Search Results

Search found 5072 results on 203 pages for 'graph drawing'.

Page 185/203 | < Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >

  • Some non-generic collections

    - by Simon Cooper
    Although the collections classes introduced in .NET 2, 3.5 and 4 cover most scenarios, there are still some .NET 1 collections that don't have generic counterparts. In this post, I'll be examining what they do, why you might use them, and some things you'll need to bear in mind when doing so. BitArray System.Collections.BitArray is conceptually the same as a List<bool>, but whereas List<bool> stores each boolean in a single byte (as that's what the backing bool[] does), BitArray uses a single bit to store each value, and uses various bitmasks to access each bit individually. This means that BitArray is eight times smaller than a List<bool>. Furthermore, BitArray has some useful functions for bitmasks, like And, Xor and Not, and it's not limited to 32 or 64 bits; a BitArray can hold as many bits as you need. However, it's not all roses and kittens. There are some fundamental limitations you have to bear in mind when using BitArray: It's a non-generic collection. The enumerator returns object (a boxed boolean), rather than an unboxed bool. This means that if you do this: foreach (bool b in bitArray) { ... } Every single boolean value will be boxed, then unboxed. And if you do this: foreach (var b in bitArray) { ... } you'll have to manually unbox b on every iteration, as it'll come out of the enumerator an object. Instead, you should manually iterate over the collection using a for loop: for (int i=0; i<bitArray.Length; i++) { bool b = bitArray[i]; ... } Following on from that, if you want to use BitArray in the context of an IEnumerable<bool>, ICollection<bool> or IList<bool>, you'll need to write a wrapper class, or use the Enumerable.Cast<bool> extension method (although Cast would box and unbox every value you get out of it). There is no Add or Remove method. You specify the number of bits you need in the constructor, and that's what you get. You can change the length yourself using the Length property setter though. It doesn't implement IList. Although not really important if you're writing a generic wrapper around it, it is something to bear in mind if you're using it with pre-generic code. However, if you use BitArray carefully, it can provide significant gains over a List<bool> for functionality and efficiency of space. OrderedDictionary System.Collections.Specialized.OrderedDictionary does exactly what you would expect - it's an IDictionary that maintains items in the order they are added. It does this by storing key/value pairs in a Hashtable (to get O(1) key lookup) and an ArrayList (to maintain the order). You can access values by key or index, and insert or remove items at a particular index. The enumerator returns items in index order. However, the Keys and Values properties return ICollection, not IList, as you might expect; CopyTo doesn't maintain the same ordering, as it copies from the backing Hashtable, not ArrayList; and any operations that insert or remove items from the middle of the collection are O(n), just like a normal list. In short; don't use this class. If you need some sort of ordered dictionary, it would be better to write your own generic dictionary combining a Dictionary<TKey, TValue> and List<KeyValuePair<TKey, TValue>> or List<TKey> for your specific situation. ListDictionary and HybridDictionary To look at why you might want to use ListDictionary or HybridDictionary, we need to examine the performance of these dictionaries compared to Hashtable and Dictionary<object, object>. For this test, I added n items to each collection, then randomly accessed n/2 items: So, what's going on here? Well, ListDictionary is implemented as a linked list of key/value pairs; all operations on the dictionary require an O(n) search through the list. However, for small n, the constant factor that big-o notation doesn't measure is much lower than the hashing overhead of Hashtable or Dictionary. HybridDictionary combines a Hashtable and ListDictionary; for small n, it uses a backing ListDictionary, but switches to a Hashtable when it gets to 9 items (you can see the point it switches from a ListDictionary to Hashtable in the graph). Apart from that, it's got very similar performance to Hashtable. So why would you want to use either of these? In short, you wouldn't. Any gain in performance by using ListDictionary over Dictionary<TKey, TValue> would be offset by the generic dictionary not having to cast or box the items you store, something the graphs above don't measure. Only if the performance of the dictionary is vital, the dictionary will hold less than 30 items, and you don't need type safety, would you use ListDictionary over the generic Dictionary. And even then, there's probably more useful performance gains you can make elsewhere.

