capability=36 capname="block_suspend" [ 1581.300901] type=1400 audit(1400915584.816:36): apparmor="DENIED" operation="capable" parent=1 profile="/usr/sbin/cupsd" pid=1683 comm="cupsd" pid=1683 comm="cupsd" capability=36 capname="block_suspend" My Bootchart.png: Looking forward to learn to improve both my booting time and knowledge. Thanks in advance :)

    Read the article

  • What is a 'good number' of exceptions to implement for my library?

    - by Fuzz
    I've always wondered how many different exception classes I should implement and throw for various pieces of my software. My particular development is usually C++/C#/Java related, but I believe this is a question for all languages. I want to understand what is a good number of different exceptions to throw, and what the developer community expect of a good library. The trade-offs I see include: More exception classes can allow very fine grain levels of error handling for API users (prone to user configuration or data errors, or files not being found) More exception classes allows error specific information to be embedded in the exception, rather than just a string message or error code More exception classes can mean more code maintenance More exception classes can mean the API is less approachable to users The scenarios I wish to understand exception usage in include: During 'configuration' stage, which might include loading files or setting parameters During an 'operation' type phase where the library might be running tasks and doing some work, perhaps in another thread Other patterns of error reporting without using exceptions, or less exceptions (as a comparison) might include: Less exceptions, but embedding an error code that can be used as a lookup Returning error codes and flags directly from functions (sometimes not possible from threads) Implemented an event or callback system upon error (avoids stack unwinding) As developers, what do you prefer to see? If there are MANY exceptions, do you bother error handling them separately anyway? Do you have a preference for error handling types depending on the stage of operation?

    Read the article

  • What is the difference between the "Entire Partition" and "Entire Disc"?

    - by Roman
    I want to install Ubuntu alongside my Windows 7 operation system. During installation I have three options: Install alongside the existing OS. Remove everything and install Ubuntu. Manual partitioning (advanced). The above list is not precise (I do not remember what exactly was written there and I just write options as I have understood them). I know that option 2 is not mine. So, I need to choose either 1 or 3. I do not know which one I need to choose. I want to have a possibility to manually specify space assigned to Windows and Ubuntu (for example 40% for Windows and 60% for Ubuntu). I chose the 1st option and I saw a window with the following information. Allocate drive space by dragging the drive bellow. File (48.1 GB) Ubuntu /dev/sda2 (ntfs) /dev/sda3 (ext4) 286.6 GB 241.7 GB 2 small partitions are hidden, use the advanced partitioning tool for more control. [use entire partition] [use entire disk] [Quit] [Back] [Install Now] My problem is that I do not understand what I see. In particular I can press [use entire partition] or [use entire disk] and I do not know what is the difference. Moreover, as far as I understand, I can even press [Install Now] without pressing one of the two above mentioned buttons. So, I have 3 options. What is the difference between them? The most important thing for me is not to delete the old operation system with all the data stored there.

    Read the article

  • How to write code that communicates with an accelerator in the real address space (real mode)?

    - by ysap
    This is a preliminary question for the issue, where I was asked to program a host-accelerator program on an embedded system we are building. The system is comprised of (among the standard peripherals) an ARM core and an accelerator processor. Both processors access the system bus via their bus interfaces, and share the same 32-bit global physical memory space. Both share access to the system's DRAM through the system bus. (The computer concept is similar to Beagleboard/raspberry Pie, but with a specialized accelerator added) The accelerator has its own internal memory (SRAM) which is exposed to the system and occupies a portion of the global address space (as opposed to how a graphics card would talk to teh CPU via a "small" aperture in the system memory space). On the ARM core (the host) we plan on running Ubuntu 12.04. The mode of operation of communicating between the processors should be that the host issues memory transactions on the system bus that are targeted at the accelerator internal memory. As far as my understanding goes, if I write a program for the host that simply writes to the physical address of the accelerator, most chances are that the program will crash due to a segmentation violation. So, I assume that I need some way of communicating with the device in real mode. What is the easiest way to achieve this mode of operation?

    Read the article

  • C# 2D Camera Max Zoom

    - by Craig
    I have a simple ship sprite moving around the screen along with a 2D Camera. I have zooming in and out working, however when I zoom out it goes past the world bounds and has the cornflower blue background showing. How do I sort it that I can only zoom out as far as showing the entire world (which is a picture of OZ) and thats it? I dont want any of the cornflower blue showing. Cheers! namespace GamesCoursework_1 { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; // player variables Texture2D Ship; Vector2 Ship_Position; float Ship_Rotation = 0.0f; Vector2 Ship_Origin; Vector2 Ship_Velocity; const float tangentialVelocity = 4f; float friction = 0.05f; static Point CameraViewport = new Point(800, 800); Camera2d cam = new Camera2d((int)CameraViewport.X, (int)CameraViewport.Y); //Size of world static Point worldSize = new Point(1600, 1600); // Screen variables static Point worldCenter = new Point(worldSize.X / 2, worldSize.Y / 2); Rectangle playerBounds = new Rectangle(CameraViewport.X / 2, CameraViewport.Y / 2, worldSize.X - CameraViewport.X, worldSize.Y - CameraViewport.Y); Rectangle worldBounds = new Rectangle(0, 0, worldSize.X, worldSize.Y); Texture2D background; public Game1() { graphics = new GraphicsDeviceManager(this); graphics.PreferredBackBufferWidth = CameraViewport.X; graphics.PreferredBackBufferHeight = CameraViewport.Y; Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here Ship = Content.Load<Texture2D>("Ship"); Ship_Origin.X = Ship.Width / 2; Ship_Origin.Y = Ship.Height / 2; background = Content.Load<Texture2D>("aus"); Ship_Position = new Vector2(worldCenter.X, worldCenter.Y); cam.Pos = Ship_Position; cam.Zoom = 1f; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here Ship_Position = Ship_Velocity + Ship_Position; keyPressed(); base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.AlphaBlend, null, null, null,null, cam.get_transformation(GraphicsDevice)); spriteBatch.Draw(background, Vector2.Zero, Color.White); spriteBatch.Draw(Ship, Ship_Position, Ship.Bounds, Color.White, Ship_Rotation, Ship_Origin, 1.0f, SpriteEffects.None, 0f); spriteBatch.End(); base.Draw(gameTime); } private void Ship_Move(Vector2 move) { Ship_Position += move; } private void keyPressed() { KeyboardState keyState; // Move right keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Right)) { Ship_Rotation = Ship_Rotation + 0.1f; } if (keyState.IsKeyDown(Keys.Left)) { Ship_Rotation = Ship_Rotation - 0.1f; } if (keyState.IsKeyDown(Keys.Up)) { Ship_Velocity.X = (float)Math.Cos(Ship_Rotation) * tangentialVelocity; Ship_Velocity.Y = (float)Math.Sin(Ship_Rotation) * tangentialVelocity; if ((int)Ship_Position.Y < playerBounds.Bottom && (int)Ship_Position.Y > playerBounds.Top) cam._pos.Y = Ship_Position.Y; if ((int)Ship_Position.X > playerBounds.Left && (int)Ship_Position.X < playerBounds.Right) cam._pos.X = Ship_Position.X; Ship_Position += new Vector2(tangentialVelocity, 0); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(-tangentialVelocity, 0.0f); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(-tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(0.0f, -tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, -tangentialVelocity * 2); Ship_Position += new Vector2(0.0f, tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, 2 * tangentialVelocity); } else if(Ship_Velocity != Vector2.Zero) { float i = Ship_Velocity.X; float j = Ship_Velocity.Y; Ship_Velocity.X = i -= friction * i; Ship_Velocity.Y = j -= friction * j; if ((int)Ship_Position.Y < playerBounds.Bottom && (int)Ship_Position.Y > playerBounds.Top) cam._pos.Y = Ship_Position.Y; if ((int)Ship_Position.X > playerBounds.Left && (int)Ship_Position.X < playerBounds.Right) cam._pos.X = Ship_Position.X; Ship_Position += new Vector2(tangentialVelocity, 0); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(-tangentialVelocity, 0.0f); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(-tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(0.0f, -tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, -tangentialVelocity * 2); Ship_Position += new Vector2(0.0f, tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, 2 * tangentialVelocity); } if (keyState.IsKeyDown(Keys.Q)) { if (cam.Zoom < 2f) cam.Zoom += 0.05f; } if (keyState.IsKeyDown(Keys.A)) { if (cam.Zoom > 0.3f) cam.Zoom -= 0.05f; } } } }