    Read the article

  • Availability Best Practices on Oracle VM Server for SPARC

    - by jsavit
    This is the first of a series of blog posts on configuring Oracle VM Server for SPARC (also called Logical Domains) for availability. This series will show how to how to plan for availability, improve serviceability, avoid single points of failure, and provide resiliency against hardware and software failures. Availability is a broad topic that has filled entire books, so these posts will focus on aspects specifically related to Oracle VM Server for SPARC. The goal is to improve Reliability, Availability and Serviceability (RAS): An article defining RAS can be found here. Oracle VM Server for SPARC Principles for Availability Let's state some guiding principles for availability that apply to Oracle VM Server for SPARC: Avoid Single Points Of Failure (SPOFs). Systems should be configured so a component failure does not result in a loss of application service. The general method to avoid SPOFs is to provide redundancy so service can continue without interruption if a component fails. For a critical application there may be multiple levels of redundancy so multiple failures can be tolerated. Oracle VM Server for SPARC makes it possible to configure systems that avoid SPOFs. Configure for availability at a level of resource and effort consistent with business needs. Effort and resource should be consistent with business requirements. Production has different availability requirements than test/development, so it's worth expending resources to provide higher availability. Even within the category of production there may be different levels of criticality, outage tolerances, recovery and repair time requirements. Keep in mind that a simple design may be more understandable and effective than a complex design that attempts to "do everything". Design for availability at the appropriate tier or level of the platform stack. Availability can be provided in the application, in the database, or in the virtualization, hardware and network layers they depend on - or using a combination of all of them. It may not be necessary to engineer resilient virtualization for stateless web applications applications where availability is provided by a network load balancer, or for enterprise applications like Oracle Real Application Clusters (RAC) and WebLogic that provide their own resiliency. It's (often) the same architecture whether virtual or not: For example, providing resiliency against a lost device path or failing disk media is done for the same reasons and may use the same design whether in a domain or not. It's (often) the same technique whether using domains or not: Many configuration steps are the same. For example, configuring IPMP or creating a redundant ZFS pool is pretty much the same within the guest whether you're in a guest domain or not. There are configuration steps and choices for provisioning the guest with the virtual network and disk devices, which we will discuss. Sometimes it is different using domains: There are new resources to configure. Most notable is the use of alternate service domains, which provides resiliency in case of a domain failure, and also permits improved serviceability via "rolling upgrades". This is an important differentiator between Oracle VM Server for SPARC and traditional virtual machine environments where all virtual I/O is provided by a monolithic infrastructure that itself is a SPOF. Alternate service domains are widely used to provide resiliency in production logical domains environments. Some things are done via logical domains commands, and some are done in the guest: For example, with Oracle VM Server for SPARC we provide multiple network connections to the guest, and then configure network resiliency in the guest via IP Multi Pathing (IPMP) - essentially the same as for non-virtual systems. On the other hand, we configure virtual disk availability in the virtualization layer, and the guest sees an already-resilient disk without being aware of the details. These blogs will discuss configuration details like this. Live migration is not "high availability" in the sense of "continuous availability": If the server is down, then you don't live migrate from it! (A cluster or VM restart elsewhere would be used). However, live migration can be part of the RAS (Reliability, Availability, Serviceability) picture by improving Serviceability - you can move running domains off of a box before planned service or maintenance. The blog Best Practices - Live Migration on Oracle VM Server for SPARC discusses this. Topics Here are some of the topics that will be covered: Network availability using IP Multipathing and aggregates Disk path availability using virtual disks defined with multipath groups ("mpgroup") Disk media resiliency configuring for redundant disks that can tolerate media loss Multiple service domains - this is probably the most significant item and the one most specific to Oracle VM Server for SPARC. It is very widely deployed in production environments as the means to provide network and disk availability, but it can be confusing. Subsequent articles will describe why and how to configure multiple service domains. Note, for the sake of precision: an I/O domain is any domain that has a physical I/O resource (such as a PCIe bus root complex). A service domain is a domain providing virtual device services to other domains; it is almost always an I/O domain too (so it can have something to serve). Resources Here are some important links; we'll be drawing on their content in the next several articles: Oracle VM Server for SPARC Documentation Maximizing Application Reliability and Availability with SPARC T5 Servers whitepaper by Gary Combs Maximizing Application Reliability and Availability with the SPARC M5-32 Server whitepaper by Gary Combs Summary Oracle VM Server for SPARC offers features that can be used to provide highly-available environments. This and the following blog entries will describe how to plan and deploy them.

    Read the article

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

  • Design Pattern for Complex Data Modeling

    - by Aaron Hayman
    I'm developing a program that has a SQL database as a backing store. As a very broad description, the program itself allows a user to generate records in any number of user-defined tables and make connections between them. As for specs: Any record generated must be able to be connected to any other record in any other user table (excluding itself...the record, not the table). These "connections" are directional, and the list of connections a record has is user ordered. Moreover, a record must "know" of connections made from it to others as well as connections made to it from others. The connections are kind of the point of this program, so there is a strong possibility that the number of connections made is very high, especially if the user is using the software as intended. A record's field can also include aggregate information from it's connections (like obtaining average, sum, etc) that must be updated on change from another record it's connected to. To conserve memory, only relevant information must be loaded at any one time (can't load the entire database in memory at load and go from there). I cannot assume the backing store is local. Right now it is, but eventually this program will include syncing to a remote db. Neither the user tables, connections or records are known at design time as they are user generated. I've spent a lot of time trying to figure out how to design the backing store and the object model to best fit these specs. In my first design attempt on this, I had one object managing all a table's records and connections. I attempted this first because it kept the memory footprint smaller (records and connections were simple dicts), but maintaining aggregate and link information between tables became....onerous (ie...a huge spaghettified mess). Tracing dependencies using this method almost became impossible. Instead, I've settled on a distributed graph model where each record and connection is 'aware' of what's around it by managing it own data and connections to other records. Doing this increases my memory footprint but also let me create a faulting system so connections/records aren't loaded into memory until they're needed. It's also much easier to code: trace dependencies, eliminate cycling recursive updates, etc. My biggest problem is storing/loading the connections. I'm not happy with any of my current solutions/ideas so I wanted to ask and see if anybody else has any ideas of how this should be structured. Connections are fairly simple. They contain: fromRecordID, fromTableID, fromRecordOrder, toRecordID, toTableID, toRecordOrder. Here's what I've come up with so far: Store all the connections in one big table. If I do this, either I load all connections at once (one big db call) or make a call every time a user table is loaded. The big issue here: the size of the connections table has the potential to be huge, and I'm afraid it would slow things down. Store in separate tables all the outgoing connections for each user table. This is probably the worst idea I've had. Now my connections are 'spread out' over multiple tables (one for each user table), which means I have to make a separate DB called to each table (or make a huge join) just to find all the incoming connections for a particular user table. I've avoided making "one big ass table", but I'm not sure the cost is worth it. Store in separate tables all outgoing AND incoming connections for each user table (using a flag to distinguish between incoming vs outgoing). This is the idea I'm leaning towards, but it will essentially double the total DB storage for all the connections (as each connection will be stored in two tables). It also means I have to make sure connection information is kept in sync in both places. This is obviously not ideal but it does mean that when I load a user table, I only need to load one 'connection' table and have all the information I need. This also presents a separate problem, that of connection object creation. Since each user table has a list of all connections, there are two opportunities for a connection object to be made. However, connections objects (designed to facilitate communication between records) should only be created once. This means I'll have to devise a common caching/factory object to make sure only one connection object is made per connection. Does anybody have any ideas of a better way to do this? Once I've committed to a particular design pattern I'm pretty much stuck with it, so I want to make sure I've come up with the best one possible.