    Read the article

  • Use crontab scheduling java application problem occurs

    - by koma
    The main method to start the java application. The main method initialize the log, and then determine whether the process is running. Every 10 minutes, scheduled to run through the linux crontab. Able to determine that the 10 minutes of this program must end. Under normal circumstances, will print the following log The beginning of the implementation of 10 minutes The end of the 10 minutes of normal The beginning of the implementation of 20 minutes The end of the 20 minutes of normal The beginning of the implementation of 30 minutes The end of the 30 minutes of normal ..... But now this situation: The beginning of the implementation of 10 minutes The end of the 10 minutes of normal Execution starts in 30 minutes, but detected already have a process in operation, the program exits. Start the execution of 40 points, but detected already have a process in operation, the program exits. ..... Very strange 20-minute log does not print, but the 20-minute program has been launched by the ps-ef | grep java view java thread, found in a 20-minute thread is locked. But why not see the log Check the linux dispatch log, not see scheduling a 20-minute log.

    Read the article

  • Nullable types and ?? operator C# [en-US]

    - by ruimachado
    Nullable types vs Non-nullable types   While developing our C# projects its frequent the null comparison operation to avoid null exceptions. This simple operation is mainly coded using the "var x = null" code example inside an if clause. However not all types of variables are nullable, which means that setting a variable to null is not allowed in every cases, it depends on what kind of type are you defining. But what if there was an extension to your non-nullable type that would convert your variable types to nullable? This extension really exists. As I said before in C# you have nullable types which represent all the values of an underlying type, and an additional null value and can be declared easily using "T?", where T is the type of the variable and for example the normal int type cannot be null, so its a non-nullable type, however if you define a "int?" your variable can be null, what you do is convert a non-nullable type to a nullable type. Example: int x=null;     Not allowed     int? x=null;   Allowed     While using nullable types you can check if a variable is null the same way you do it with nullable types:     But what about setting a default value when a certain variable is null?   In this cases the c# .net framework let you set a default value when you try to assign a nullable type to a non-nullable type, using the ?? operator. If you don't use this operator you can still catch the InvalidOperationException which is throw in this cases. For example  without the ?? operator :     Using the ?? operator your code becomes cleaner and more easy to read and you get a bonus, you can set a default value for multiple variables using the ?? in a chain set.     That’s it,   Thanks, Rui Machado rpmachado.wordpress.com

    Read the article

  • Uralelektrostroy Improves Turnaround Times for Engineering and Construction Projects by Approximately 50% with Better Project Data Management

    - by Melissa Centurio Lopes
    LLC Uralelektrostroy was established in 1998, to meet the growing demand for reliable energy supply, which included the deployment and operation of a modern power grid system for Russia’s booming economy and industrial sector. To rise to the challenge, the country required a company with a strong reputation and the ability to strategically operate energy production and distribution facilities. As a renowned energy expert, Uralelektrostroy successfully embarked on the mission—focusing on the design, construction, and operation of power grids, transmission lines, and generation facilities. Today, Uralelektrostroy leads the Russian utilities industry with operations across the country, particularly in the Ural, Western Siberia, and Moscow regions. Challenges: Track work progress through all engineering project development stages with ease—from planning and start-up operations, to onsite construction and quality assurance—to enhance visibility into complex projects, such as power grid and power-transmission-line construction Implement and execute engineering projects faster—for example, designing and building power generation and distribution facilities—by better monitoring numerous local subcontractors Improve alignment of project schedules with project owners’ requirements—awarding federal and regional authorities—to avoid incurring fines for missing deadlines Solutions: Used Oracle’s Primavera P6 Enterprise Project Portfolio Management 8.1 to streamline communication with customers and subcontractors through better data management and harmonized reporting, reducing construction project implementation and turnaround times by approximately 50%, on average Enabled fast generation of work-in-progress reports that track project schedules, budgets, materials, and staffing—from approval and material procurement, to construction and delivery Reduced the number of construction sites by nearly 30% (from 35 to 25) by identifying unprofitable sites—streamlining operations at the company’s construction site network and increasing profitability Improved project visibility by enabling managers to efficiently track project status, ensuring on-time reporting and punctual project deliveries to federal customers to reduce delay penalties to zero “Oracle’s Primavera P6 Enterprise Project Portfolio Management 8.1 drastically changed the way we run our business. We’ve reduced the number of redundant assets, streamlined project implementation and execution, and improved collaboration with our customers and contractors. Overall, the Oracle deployment helped to increase our profitability.” – Roman Aleksandrovich Naumenko, Head of Information Technology, LLC Uralelektrostroy Read the complete customer snapshot here.

    Read the article

  • Command Query Separation

    - by Liam McLennan
    Command query separation is a strategy, proposed by Bertrand Meyer, that each of an object’s methods should be either a command or a query. A command is an operation that changes the state of a system, and a query is an operation that returns a value. This is not the same thing as CQRS, hence why I think that CQRS is poorly named. An Example of Command Query Separation Consider a system that models books and shelves. There is a rule that a shelf may not be removed if it holds any books. One way to implement the removal is to write a method Shelf.Remove() that internally checks to make sure that the shelf is empty before removing it. If the shelf is not empty then it is not removed and an error is returned. To implement this feature following the principle of command query separation would require two methods, one to query the shelf and determine if it is empty and a second method to remove the shelf. Separating the query from the command makes the shelf class simpler to use because the state change is clear and explicit.