    Read the article

  • Displaying text letter by letter

    - by Evi
    I am planing to Write a Text adventure and I don't know how to make the text draw letter by letter in any other way than changing the variable from h to he to hel to hell to hello That would be a terrible amount of work since there are tons of dialogue. Here is the source code so far { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D sampleBG; Texture2D TextBG; SpriteFont defaultfont; KeyboardState keyboardstate; public bool spacepress = false; public bool mspress = false; public int textheight = 425; public int rowspace = 40; public string namebox = "(null)"; public string Row1 = "(null)"; public string Row2 = "(null)"; public string Row3 = "(null)"; public string Row4 = "(null)"; public int Dialogue = 0; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; graphics.PreferredBackBufferHeight = 600; graphics.PreferredBackBufferWidth = 800; IsMouseVisible = true; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here sampleBG = Content.Load <Texture2D>("SampleBG"); defaultfont = Content.Load<SpriteFont>("SpriteFont1"); TextBG = Content.Load<Texture2D>("textbg"); } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { KeyboardState keyboardstate = Keyboard.GetState(); MouseState mousestate = Mouse.GetState(); // Changes Dialgue by pressing Left Mouse Button or Space #region Dialogue changer if (mousestate.LeftButton == ButtonState.Pressed && mspress == false) { mspress = true; Dialogue = Dialogue + 1; } if (mousestate.LeftButton == ButtonState.Released && mspress == true) { mspress = false; } if (keyboardstate.IsKeyDown(Keys.Space) && spacepress == false) { spacepress = true; Dialogue = Dialogue + 1; } if (keyboardstate.IsKeyUp(Keys.Space) && spacepress == true) { spacepress = false; } #endregion // ------------------------------------------------------ // Dialgue Content #region Dialgue if (Dialogue == 1) { Row1 = "Input Text 1 Here."; Row2 = "Input Text 2 Here."; Row3 = "Input Text 3 Here."; Row4 = "Input Text 4 Here."; } if (Dialogue == 2) { Row1 = "Text 1"; Row2 = "Text 2"; Row3 = "Text 3"; Row4 = "Text 4"; } #endregion // ------------------------------------------------------ base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here spriteBatch.Begin(); spriteBatch.Draw(sampleBG, new Rectangle(0, 0, 800, 600), Color.White); spriteBatch.Draw(TextBG, new Rectangle(0, 400, 800, 200), Color.White); spriteBatch.DrawString(defaultfont, Row1, new Vector2(10, (textheight + (rowspace * 0))), Color.Black); spriteBatch.DrawString(defaultfont, Row2, new Vector2(10, (textheight + (rowspace * 1))), Color.Black); spriteBatch.DrawString(defaultfont, Row3, new Vector2(10, (textheight + (rowspace * 2))), Color.Black); spriteBatch.DrawString(defaultfont, Row4, new Vector2(10, (textheight + (rowspace * 3))), Color.Black); spriteBatch.End(); base.Draw(gameTime); } } }