    Read the article

  • Dom U Installation on Ubuntu 11.10

    - by sridutt
    I am trying to add a DomU Operating system on Ubuntu 11.10. I have successfully installed Xen. Verified with xm info virsh-version which returns: Compiled against library: libvir 0.9.2 Using library: libvir 0.9.2 Using API: Xen 3.0.1 Running hypervisor: Xen 4.1. Now when I tried to install Dom0 it said: unable to connect to 'localhost:8000': , in VMM. So, I followed this bug link. I could now start adding DomU. When adding DomU, in last stage, it gives the following error: Unable to complete install: 'POST operation failed: xend_post: error from xen daemon: (xend.err "Error creating domain: device model '/usr/lib/xen/bin/qemu-dm' not found")' Traceback (most recent call last): File "/usr/share/virt-manager/virtManager/asyncjob.py", line 44, in cb_wrapper callback(asyncjob, *args, **kwargs) File "/usr/share/virt-manager/virtManager/create.py", line 1899, in do_install guest.start_install(False, meter=meter) File "/usr/lib/pymodules/python2.7/virtinst/Guest.py", line 1223, in start_install noboot) File "/usr/lib/pymodules/python2.7/virtinst/Guest.py", line 1291, in _create_guest dom = self.conn.createLinux(start_xml or final_xml, 0) File "/usr/lib/python2.7/dist-packages/libvirt.py", line 1686, in createLinux if ret is None:raise libvirtError('virDomainCreateLinux() failed', conn=self) libvirtError: POST operation failed: xend_post: error from xen daemon: (xend.err "Error creating domain: device model '/usr/lib/xen/bin/qemu-dm' not found") I tried following this bug link that said, the bug is solved in the below package. When I run ./configure in this, I am getting an error: checking for LIBXML... no checking libxml2 xml2-config >= 2.6.0 ... configure: error: Could not find libxml2 anywhere (see config.log for details). What is the problem?

    Read the article

  • Twitter ?? Nashorn ????(??)

    - by Homma
    ???? Nashorn ? Java ??????? Twitter ???????????????????? JavaFX ??????????????? ????? ??? jlaskey ??? Nashorn Blog ????????????? https://blogs.oracle.com/nashorn/entry/nashorn_in_the_twitterverse_continued ???????? ?? Twitter ???????????????????????? JavaFX ??????????????????????????????? Nashorn ?? JavaFX ??????????????JavaFX ???????????????????????????????????????Nashorn ? Java ????????????????????????????????????(JavaFX ?????????????????????)? ?????????????????????????????????????????????? Twitter ????????????????????????? var twitter4j = Packages.twitter4j; var TwitterFactory = twitter4j.TwitterFactory; var Query = twitter4j.Query; function getTrendingData() { var twitter = new TwitterFactory().instance; var query = new Query("nashorn OR nashornjs"); query.since("2012-11-21"); query.count = 100; var data = {}; do { var result = twitter.search(query); var tweets = result.tweets; for each (var tweet in tweets) { var date = tweet.createdAt; var key = (1900 + date.year) + "/" + (1 + date.month) + "/" + date.date; data[key] = (data[key] || 0) + 1; } } while (query = result.nextQuery()); return data; } ??????????????????getTrendingData() ??????????????(??????????Nashorn ???????? OpenJDK ?????? 2012 ? 11 ? 21 ???)??????????????????????????????????? ????JavaFX ? BarChart ??????????? var javafx = Packages.javafx; var Stage = javafx.stage.Stage var Scene = javafx.scene.Scene; var Group = javafx.scene.Group; var Chart = javafx.scene.chart.Chart; var FXCollections = javafx.collections.FXCollections; var ObservableList = javafx.collections.ObservableList; var CategoryAxis = javafx.scene.chart.CategoryAxis; var NumberAxis = javafx.scene.chart.NumberAxis; var BarChart = javafx.scene.chart.BarChart; var XYChart = javafx.scene.chart.XYChart; var Series = javafx.scene.chart.XYChart.Series; var Data = javafx.scene.chart.XYChart.Data; function graph(stage, data) { var root = new Group(); stage.scene = new Scene(root); var dates = Object.keys(data); var xAxis = new CategoryAxis(); xAxis.categories = FXCollections.observableArrayList(dates); var yAxis = new NumberAxis("Tweets", 0.0, 200.0, 50.0); var series = FXCollections.observableArrayList(); for (var date in data) { series.add(new Data(date, data[date])); } var tweets = new Series("Tweets", series); var barChartData = FXCollections.observableArrayList(tweets); var chart = new BarChart(xAxis, yAxis, barChartData, 25.0); root.children.add(chart); } ????????????????????????????????stage.scene = new Scene(root) ? stage.setScene(new Scene(root)) ????????????????????Nashorn ? stage ??????? scene ???????????????????(Dynalink ?????????)Java Beans ???????????????? (setScene()) ???????????????????????????????Nashorn ? FXCollections ??????????????????????????????observableArrayList(dates) ??????????Nashorn ? JavaScript ??? (dates) ? Java ???????????????????????????? JavaScript ?????????????????? Java ????????????????????????????????????????????????????????????? ????????????????????????????????? JavaFX ???????????????????????? JavaFX ??????????????javafx.application.Application ??????????????????????????? JavaFX ????????????????????????????????????????????????? import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import javafx.application.Application; import javafx.stage.Stage; import javax.script.ScriptEngine; import javax.script.ScriptEngineManager; import javax.script.ScriptException; public class TrendingMain extends Application { private static final ScriptEngineManager MANAGER = new ScriptEngineManager(); private final ScriptEngine engine = MANAGER.getEngineByName("nashorn"); private Trending trending; public static void main(String[] args) { launch(args); } @Override public void start(Stage stage) throws Exception { trending = (Trending) load("Trending.js"); trending.start(stage); } @Override public void stop() throws Exception { trending.stop(); } private Object load(String script) throws IOException, ScriptException { try (final InputStream is = TrendingMain.class.getResourceAsStream(script)) { return engine.eval(new InputStreamReader(is, "utf-8")); } } } ???? Nashorn ??????? JSR-223 ? javax.script ????????? private static final ScriptEngineManager MANAGER = new ScriptEngineManager(); private final ScriptEngine engine = MANAGER.getEngineByName("nashorn"); ????????? JavaScript ???????? Nashorn ???????????????????? load ???????????????????????engine ???????????????load ????????????? ???????????????Java ???????????????????????????????????????????????????? Java ????????????????JavaFX ???????? start ????? stop ?????????????????????????????????????? public interface Trending { public void start(Stage stage) throws Exception; public void stop() throws Exception; } ?????????????????????????????? function newTrending() { return new Packages.Trending() { start: function(stage) { var data = getTrendingData(); graph(stage, data); stage.show(); }, stop: function() { } } } newTrending(); ?????? Trending ?????????????????????start ????? stop ??????????????????????????????????? eval ???? Java ??????????????? trending = (Trending) load("Trending.js"); ????????????????Trending.js ??????? getTrendingData ???????????? newTrending ????????????????????? Java ?????????newTrending ????????? eval ????????? Trending ????????????????????????????????????????????????????????? trending.start(stage); ???????? ???? Nashorn ????????? http://www.myexpospace.com/JavaOne2012/SessionFiles/CON5251_PDF_5251_0001.pdf ???????? Dynalink ??????? https://github.com/szegedi/dynalink ????????

    Read the article

  • Spork servers super slow (>3m) to start for RSpec & Cucumber BDD

    - by Eric M.
    I recently installed a fresh development setup on my laptop and now notice that my instances of spork take several minutes to start up. This is also most likely of the RSpec and Cucumber tests start up times running super slow. I ran in diagnostic mode with the -d flag and received the output below. Anyone have a clue why this is suddenly happening? Spork Diagnosis - -- Summary -- config/boot.rb config/environment.rb config/initializers/backtrace_silencers.rb config/initializers/devise.rb config/initializers/hoptoad.rb config/initializers/inflections.rb config/initializers/mime_types.rb config/initializers/new_rails_defaults.rb config/initializers/session_store.rb spec/spec_helper.rb -- Detail -- --- config/boot.rb --- config/environment.rb:7 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/environment.rb --- spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/backtrace_silencers.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/devise.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/hoptoad.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/inflections.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/mime_types.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/new_rails_defaults.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- config/initializers/session_store.rb --- /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/activesupport-2.3.5/lib/active_support/dependencies.rb:147:in load' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:622:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:in each' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:621:inload_application_initializers' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:176:in process' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:insend' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/rails-2.3.5/lib/initializer.rb:113:in run_without_spork' /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/lib/spork/app_framework/rails.rb:18:inrun' config/environment.rb:9 /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:in gem_original_require' /Users/Eric/.rvm/rubies/ruby-1.8.7-p249/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:31:inrequire' spec/spec_helper.rb:9 /Users/Eric/.rvm/gems/ruby-1.8.7-p249@33n/gems/spork-0.8.2/bin/../lib/spork.rb:23:in `prefork' spec/spec_helper.rb:7 --- spec/spec_helper.rb ---

    Read the article

  • Need help debugging a very basic PHP SOAP Hello world app

    - by WarDoGG
    I have been breaking my head at this, reading almost every article and tutorial there is on the web, but nothing doing.. i still cannot get my first web service application to work. I would really appreciate it if anyone could debug this code for me and provide me with a good explanation as to what is wrong and why. This will help indeed ! Thanks ! I have pasted below the entire codes that i am using making it easier to debug. I'm using the PHP5 SOAP extension. Here is my WSDL: <?xml version="1.0" encoding="utf-8"?> <wsdl:definitions name="testWebservice" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://tempuri.org/" xmlns:s1="http://microsoft.com/wsdl/types/" xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> <wsdl:types> <s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/"> <s:import namespace="http://microsoft.com/wsdl/types/" /> <s:element name="getUser"> <s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="username" type="s:string" /> <s:element minOccurs="0" maxOccurs="1" name="password" type="s:string" /> </s:sequence> </s:complexType> </s:element> <s:element name="getUserResponse"> <s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="getUserResult" type="tns:userInfo" /> </s:sequence> </s:complexType> </s:element> <s:complexType name="userInfo"> <s:sequence> <s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int" /> <s:element minOccurs="1" maxOccurs="1" name="authkey" type="s:int" /> </s:sequence> </s:complexType> </s:schema> </wsdl:types> <wsdl:message name="getUserSoapIn"> <wsdl:part name="parameters" element="tns:getUser" /> </wsdl:message> <wsdl:message name="getUserSoapOut"> <wsdl:part name="parameters" element="tns:getUserResponse" /> </wsdl:message> <wsdl:portType name="testWebservice"> <wsdl:operation name="getUser"> <wsdl:input message="tns:getUserSoapIn" /> <wsdl:output message="tns:getUserSoapOut" /> </wsdl:operation> </wsdl:portType> <wsdl:binding name="testWebserviceBinding" type="tns:testWebservice"> <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" /> <wsdl:operation name="getUser"> <soap:operation soapAction="http://tempuri.org/getUser" /> <wsdl:input> <soap:body use="literal" /> </wsdl:input> <wsdl:output> <soap:body use="literal" /> </wsdl:output> </wsdl:operation> </wsdl:binding> <wsdl:service name="testWebserviceService"> <wsdl:port name="testWebservicePort" binding="tns:testWebserviceBinding"> <soap:address location="http://127.0.0.1/nusoap/storytruck/index.php" /> </wsdl:port> </wsdl:service> </wsdl:definitions> and here is the PHP Code i use to setup the server: <?php function getUser($user,$pass) { return array('ID'=>1); } ini_set("soap.wsdl_cache_enabled", "0"); // disabling WSDL cache $server = new SoapServer("http://127.0.0.1/mywsdl.wsdl"); $server->addFunction('getUser'); $server->handle(); ?> and the code for the client: <?php $client = new SoapClient("http://127.0.0.1/index.php?wsdl", array('exceptions' => 0)); try { $result = $client->getUser("username","pass"); print_r($result); } catch (SoapFault $result) { print_r($result); } ?> Here is the ERROR output i am getting on the browser : SoapFault Object ( [message:protected] => Error cannot find parameter [string:Exception:private] => [code:protected] => 0 [file:protected] => C:\xampp\htdocs\client.php [line:protected] => 6 [trace:Exception:private] => Array ( [0] => Array ( [function] => __call [class] => SoapClient [type] => -> [args] => Array ( [0] => getUser [1] => Array ( [0] => username [1] => pass ) ) ) [1] => Array ( [file] => C:\xampp\htdocs\client.php [line] => 6 [function] => getUser [class] => SoapClient [type] => -> [args] => Array ( [0] => username [1] => pass ) ) ) [previous:Exception:private] => [faultstring] => Error cannot find parameter [faultcode] => SOAP-ENV:Client )