    Read the article

  • ODI 12c - Aggregating Data

    - by David Allan
    This posting will look at the aggregation component that was introduced in ODI 12c. For many ETL tool users this shouldn't be a big surprise, its a little different than ODI 11g but for good reason. You can use this component for composing data with relational like operations such as sum, average and so forth. Also, Oracle SQL supports special functions called Analytic SQL functions, you can use a specially configured aggregation component or the expression component for these now in ODI 12c. In database systems an aggregate transformation is a transformation where the values of multiple rows are grouped together as input on certain criteria to form a single value of more significant meaning - that's exactly the purpose of the aggregate component. In the image below you can see the aggregate component in action within a mapping, for how this and a few other examples are built look at the ODI 12c Aggregation Viewlet here - the viewlet illustrates a simple aggregation being built and then some Oracle analytic SQL such as AVG(EMP.SAL) OVER (PARTITION BY EMP.DEPTNO) built using both the aggregate component and the expression component. In 11g you used to just write the aggregate expression directly on the target, this made life easy for some cases, but it wan't a very obvious gesture plus had other drawbacks with ordering of transformations (agg before join/lookup. after set and so forth) and supporting analytic SQL for example - there are a lot of postings from creative folks working around this in 11g - anything from customizing KMs, to bypassing aggregation analysis in the ODI code generator. The aggregate component has a few interesting aspects. 1. Firstly and foremost it defines the attributes projected from it - ODI automatically will perform the grouping all you do is define the aggregation expressions for those columns aggregated. In 12c you can control this automatic grouping behavior so that you get the code you desire, so you can indicate that an attribute should not be included in the group by, that's what I did in the analytic SQL example using the aggregate component. 2. The component has a few other properties of interest; it has a HAVING clause and a manual group by clause. The HAVING clause includes a predicate used to filter rows resulting from the GROUP BY clause. Because it acts on the results of the GROUP BY clause, aggregation functions can be used in the HAVING clause predicate, in 11g the filter was overloaded and used for both having clause and filter clause, this is no longer the case. If a filter is after an aggregate, it is after the aggregate (not sometimes after, sometimes having).  3. The manual group by clause let's you use special database grouping grammar if you need to. For example Oracle has a wealth of highly specialized grouping capabilities for data warehousing such as the CUBE function. If you want to use specialized functions like that you can manually define the code here. The example below shows the use of a manual group from an example in the Oracle database data warehousing guide where the SUM aggregate function is used along with the CUBE function in the group by clause. The SQL I am trying to generate looks like the following from the data warehousing guide; SELECT channel_desc, calendar_month_desc, countries.country_iso_code,       TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels, countries WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND   sales.channel_id= channels.channel_id  AND customers.country_id = countries.country_id  AND channels.channel_desc IN   ('Direct Sales', 'Internet') AND times.calendar_month_desc IN   ('2000-09', '2000-10') AND countries.country_iso_code IN ('GB', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, countries.country_iso_code); I can capture the source datastores, the filters and joins using ODI's dataset (or as a traditional flow) which enables us to incrementally design the mapping and the aggregate component for the sum and group by as follows; In the above mapping you can see the joins and filters declared in ODI's dataset, allowing you to capture the relationships of the datastores required in an entity-relationship style just like ODI 11g. The mix of ODI's declarative design and the common flow design provides for a familiar design experience. The example below illustrates flow design (basic arbitrary ordering) - a table load where only the employees who have maximum commission are loaded into a target. The maximum commission is retrieved from the bonus datastore and there is a look using employees as the driving table and only those with maximum commission projected. Hopefully this has given you a taster for some of the new capabilities provided by the aggregate component in ODI 12c. In summary, the actions should be much more consistent in behavior and more easily discoverable for users, the use of the components in a flow graph also supports arbitrary designs and the tool (rather than the interface designer) takes care of the realization using ODI's knowledge modules. Interested to know if a deep dive into each component is interesting for folks. Any thoughts? 

    Read the article

  • When is my View too smart?

    - by Kyle Burns
    In this posting, I will discuss the motivation behind keeping View code as thin as possible when using patterns such as MVC, MVVM, and MVP.  Once the motivation is identified, I will examine some ways to determine whether a View contains logic that belongs in another part of the application.  While the concepts that I will discuss are applicable to most any pattern which favors a thin View, any concrete examples that I present will center on ASP.NET MVC. Design patterns that include a Model, a View, and other components such as a Controller, ViewModel, or Presenter are not new to application development.  These patterns have, in fact, been around since the early days of building applications with graphical interfaces.  The reason that these patterns emerged is simple – the code running closest to the user tends to be littered with logic and library calls that center around implementation details of showing and manipulating user interface widgets and when this type of code is interspersed with application domain logic it becomes difficult to understand and much more difficult to adequately test.  By removing domain logic from the View, we ensure that the View has a single responsibility of drawing the screen which, in turn, makes our application easier to understand and maintain. I was recently asked to take a look at an ASP.NET MVC View because the developer reviewing it thought that it possibly had too much going on in the view.  I looked at the .CSHTML file and the first thing that occurred to me was that it began with 40 lines of code declaring member variables and performing the necessary calculations to populate these variables, which were later either output directly to the page or used to control some conditional rendering action (such as adding a class name to an HTML element or not rendering another element at all).  This exhibited both of what I consider the primary heuristics (or code smells) indicating that the View is too smart: Member variables – in general, variables in View code are an indication that the Model to which the View is being bound is not sufficient for the needs of the View and that the View has had to augment that Model.  Notable exceptions to this guideline include variables used to hold information specifically related to rendering (such as a dynamically determined CSS class name or the depth within a recursive structure for indentation purposes) and variables which are used to facilitate looping through collections while binding. Arithmetic – as with member variables, the presence of arithmetic operators within View code are an indication that the Model servicing the View is insufficient for its needs.  For example, if the Model represents a line item in a sales order, it might seem perfectly natural to “normalize” the Model by storing the quantity and unit price in the Model and multiply these within the View to show the line total.  While this does seem natural, it introduces a business rule to the View code and makes it impossible to test that the rounding of the result meets the requirement of the business without executing the View.  Within View code, arithmetic should only be used for activities such as incrementing loop counters and calculating element widths. In addition to the two characteristics of a “Smart View” that I’ve discussed already, this View also exhibited another heuristic that commonly indicates to me the need to refactor a View and make it a bit less smart.  That characteristic is the existence of Boolean logic that either does not work directly with properties of the Model or works with too many properties of the Model.  Consider the following code and consider how logic that does not work directly with properties of the Model is just another form of the “member variable” heuristic covered earlier: @if(DateTime.Now.Hour < 12) {     <div>Good Morning!</div> } else {     <div>Greetings</div> } This code performs business logic to determine whether it is morning.  A possible refactoring would be to add an IsMorning property to the Model, but in this particular case there is enough similarity between the branches that the entire branching structure could be collapsed by adding a Greeting property to the Model and using it similarly to the following: <div>@Model.Greeting</div> Now let’s look at some complex logic around multiple Model properties: @if (ModelPageNumber + Model.NumbersToDisplay == Model.PageCount         || (Model.PageCount != Model.CurrentPage             && !Model.DisplayValues.Contains(Model.PageCount))) {     <div>There's more to see!</div> } In this scenario, not only is the View code difficult to read (you shouldn’t have to play “human compiler” to determine the purpose of the code), but it also complex enough to be at risk for logical errors that cannot be detected without executing the View.  Conditional logic that requires more than a single logical operator should be looked at more closely to determine whether the condition should be evaluated elsewhere and exposed as a single property of the Model.  Moving the logic above outside of the View and exposing a new Model property would simplify the View code to: @if(Model.HasMoreToSee) {     <div>There’s more to see!</div> } In this posting I have briefly discussed some of the more prominent heuristics that indicate a need to push code from the View into other pieces of the application.  You should now be able to recognize these symptoms when building or maintaining Views (or the Models that support them) in your applications.