    Read the article

  • Problems using Hibernate and Spring in web application

    - by user628480
    Hi.I'm having NullPointerException trying to getCurrentSession() java.lang.NullPointerException servlets.ControlServlet.doPost(ControlServlet.java:46) javax.servlet.http.HttpServlet.service(HttpServlet.java:709) javax.servlet.http.HttpServlet.service(HttpServlet.java:802) I use Tomcat 5.5 index.jsp page: <%@ page language="java" contentType="text/html; charset=ISO-8859-1"pageEncoding="ISO-8859-1"%> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title></title> </head> <body> <%@ page import="java.util.List" %> <%@ page import="data.Singer" %> <jsp:useBean id="singer" class="data.Singer" scope="session"/> <jsp:setProperty name="singer" property="*" /> <form action="ControlServlet" method="POST"> <form method=“POST”> Name:<br /> <input type=“text” name="name" /><br /> Type:<br /> <input type=“text” name="type" /><br /> <input type="submit" name="Add song" value="Add song"> <input type="submit" name="save" value="Save" /><br><br> <input type ="submit" name="values" value="Get values" > </form> </body> </html> web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"> <display-name>webproject</display-name> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/beans.xml, /WEB-INF/conf.xml, /WEB-INF/singers.hbm.xml, /WEB-INF/songs.hbm.xml, /WEB-INF/singerbeans.xml, /WEB-INF/songbeans.xml</param-value> </context-param> <servlet> <servlet-name>context</servlet-name> <servlet-class>org.springframework.web.context.ContextLoaderServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet> <servlet-name>test</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>test</servlet-name> <url-pattern>*.*</url-pattern> </servlet-mapping> <servlet> <servlet-name>action</servlet-name> <servlet-class>org.apache.struts.action.ActionServlet</servlet-class> <init-param> <param-name>config</param-name> <param-value>/WEB-INF/beans.xml, /WEB-INF/conf.xml, /WEB-INF/singers.hbm.xml, /WEB-INF/songs.hbm.xml, /WEB-INF/singerbeans.xml, /WEB-INF/songbeans.xml</param-value> </init-param> <init-param> <param-name>debug</param-name> <param-value>2</param-value> </init-param> <init-param> <param-name>detail</param-name> <param-value>2</param-value> </init-param> <load-on-startup>2</load-on-startup> </servlet> <servlet> <description> </description> <display-name>ControlServlet</display-name> <servlet-name>ControlServlet</servlet-name> <servlet-class>servlets.ControlServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>action</servlet-name> <url-pattern>*.*</url-pattern> </servlet-mapping> <servlet-mapping> <servlet-name>ControlServlet</servlet-name> <url-pattern>/ControlServlet</url-pattern> </servlet-mapping> </web-app> ControlServlet.java public class ControlServlet extends HttpServlet { private static final long serialVersionUID = 1L; @Autowired private SingerDao singerdao; public SingerDao getSingerDao() { return singerdao; } public void setSingerDao(SingerDao singerdao) { this.singerdao = singerdao; } public ControlServlet() { super(); // TODO Auto-generated constructor stub } protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { // TODO Auto-generated method stub } protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { if (request.getParameter("values") != null) { response.getWriter().println(singerdao.getDBValues()); } } } and SingerDao.java public class SingerDao implements SingerDaoInterface { @Autowired private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } public List getDBValues() { Session session = getCurrentSession(); List<Singer> singers = session.createCriteria(Singer.class).list(); return singers; } private org.hibernate.classic.Session getCurrentSession() { return sessionFactory.getCurrentSession(); } public void updateSinger(Singer singer) { Session session = getCurrentSession(); session.update(singer); } public Singer getSinger(int id) { Singer singer = null; Session session = getCurrentSession(); singer = (Singer) session.load(Singer.class, id); return singer; } public void deleteSinger(Singer singer) { Session session = getCurrentSession(); session.delete(singer); } public void insertRow(Singer singer) { Session session = getCurrentSession(); session.save(singer); } } In simple Java Project it works fine.I think sessionFactory doesn't autowires,but why? Thanks all.

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Read XML Files using LINQ to XML and Extension Methods

    - by psheriff
    In previous blog posts I have discussed how to use XML files to store data in your applications. I showed you how to read those XML files from your project and get XML from a WCF service. One of the problems with reading XML files is when elements or attributes are missing. If you try to read that missing data, then a null value is returned. This can cause a problem if you are trying to load that data into an object and a null is read. This blog post will show you how to create extension methods to detect null values and return valid values to load into your object. The XML Data An XML data file called Product.xml is located in the \Xml folder of the Silverlight sample project for this blog post. This XML file contains several rows of product data that will be used in each of the samples for this post. Each row has 4 attributes; namely ProductId, ProductName, IntroductionDate and Price. <Products>  <Product ProductId="1"           ProductName="Haystack Code Generator for .NET"           IntroductionDate="07/01/2010"  Price="799" />  <Product ProductId="2"           ProductName="ASP.Net Jumpstart Samples"           IntroductionDate="05/24/2005"  Price="0" />  ...  ...</Products> The Product Class Just as you create an Entity class to map each column in a table to a property in a class, you should do the same for an XML file too. In this case you will create a Product class with properties for each of the attributes in each element of product data. The following code listing shows the Product class. public class Product : CommonBase{  public const string XmlFile = @"Xml/Product.xml";   private string _ProductName;  private int _ProductId;  private DateTime _IntroductionDate;  private decimal _Price;   public string ProductName  {    get { return _ProductName; }    set {      if (_ProductName != value) {        _ProductName = value;        RaisePropertyChanged("ProductName");      }    }  }   public int ProductId  {    get { return _ProductId; }    set {      if (_ProductId != value) {        _ProductId = value;        RaisePropertyChanged("ProductId");      }    }  }   public DateTime IntroductionDate  {    get { return _IntroductionDate; }    set {      if (_IntroductionDate != value) {        _IntroductionDate = value;        RaisePropertyChanged("IntroductionDate");      }    }  }   public decimal Price  {    get { return _Price; }    set {      if (_Price != value) {        _Price = value;        RaisePropertyChanged("Price");      }    }  }} NOTE: The CommonBase class that the Product class inherits from simply implements the INotifyPropertyChanged event in order to inform your XAML UI of any property changes. You can see this class in the sample you download for this blog post. Reading Data When using LINQ to XML you call the Load method of the XElement class to load the XML file. Once the XML file has been loaded, you write a LINQ query to iterate over the “Product” Descendants in the XML file. The “select” portion of the LINQ query creates a new Product object for each row in the XML file. You retrieve each attribute by passing each attribute name to the Attribute() method and retrieving the data from the “Value” property. The Value property will return a null if there is no data, or will return the string value of the attribute. The Convert class is used to convert the value retrieved into the appropriate data type required by the Product class. private void LoadProducts(){  XElement xElem = null;   try  {    xElem = XElement.Load(Product.XmlFile);     // The following will NOT work if you have missing attributes    var products =         from elem in xElem.Descendants("Product")        orderby elem.Attribute("ProductName").Value        select new Product        {          ProductId = Convert.ToInt32(            elem.Attribute("ProductId").Value),          ProductName = Convert.ToString(            elem.Attribute("ProductName").Value),          IntroductionDate = Convert.ToDateTime(            elem.Attribute("IntroductionDate").Value),          Price = Convert.ToDecimal(elem.Attribute("Price").Value)        };     lstData.DataContext = products;  }  catch (Exception ex)  {    MessageBox.Show(ex.Message);  }} This is where the problem comes in. If you have any missing attributes in any of the rows in the XML file, or if the data in the ProductId or IntroductionDate is not of the appropriate type, then this code will fail! The reason? There is no built-in check to ensure that the correct type of data is contained in the XML file. This is where extension methods can come in real handy. Using Extension Methods Instead of using the Convert class to perform type conversions as you just saw, create a set of extension methods attached to the XAttribute class. These extension methods will perform null-checking and ensure that a valid value is passed back instead of an exception being thrown if there is invalid data in your XML file. private void LoadProducts(){  var xElem = XElement.Load(Product.XmlFile);   var products =       from elem in xElem.Descendants("Product")      orderby elem.Attribute("ProductName").Value      select new Product      {        ProductId = elem.Attribute("ProductId").GetAsInteger(),        ProductName = elem.Attribute("ProductName").GetAsString(),        IntroductionDate =            elem.Attribute("IntroductionDate").GetAsDateTime(),        Price = elem.Attribute("Price").GetAsDecimal()      };   lstData.DataContext = products;} Writing Extension Methods To create an extension method you will create a class with any name you like. In the code listing below is a class named XmlExtensionMethods. This listing just shows a couple of the available methods such as GetAsString and GetAsInteger. These methods are just like any other method you would write except when you pass in the parameter you prefix the type with the keyword “this”. This lets the compiler know that it should add this method to the class specified in the parameter. public static class XmlExtensionMethods{  public static string GetAsString(this XAttribute attr)  {    string ret = string.Empty;     if (attr != null && !string.IsNullOrEmpty(attr.Value))    {      ret = attr.Value;    }     return ret;  }   public static int GetAsInteger(this XAttribute attr)  {    int ret = 0;    int value = 0;     if (attr != null && !string.IsNullOrEmpty(attr.Value))    {      if(int.TryParse(attr.Value, out value))        ret = value;    }     return ret;  }   ...  ...} Each of the methods in the XmlExtensionMethods class should inspect the XAttribute to ensure it is not null and that the value in the attribute is not null. If the value is null, then a default value will be returned such as an empty string or a 0 for a numeric value. Summary Extension methods are a great way to simplify your code and provide protection to ensure problems do not occur when reading data. You will probably want to create more extension methods to handle XElement objects as well for when you use element-based XML. Feel free to extend these extension methods to accept a parameter which would be the default value if a null value is detected, or any other parameters you wish. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose “Tips & Tricks”, then "Read XML Files using LINQ to XML and Extension Methods" from the drop-down. Good Luck with your Coding,Paul D. Sheriff  

    Read the article

  • CodePlex Daily Summary for Tuesday, November 01, 2011

    CodePlex Daily Summary for Tuesday, November 01, 2011Popular ReleasesAgFx Windows Phone Application Data Caching Framework: AgFx November Update: This update is primarily a bug fix release, which provides a number of stability and performance enhancements to AgFx. Available as a NuGet package here. Release Notes Fix IsoStore exceptions during shutdown (Changelist 81729) Thread safety and sequencings issues (Changelists 78682,79252, 80707) Fix landscape layout issue in auth sample Fix async keyword collision Supporting overlapping/multiple notifications for Load requestsiTuner - The iTunes Companion: iTuner 1.4.4322: Added German (unverified, apologies if incorrect) Properly source invariant resources with correct resIDs Replaced obsolete lyric providers with working providers Fix Pseudolater to correctly morph every third char Fix null reference in CatalogBaseDevpad: 4.6: Whats new for Devpad 4.6: New Recent Files New Run in Safari Minor Bug Fix's, improvements and speed upsWindows Workflow Foundation on Codeplex: Microsoft.Activities v1.8.8: Microsoft.Activities Overview How do I install Microsoft.Activities? Updates in this release9318Technical Analysis Engine for .NET: Technical Analysis Engine 1.25: What's new in the 1.25 release (2011-11-01): - Added Williams %R indicator - Added Moving Average Envelopes indicatorBF3Rcon.NET: BF3Rcon 3.0: This release is targeted for RCON documentation based on R3. Everything should be beta stable, but it's alpha because I haven't been able to fully test it. When a stable release is ready, a proper changelog will be kept. Important Edit: There's one method that will keep this from working in Mono. GeneratePasswordHash uses void HashAlgorithm.Dispose(), which isn't in Mono. This will have to be changed to Clear() in the next release. If anyone needs a Mono version of this immediately, you can...BoxWorld: BoxWorld_2011.10.30: BoxWorld - 8.0.1110.30 This is the initial release of BoxWorld. I'd recommend downloading the installer as it contains the compiled code and everything all nicely contained. By default, you end up with this directory structure: C:\Program Files\ViperWorks\BoxWorld C:\Program Files\ViperWorks\BoxWorld\Data C:\Program Files\ViperWorks\BoxWorld\Interface C:\Program Files\ViperWorks\BoxWorld\Source In the root you have the compiled EXE files, one for the main release, one for the LITE release ...VidCoder: 1.2.1: Fixed a couple regressions: video encoder was blank in queue and crashes with the High Profile preset when opening the Settings window. Fixed problem with auto-update introduced in 1.2.0. If you have 1.2.0 you will need to update manually to get this.AssaultCube Reloaded: Release 2.3: THE RELEASE YOU'VE ALL BEEN WAITING FOR! IT CAN NOW BE CONSIDERED STABLE Linux has Debian 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, download the Linux package. The server pack is ready for both Windows and Linux, but you might need to compile your own for linux (source included) If you are using Windows and require the source code, download the source package!Koober: Koober - The Ebook Creator 0.2: The official release of Koober as Open source. Koober is a ebook creator for Windows, and Koob Reader is the reader.A Microblog API (SINA weibo.com open API in C#, .Net???????API): AMicroblogAPI v1.0: AMicroBlogAPI is a C# implementation, a strong-typed deep encapsulation, a easy-to-use .net wrapper of SINA microblog API v1.0. App developers no longer need to parse various HTTP responses -- all responses are parsed into strong types; No longer need to construt the request query strings -- just simply gives the values of parameters; No longer need to implement the OAuth -- a single call could logs the user on. In this release (AMicroblogAPI v1.0), all basic data APIs are implemented. For ...patterns & practices: Enterprise Library Contrib: Enterprise Library Contrib - 5.0 (Oct 2011): This release of Enterprise Library Contrib is based on the Microsoft patterns & practices Enterprise Library 5.0 core and contains the following: Common extensionsTypeConfigurationElement<T> - A Polymorphic Configuration Element without having to be part of a PolymorphicConfigurationElementCollection. AnonymousConfigurationElement - A Configuration element that can be uniquely identified without having to define its name explicitly. Data Access Application Block extensionsMySql Provider - ...Network Monitor Open Source Parsers: Network Monitor Parsers 3.4.2748: The Network Monitor Parsers packages contain parsers for more than 400 network protocols, including RFC based public protocols and protocols for Microsoft products defined in the Microsoft Open Specifications for Windows and SQL Server. NetworkMonitor_Parsers.msi is the base parser package which defines parsers for commonly used public protocols and protocols for Microsoft Windows. In this release, NetowrkMonitor_Parsers.msi continues to improve quality and fix bugs. It has included the fo...Duckworth Lewis Professional Edition Calculator: DLcalc 3.0: DLcalc 3.0 can perform Duckworth/Lewis Professional Edition calculations 100% accurately. It also produces over-by-over and ball-by-ball PAR score tables.Media Companion: MC 3.420b Weekly: Ensure .NET 4.0 Full Framework is installed. (Available from http://www.microsoft.com/download/en/details.aspx?id=17718) Ensure the NFO ID fix is applied when transitioning from versions prior to 3.416b. (Details here) Movies Fixed: Fanart and poster scraping issues TV Shows (Re)Added: Rebuild single show Fixed: Issue when shows are moved from original location Ability to handle " for actor nicknames Crash when episode name contains "<" (does not scrape yet) Clears fanart when switch...patterns & practices - Unity: Unity 3.0 for .NET4.5 Preview: The Unity 3.0.1026.0 Preview enables Unity to work on .NET 4.5 with both the WinRT and desktop profiles. The major changes include: Unity projects updated to target .NET 4.5. Dynamic build plans modified to use compiled lambda expressions instead of Reflection.Emit Converting reflection to use the new TypeInfo for reflection. Projects updated to work with the Microsoft Visual Studio 2011 Preview Notes/Known Issues: The Microsoft.Practices.Unity.UnityServiceLocator class cannot be use...Managed Extensibility Framework: MEF 2 Preview 4: Detailed information on this release is available on the BCL team blog.AcDown????? - Anime&Comic Downloader: AcDown????? v3.6: ?? ● AcDown??????????