    Read the article

  • yield – Just yet another sexy c# keyword?

    - by George Mamaladze
    yield (see NSDN c# reference) operator came I guess with .NET 2.0 and I my feeling is that it’s not as wide used as it could (or should) be.   I am not going to talk here about necessarity and advantages of using iterator pattern when accessing custom sequences (just google it).   Let’s look at it from the clean code point of view. Let's see if it really helps us to keep our code understandable, reusable and testable.   Let’s say we want to iterate a tree and do something with it’s nodes, for instance calculate a sum of their values. So the most elegant way would be to build a recursive method performing a classic depth traversal returning the sum.           private int CalculateTreeSum(Node top)         {             int sumOfChildNodes = 0;             foreach (Node childNode in top.ChildNodes)             {                 sumOfChildNodes += CalculateTreeSum(childNode);             }             return top.Value + sumOfChildNodes;         }     “Do One Thing” Nevertheless it violates one of the most important rules “Do One Thing”. Our  method CalculateTreeSum does two things at the same time. It travels inside the tree and performs some computation – in this case calculates sum. Doing two things in one method is definitely a bad thing because of several reasons: ·          Understandability: Readability / refactoring ·          Reuseability: when overriding - no chance to override computation without copying iteration code and vice versa. ·          Testability: you are not able to test computation without constructing the tree and you are not able to test correctness of tree iteration.   I want to spend some more words on this last issue. How do you test the method CalculateTreeSum when it contains two in one: computation & iteration? The only chance is to construct a test tree and assert the result of the method call, in our case the sum against our expectation. And if the test fails you do not know wether was the computation algorithm wrong or was that the iteration? At the end to top it all off I tell you: according to Murphy’s Law the iteration will have a bug as well as the calculation. Both bugs in a combination will cause the sum to be accidentally exactly the same you expect and the test will PASS. J   Ok let’s use yield! That’s why it is generally a very good idea not to mix but isolate “things”. Ok let’s use yield!           private int CalculateTreeSumClean(Node top)         {             IEnumerable<Node> treeNodes = GetTreeNodes(top);             return CalculateSum(treeNodes);         }             private int CalculateSum(IEnumerable<Node> nodes)         {             int sumOfNodes = 0;             foreach (Node node in nodes)             {                 sumOfNodes += node.Value;             }             return sumOfNodes;         }           private IEnumerable<Node> GetTreeNodes(Node top)         {             yield return top;             foreach (Node childNode in top.ChildNodes)             {                 foreach (Node currentNode in GetTreeNodes(childNode))                 {                     yield return currentNode;                 }             }         }   Two methods does not know anything about each other. One contains calculation logic another jut the iteration logic. You can relpace the tree iteration algorithm from depth traversal to breath trevaersal or use stack or visitor pattern instead of recursion. This will not influence your calculation logic. And vice versa you can relace the sum with product or do whatever you want with node values, the calculateion algorithm is not aware of beeng working on some tree or graph.  How about not using yield? Now let’s ask the question – what if we do not have yield operator? The brief look at the generated code gives us an answer. The compiler generates a 150 lines long class to implement the iteration logic.       [CompilerGenerated]     private sealed class <GetTreeNodes>d__0 : IEnumerable<Node>, IEnumerable, IEnumerator<Node>, IEnumerator, IDisposable     {         ...        150 Lines of generated code        ...     }   Often we compromise code readability, cleanness, testability, etc. – to reduce number of classes, code lines, keystrokes and mouse clicks. This is the human nature - we are lazy. Knowing and using such a sexy construct like yield, allows us to be lazy, write very few lines of code and at the same time stay clean and do one thing in a method. That's why I generally welcome using staff like that.   Note: The above used recursive depth traversal algorithm is possibly the compact one but not the best one from the performance and memory utilization point of view. It was taken to emphasize on other primary aspects of this post.