、??????,??????????????????????,???????Acfun、Bilibili、???、???、???、Tucao.cc、SF???、?????80????,???????????、?????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86)?.NET Framework 2.0???(x64),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ?? v3.6?? ??“????”...MVC Controls Toolkit: Mvc Controls Toolkit 1.5.0: Added: The new Client Blocks feaure of Views A new "move" js method for the TreeViews The NewHtmlCreated js event to the DataGrid Improved the ChoiceList structure that now allows also the selection list of a dropdown to be chosen with a lambda expression Improved the AcceptViewHintAttribute controller filter. Now a client can specify not only the name of a View or Partial View it prefers, but also to receive just the rough data in Json format. Now the the SMinimum and SMaximum par...Free SharePoint Master Pages: Buried Alive (Halloween) Theme: Release Notes *Created for Halloween, you will find theme file, custom css file and images. *Created by Al Roome @AlstarRoome Features: Custom styling for web part Custom background *Screenshot https://s3.amazonaws.com/kkhipple/post/sharepoint-showcase-halloween.pngNew ProjectsarlTH: "Airport Link Thailand" Application for Windows Phone 7.1Audio Tags Editor For Excel: The purpose of the project is to create a tool to edit tags of audio files through the excel application. The program is an Excel add-in.AW Load Tester: AW Load Tester is a simple and easy to use website load tester that very closely mimics a regular users browsing session on your website. Many popular load tester only download HTML. AW Load Tester downloads all the related items on a page simultaneously. AzMan - Be Good Do Right !: The AzMan is a collection of reusable software components designed to assist software developers with common enterprise development challenges. http://bbs.fengshupo.com/BestWayWP7UI: The User interface of best wat wp7 applicationCheckout Subsystem Optimizer: Checkout Subsystem OptimizerDBScripter - Library for scripting SQL Server database objects: This project is library that allows users to script SQL Server database objects. Library uses dynamic management views for extracting data about databases objects. This library could be used in various situations. The most interesting areas are comparing database objects and generation database documentation. For both cases examples have been prepared.Dependency Checker: Dependency Checker is a utility for verifying that a set of prerequisites is present on a machine. The set of dependencies is defined in a configuration file. For more information, see http://dependencychecker.codeplex.com/documentation DibTer: DibTer is a brand new CMS for ASP.NET Mainly features are NHibernate MVC JQuery HTML5Dynamics CRM Entity Based Stress Tool: Entity Based Stress Tool, is command line program that creates configurable server agents in order to stress a defined entity at a defined Message/Stage. This tool allows CRM Application Stressing, Plugin Stressing, and enlaborate an execution report.Edinger: Edinger is a simple text editor.FreeboxHDVideoPlayer: FreeboxHDVideoPlayer makes it easier for free.fr french ISP users to play and manage videos stored on the HDD of the Freebox HD. FreeboxHDVideoPlayer simplifie, pour les utilisateurs de free.fr, la lecture et la gestion des vidéos stockées sur le disque du boitier Freebox HD.guglex - google docs xtraz: my studying project for asp.net mvc 3. now displaying spreadsheet rows in card viewIP-Camera MJPEG HTTP Web-Server Emulator: Turns web-camera into IP-camera with mjpeg streaming and access it over network. Usage of i-Lids (Imagery Library for Intelligent Detection Systems) and other data for surveillance systems development. Sends WMV, folder with images, web-camera data over the wire.LIM: LIM is .net software for archive manage.Luminji.CorWeb: luminji's company web.Map Generator: Map Generator for your Civ/Col/Roguelike games in VB.NET.Microformat Parsers for .NET: Microformat's Parsers for .NET helps you to collect information you run into on the web, that is stored by means of microformats. It's written in C# 3.0.Mini Rx: Mini Rx provides LINQ like queries over events for C# and F# using extension methods, somewhat like the Reactive Extensions (Rx) but in a lightweight open source package with one non-strong named assembly.MVC Music Store by NNT: Demo Music Store Follow tut from Microsoft. Team Explorer VS 2010 .NET 4PHP MySQL Web Site Creator: PHP MySQL Web Site Creator helps you create a basic template for your web site using a UI form. I creates all PHP, CSS, HTML basic pages to connect to MySQL database.PQLRD: Paco KLk!Project Web And Application: Project MobileStore in ASP use ASP.NET MVC 3RoboZip: RoboZip combines MS Robocopy and Zip-functionality. Create a job and RoboZip will zip all files (from a list of filetypes) within a time span in the past. The zip file name can contain date and time values of the time period it covers. It's developed in C#. The zip component is the DotNetZip Library from http://dotnetzip.codeplex.com. The logging is done using Apache log4net from http://logging.apache.org/log4net. The idea here is not to only present the code, but also to document how the de...Scriptster Gearbox: Scriptster Gearbox is a full C# scripting system based on Scriptster (also on CodePlex). It is aimed at Visual Studio developers and power users who need to automate the sorts of things that DOS is generally good at, but which using C# can make more powerful and more familiar.Technical Analysis Engine for .NET: Technical Analysis Engine is a .NET based library for technical analysis. It is fast, free, easy to use and provides functionality for financial market analysis.ValidationDSL: A Fluent validation engine with ease to use and reusable around the multi-tenant applicationsWebFormsUtilities: WebFormsUtilities is a collection of tools that assist in using MVC/MVP functionality to webforms in an unobtrusive manner. This differs from a hybrid MVC/WebForms page in that you can use methods like UpdateModel() or TryValidateModel() in a WebForms Page class.Wen - WPF 3D Navigator: Control the camera and the lights of a WPF 3D application without any code modification.WindStudios: WindStudiosWrite My Expect Statement: Have Rhino Mocks automatically generate your expect() and return() statements for you.zion xtraz: some basic helpful classes for use in every project

    Read the article

  • Can't connect to SSL web service with WS-Security using PHP SOAP extension - certificate, complex WSDL

    - by BillF
    Using the PHP5 SOAP extension I have been unable to connect to a web service having an https endpoint, with client certificate and using WS-Security, although I can connect using soapUI with the exact same wsdl and client certificate, and obtain the normal response to the request. There is no HTTP authentication and no proxy is involved. The message I get is 'Could not connect to host'. Have been able to verify that I am NOT hitting the host server. (Earlier I wrongly said that I was hitting the server.) The self-signed client SSL certificate is a .pem file converted by openssl from a .p12 keystore which in turn was converted by keytool from a .jks keystore having a single entry consisting of private key and client certificate. In soapUI I did not need to supply a server private certificate, the only two files I gave it were the wdsl and pem. I did have to supply the pem and its passphrase to be able to connect. I am speculating that despite the error message my problem might actually be in the formation of the XML request rather than the SSL connection itself. The wsdl I have been given has nested complex types. The php server is on my Windows XP laptop with IIS. The code, data values and WSDL extracts are shown below. (The WSSoapClient class simply extends SoapClient, adding a WS-Security Username Token header with mustUnderstand = true and including a nonce, both of which the soapUI call had required.) Would so much appreciate any help. I'm a newbie thrown in at the deep end, and how! Have done vast amounts of Googling on this over many days, following many suggestions and have read Pro PHP by Kevin McArthur. An attempt to use classmaps in place of nested arrays also fell flat. The Code class STEeService { public function invokeWebService(array $connection, $operation, array $request) { try { $localCertificateFilespec = $connection['localCertificateFilespec']; $localCertificatePassphrase = $connection['localCertificatePassphrase']; $sslOptions = array( 'ssl' => array( 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'allow_self-signed' => true, 'verify_peer' => false ) ); $sslContext = stream_context_create($sslOptions); $clientArguments = array( 'stream_context' => $sslContext, 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'trace' => true, 'exceptions' => true, 'encoding' => 'UTF-8', 'soap_version' => SOAP_1_1 ); $oClient = new WSSoapClient($connection['wsdlFilespec'], $clientArguments); $oClient->__setUsernameToken($connection['username'], $connection['password']); return $oClient->__soapCall($operation, $request); } catch (exception $e) { throw new Exception("Exception in eServices " . $operation . " ," . $e->getMessage(), "\n"); } } } $connection is as follows: array(5) { ["username"]=> string(8) "DFU00050" ["password"]=> string(10) "Fabricate1" ["wsdlFilespec"]=> string (63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } $clientArguments is as follows: array(7) { ["stream_context"]=> resource(8) of type (stream-context) ["local_cert"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["passphrase"]=> string(14) "password123456" ["trace"]=> bool(true) ["exceptions"]=> bool(true) ["encoding"]=> string(5) "UTF-8" ["soap_version"]=> int(1) } $operation is as follows: 'getConsignmentDetails' $request is as follows: array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } Note how there is an extra level of nesting, an array wrapping the request which is itself an array. This was suggested in a post although I don't see the reason, but it seems to help avoid other exceptions. The exception thrown by ___soapCall is as follows: object(SoapFault)#6 (9) { ["message":protected]=> string(25) "Could not connect to host" ["string":"Exception":private]=> string(0) "" ["code":protected]=> int(0) ["file":protected]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line":protected]=> int(85) ["trace":"Exception":private]=> array(5) { [0]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(85) ["function"]=> string(11) "__doRequest" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) } } [1]=> array(4) { ["function"]=> string(11) "__doRequest" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(5) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) [4]=> int(0) } } [2]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(70) ["function"]=> string(10) "__soapCall" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } [2]=> NULL [3]=> object(SoapHeader)#5 (4) { ["namespace"]=> string(81) "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" ["name"]=> string(8) "Security" ["data"]=> object(SoapVar)#4 (2) { ["enc_type"]=> int(147) ["enc_value"]=> string(594) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z " } ["mustUnderstand"]=> bool(true) } } } [3]=> array(6) { ["file"]=> string(42) "C:\Inetpub\wwwroot\eServices\eServices.php" ["line"]=> int(87) ["function"]=> string(10) "__soapCall" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(2) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } [4]=> array(6) { ["file"]=> string(58) "C:\Inetpub\wwwroot\eServices\EnquireConsignmentDetails.php" ["line"]=> int(44) ["function"]=> string(16) "invokeWebService" ["class"]=> string(38) "startrackexpress\eservices\STEeService" ["type"]=> string(2) "->" ["args"]=> array(3) { [0]=> array(5) { ["username"]=> string(10) "DFU00050 " ["password"]=> string(12) "Fabricate1 " ["wsdlFilespec"]=> string(63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } [1]=> string(21) "getConsignmentDetails" [2]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } } ["previous":"Exception":private]=> NULL ["faultstring"]=> string(25) "Could not connect to host" ["faultcode"]=> string(4) "HTTP" } Here are some WSDL extracts (TIBCO BusinessWorks): <xsd:complexType name="TransactionHeaderType"> <xsd:sequence> <xsd:element name="source" type="xsd:string"/> <xsd:element name="accountNo" type="xsd:integer"/> <xsd:element name="userId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionDatetime" type="xsd:dateTime" minOccurs="0"/> </xsd:sequence> </xsd:complexType> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <wsdl:operation name="getConsignmentDetails"> <wsdl:input message="tns:getConsignmentDetailsRequest"/> <wsdl:output message="tns:getConsignmentDetailsResponse"/> <wsdl:fault name="fault1" message="tns:fault"/> </wsdl:operation> <wsdl:service name="ExternalOps"> <wsdl:port name="OperationsEndpoint1" binding="tns:OperationsEndpoint1Binding"> <soap:address location="https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1"/> </wsdl:port> </wsdl:service> And here in case it's relevant is the WSSoapClient class: <?PHP namespace startrackexpress\eservices; use SoapClient, SoapVar, SoapHeader; class WSSoapClient extends SoapClient { private $username; private $password; /*Generates a WS-Security header*/ private function wssecurity_header() { $timestamp = gmdate('Y-m-d\TH:i:s\Z'); $nonce = mt_rand(); $passdigest = base64_encode(pack('H*', sha1(pack('H*', $nonce).pack('a*', $timestamp).pack('a*', $this->password)))); $auth = ' <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>' . $this->username . '</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">' . $this->password . '</wsse:Password> <wsse:Nonce>' . base64_encode(pack('H*', $nonce)).'</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">' . $timestamp . '</wsu:Created> </wsse:UsernameToken> </wsse:Security> '; $authvalues = new SoapVar($auth, XSD_ANYXML); $header = new SoapHeader("http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd", "Security",$authvalues, true); return $header; } // Sets a username and passphrase public function __setUsernameToken($username,$password) { $this->username=$username; $this->password=$password; } // Overwrites the original method, adding the security header public function __soapCall($function_name, $arguments, $options=null, $input_headers=null, $output_headers=null) { try { $result = parent::__soapCall($function_name, $arguments, $options, $this->wssecurity_header()); return $result; } catch (exception $e) { throw new Exception("Exception in __soapCall, " . $e->getMessage(), "\n"); } } } ?> Update: The request XML would have been as follows: <?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://startrackexpress/Common/Primitives/v1" xmlns:ns2="http://startrackexpress/Common/actions/externals/Consignment/v1" xmlns:ns3="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <SOAP-ENV:Header> <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>DFU00050</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">Fabricate1</wsse:Password> <wsse:Nonce>M4FIeGA=</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2010-10-29T14:05:27Z</wsu:Created> </wsse:UsernameToken> </wsse:Security> </SOAP-ENV:Header> <SOAP-ENV:Body><ns2:getConsignmentDetailRequest> <ns2:header><ns1:source>customerA</ns1:source><ns1:accountNo>10072906</ns1:accountNo></ns2:header> <ns2:consignmentId>GKQ00000085</ns2:consignmentId> </ns2:getConsignmentDetailRequest></SOAP-ENV:Body> </SOAP-ENV:Envelope> This was obtained with the following code in WSSoapClient: public function __doRequest($request, $location, $action, $version) { echo "<p> " . htmlspecialchars($request) . " </p>" ; return parent::__doRequest($request, $location, $action, $version); }

    Read the article

< Previous Page | 178 179 180 181 182 183 184 185 186 187 188 189  | Next Page >