    Read the article

  • Developing Schema Compare for Oracle (Part 5): Query Snapshots

    - by Simon Cooper
    If you've emailed us about a bug you've encountered with the EAP or beta versions of Schema Compare for Oracle, we probably asked you to send us a query snapshot of your databases. Here, I explain what a query snapshot is, and how it helps us fix your bug. Problem 1: Debugging users' bug reports When we started the Schema Compare project, we knew we were going to get problems with users' databases - configurations we hadn't considered, features that weren't installed, unicode issues, wierd dependencies... With SQL Compare, users are generally happy to send us a database backup that we can restore using a single RESTORE DATABASE command on our test servers and immediately reproduce the problem. Oracle, on the other hand, would be a lot more tricky. As Oracle generally has a 1-to-1 mapping between instances and databases, any databases users sent would have to be restored to their own instance. Furthermore, the number of steps required to get a properly working database, and the size of most oracle databases, made it infeasible to ask every customer who came across a bug during our beta program to send us their databases. We also knew that there would be lots of issues with data security that would make it hard to get backups. So we needed an easier way to be able to debug customers issues and sort out what strange schema data Oracle was returning. Problem 2: Test execution time Another issue we knew we would have to solve was the execution time of the tests we would produce for the Schema Compare engine. Our initial prototype showed that querying the data dictionary for schema information was going to be slow (at least 15 seconds per database), and this is generally proportional to the size of the database. If you're running thousands of tests on the same databases, each one registering separate schemas, not only would the tests would take hours and hours to run, but the test servers would be hammered senseless. The solution To solve these, we needed to be able to populate the schema of a database without actually connecting to it. Well, the IDataReader interface is the primary way we read data from an Oracle server. The data dictionary queries we use return their data in terms of simple strings and numbers, which we then process and reconstruct into an object model, and the results of these queries are identical for identical schemas. So, we can record the raw results of the queries once, and then replay these results to construct the same object model as many times as required without needing to actually connect to the original database. This is what query snapshots do. They are binary files containing the raw unprocessed data we get back from the oracle server for all the queries we run on the data dictionary to get schema information. The core of the query snapshot generation takes the results of the IDataReader we get from running queries on Oracle, and passes the row data to a BinaryWriter that writes it straight to a file. The query snapshot can then be replayed to create the same object model; when the results of a specific query is needed by the population code, we can simply read the binary data stored in the file on disk and present it through an IDataReader wrapper. This is far faster than querying the server over the network, and allows us to run tests in a reasonable time. They also allow us to easily debug a customers problem; using a simple snapshot generation program, users can generate a query snapshot that could be sent along with a bug report that we can immediately replay on our machines to let us debug the issue, rather than having to obtain database backups and restore databases to test systems. There are also far fewer problems with data security; query snapshots only contain schema information, which is generally less sensitive than table data. Query snapshots implementation However, actually implementing such a feature did have a couple of 'gotchas' to it. My second blog post detailed the development of the dependencies algorithm we use to ensure we get all the dependencies in the database, and that algorithm uses data from both databases to find all the needed objects - what database you're comparing to affects what objects get populated from both databases. We get information on these additional objects using an appropriate WHERE clause on all the population queries. So, in order to accurately replay the results of querying the live database, the query snapshot needs to be a snapshot of a comparison of two databases, not just populating a single database. Furthermore, although the code population queries (eg querying all_tab_cols to get column information) can simply be passed straight from the IDataReader to the BinaryWriter, we need to hook into and run the live dependencies algorithm while we're creating the snapshot to ensure we get the same WHERE clauses, and the same query results, as if we were populating straight from a live system. We also need to store the results of the dependencies queries themselves, as the resulting dependency graph is stored within the OracleDatabase object that is produced, and is later used to help order actions in synchronization scripts. This is significantly helped by the dependencies algorithm being a deterministic algorithm - given the same input, it will always return the same output. Therefore, when we're replaying a query snapshot, and processing dependency information, we simply have to return the results of the queries in the order we got them from the live database, rather than trying to calculate the contents of all_dependencies on the fly. Query snapshots are a significant feature in Schema Compare that really helps us to debug problems with the tool, as well as making our testers happier. Although not really user-visible, they are very useful to the development team to help us fix bugs in the product much faster than we otherwise would be able to.

    Read the article

  • 24 Hours of PASS – first reflections

    - by Rob Farley
    A few days after the end of 24HOP, I find myself reflecting on it. I’m still waiting on most of the information. I want to be able to discover things like where the countries represented on each of the sessions, and things like that. So far, I have the feedback scores and the numbers of attendees. The data was provided in a PDF, so while I wait for it to appear in a more flexible format, I’ve pushed the 24 attendee numbers into Excel. This chart shows the numbers by time. Remember that we started at midnight GMT, which was 10:30am in my part of the world and 8pm in New York. It’s probably no surprise that numbers drooped a bit at the start, stayed comparatively low, and then grew as the larger populations of the English-speaking world woke up. I remember last time 24HOP ran for 24 hours straight, there were quite a few sessions with less than 100 attendees. None this time though. We got close, but even when it was 4am in New York, 8am in London and 7pm in Sydney (which would have to be the worst slot for attracting people), we still had over 100 people tuning in. As expected numbers grew as the UK woke up, and even more so as the US did, with numbers peaking at 755 for the “3pm in New York” session on SQL Server Data Tools. Kendra Little almost reached those numbers too, and certainly contributed the biggest ‘spike’ on the chart with her session five hours earlier. Of all the sessions, Kendra had the highest proportion of ‘Excellent’s for the “Overall Evaluation of the session” question, and those of you who saw her probably won’t be surprised by that. Kendra had one of the best ranked sessions from the 24HOP event this time last year (narrowly missing out on being top 3), and she has produced a lot of good video content since then. The reports indicate that there were nearly 8.5 thousand attendees across the 24 sessions, averaging over 350 at each one. I’m looking forward to seeing how many different people that was, although I do know that Wil Sisney managed to attend every single one (if you did too, please let me know). Wil even moderated one of the sessions, which made his feat even greater. Thanks Wil. I also want to send massive thanks to Dave Dustin. Dave probably would have attended all of the sessions, if it weren’t for a power outage that forced him to take a break. He was also a moderator, and it was during this session that he earned special praise. Part way into the session he was moderating, the speaker lost connectivity and couldn’t get back for about fifteen minutes. That’s an incredibly long time when you’re in a live presentation. There were over 200 people tuned in at the time, and I’m sure Dave was as stressed as I was to have a speaker disappear. I started chasing down a phone number for the speaker, while Dave spoke to the audience. And he did brilliantly. He started answering questions, and kept doing that until the speaker came back. Bear in mind that Dave hadn’t expected to give a presentation on that topic (or any other), and was simply drawing on his SQL expertise to get him through. Also consider that this was between midnight at 1am in Dave’s part of the world (Auckland, NZ). I would’ve been expecting just to welcome people, monitor questions, probably read some out, and in general, help make things run smoothly. He went far beyond the call of duty, and if I had a medal to give him, he’d definitely be getting one. On the whole, I think this 24HOP was a success. We tried a different platform, and I think for the most part it was a popular move. We didn’t ask the question “Was this better than LiveMeeting?”, but we did get a number of people telling us that they thought the platform was very good. Some people have told me I get a chance to put my feet up now that this is over. As I’m also co-ordinating a tour of SQLSaturday events across the Australia/New Zealand region, I don’t quite get to take that much of a break (plus, there’s the little thing of squeezing in seven SQL 2012 exams over the next 2.5 weeks). But I am pleased to be reflecting on this event rather than anticipating it. There were a number of factors that could have gone badly, but on the whole I’m pleased about how it went. A massive thanks to everyone involved. If you’re reading this and thinking you wish you could’ve tuned in more, don’t worry – they were all recorded and you’ll be able to watch them on demand very soon. But as well as that, PASS has a stream of content produced by the Virtual Chapters, so you can keep learning from the comfort of your desk all year round. More info on them at sqlpass.org, of course.

    Read the article

  • How do I cleanly design a central render/animation loop?

    - by mtoast
    I'm learning some graphics programming, and am in the midst of my first such project of any substance. But, I am really struggling at the moment with how to architect it cleanly. Let me explain. To display complicated graphics in my current language of choice (JavaScript -- have you heard of it?), you have to draw graphical content onto a <canvas> element. And to do animation, you must clear the <canvas> after every frame (unless you want previous graphics to remain). Thus, most canvas-related JavaScript demos I've seen have a function like this: function render() { clearCanvas(); // draw stuff here requestAnimationFrame(render); } render, as you may surmise, encapsulates the drawing of a single frame. What a single frame contains at a specific point in time, well... that is determined by the program state. So, in order for my program to do its thing, I just need to look at the state, and decide what to render. Right? Right. But that is more complicated than it seems. My program is called "Critter Clicker". In my program, you see several cute critters bouncing around the screen. Clicking on one of them agitates it, making it bounce around even more. There is also a start screen, which says "Click to start!" prior to the critters being displayed. Here are a few of the objects I'm working with in my program: StartScreenView // represents the start screen CritterTubView // represents the area in which the critters live CritterList // a collection of all the critters Critter // a single critter model CritterView // view of a single critter Nothing too egregious with this, I think. Yet, when I set out to flesh out my render function, I get stuck, because everything I write seems utterly ugly and reminiscent of a certain popular Italian dish. Here are a couple of approaches I've attempted, with my internal thought process included, and unrelated bits excluded for clarity. Approach 1: "It's conditions all the way down" // "I'll just write the program as I think it, one frame at a time." if (assetsLoaded) { if (userClickedToStart) { if (critterTubDisplayed) { if (crittersDisplayed) { forEach(crittersList, function(c) { if (c.wasClickedRecently) { c.getAgitated(); } }); } else { displayCritters(); } } else { displayCritterTub(); } } else { displayStartScreen(); } } That's a very much simplified example. Yet even with only a fraction of all the rendering conditions visible, render is already starting to get out of hand. So, I dispense with that and try another idea: Approach 2: Under the Rug // "Each view object shall be responsible for its own rendering. // "I'll pass each object the program state, and each can render itself." startScreen.render(state); critterTub.render(state); critterList.render(state); In this setup, I've essentially just pushed those crazy nested conditions to a deeper level in the code, hiding them from view. In other words, startScreen.render would check state to see if it needed actually to be drawn or not, and take the correct action. But this seems more like it only solves a code-aesthetic problem. The third and final approach I'm considering that I'll share is the idea that I could invent my own "wheel" to take care of this. I'm envisioning a function that takes a data structure that defines what should happen at any given point in the render call -- revealing the conditions and dependencies as a kind of tree. Approach 3: Mad Scientist renderTree({ phases: ['startScreen', 'critterTub', 'endCredits'], dependencies: { startScreen: ['assetsLoaded'], critterTub: ['startScreenClicked'], critterList ['critterTubDisplayed'] // etc. }, exclusions: { startScreen: ['startScreenClicked'], // etc. } }); That seems kind of cool. I'm not exactly sure how it would actually work, but I can see it being a rather nifty way to express things, especially if I flex some of JavaScript's events. In any case, I'm a little bit stumped because I don't see an obvious way to do this. If you couldn't tell, I'm coming to this from the web development world, and finding that doing animation is a bit more exotic than arranging an MVC application for handling simple requests - responses. What is the clean, established solution to this common-I-would-think problem?

    Read the article

  • Issue with a point coordinates, which creates an unwanted triangle

    - by Paul
    I would like to connect the points from the red path, to the y-axis in blue. I figured out that the problem with my triangles came from the first point (V0) : it is not located where it should be. In the console, it says its location is at 0,0, but in the emulator, it is not. The code : for(int i = 1; i < 2; i++) { CCLOG(@"_polyVertices[i-1].x : %f, _polyVertices[i-1].y : %f", _polyVertices[i-1].x, _polyVertices[i-1].y); CCLOG(@"_polyVertices[i].x : %f, _polyVertices[i].y : %f", _polyVertices[i].x, _polyVertices[i].y); ccDrawLine(_polyVertices[i-1], _polyVertices[i]); } The output : _polyVertices[i-1].x : 0.000000, _polyVertices[i-1].y : 0.000000 _polyVertices[i].x : 50.000000, _polyVertices[i].y : 0.000000 And the result : (the layer goes up, i could not take the screenshot before the layer started to go up, but the first red point starts at y=0) : Then it creates an unwanted triangle when the code continues : Would you have any idea about this? (So to force the first blue point to start at 0,0, and not at 50,0 as it seems to be now) Here is the code : - (void)generatePath{ float x = 50; //first red point float y = 0; for(int i = 0; i < kMaxKeyPoints+1; i++) { if (i<3){ _hillKeyPoints[i] = CGPointMake(x, y); x = 150 + (random() % (int) 30); y += -40; } else if(i<20){ //going right _hillKeyPoints[i] = CGPointMake(x, y); x += (random() % (int) 30); y += -40; } else if(i<25){ //stabilize _hillKeyPoints[i] = CGPointMake(x, y); x = 150 + (random() % (int) 30); y += -40; } else if(i<30){ //going left _hillKeyPoints[i] = CGPointMake(x, y); //x -= (random() % (int) 10); x = 150 + (random() % (int) 30); y += -40; } else { //back to normal _hillKeyPoints[i] = CGPointMake(x, y); x = 150 + (random() % (int) 30); y += -40; } } } -(void)generatePolygons{ static int prevFromKeyPointI = -1; static int prevToKeyPointI = -1; // key points interval for drawing while (_hillKeyPoints[_fromKeyPointI].y > -_offsetY+winSizeTop) { _fromKeyPointI++; } while (_hillKeyPoints[_toKeyPointI].y > -_offsetY-winSizeBottom) { _toKeyPointI++; } if (prevFromKeyPointI != _fromKeyPointI || prevToKeyPointI != _toKeyPointI) { _nPolyVertices = 0; float x1 = 0; int keyPoints = _fromKeyPointI; for (int i=_fromKeyPointI; i<_toKeyPointI; i++){ //V0: at (0,0) _polyVertices[_nPolyVertices] = CGPointMake(x1, y1); //first blue point _polyTexCoords[_nPolyVertices++] = CGPointMake(x1, y1); //V1: to the first "point" _polyVertices[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices++] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); keyPoints++; //from point at index 0 to 1 //V2, same y as point n°2: _polyVertices[_nPolyVertices] = CGPointMake(0, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices++] = CGPointMake(0, _hillKeyPoints[keyPoints].y); //V1 again _polyVertices[_nPolyVertices] = _polyVertices[_nPolyVertices-2]; _polyTexCoords[_nPolyVertices++] = _polyVertices[_nPolyVertices-2]; //V2 again _polyVertices[_nPolyVertices] = _polyVertices[_nPolyVertices-2]; _polyTexCoords[_nPolyVertices++] = _polyVertices[_nPolyVertices-2]; //CCLOG(@"_nPolyVertices V2 again : %i", _nPolyVertices); //V3 = same x,y as point at index 1 _polyVertices[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); _polyTexCoords[_nPolyVertices] = CGPointMake(_hillKeyPoints[keyPoints].x, _hillKeyPoints[keyPoints].y); y1 = _polyVertices[_nPolyVertices].y; _nPolyVertices++; } prevFromKeyPointI = _fromKeyPointI; prevToKeyPointI = _toKeyPointI; } } - (void) draw { //RED glColor4f(1, 1, 1, 1); for(int i = MAX(_fromKeyPointI, 1); i <= _toKeyPointI; ++i) { glColor4f(1.0, 0, 0, 1.0); ccDrawLine(_hillKeyPoints[i-1], _hillKeyPoints[i]); } //BLUE glColor4f(0, 0, 1, 1); for(int i = 1; i < 2; i++) { CCLOG(@"_polyVertices[i-1].x : %f, _polyVertices[i-1].y : %f", _polyVertices[i-1].x, _polyVertices[i-1].y); CCLOG(@"_polyVertices[i].x : %f, _polyVertices[i].y : %f", _polyVertices[i].x, _polyVertices[i].y); ccDrawLine(_polyVertices[i-1], _polyVertices[i]); } } Thanks

    Read the article

  • Multiple enemy array in LibGDX

    - by johnny-b
    I am trying to make a multiple enemy array, where every 30 secods a new bullet comes from a random point. And if the bullet is clicked it should disapear and a pop like an explosion should appear. And if the bullet hits the ball then the ball pops. so the bullet should change to a different sprite or texture. same with the ball pop. But all that happens is the bullet if touched pops and nothing else happens. And if modified then the bullet keeps flashing as the update is way too much. I have added COMMENTS in the code to explain more on the issues. below is the code. if more code is needed i will provide. Thank you public class GameRenderer { private GameWorld myWorld; private OrthographicCamera cam; private ShapeRenderer shapeRenderer; private SpriteBatch batcher; // Game Objects private Ball ball; private ScrollHandler scroller; private Background background; private Bullet bullet1; private BulletPop bPop; private Array<Bullet> bullets; // This is for the delay of the bullet coming one by one every 30 seconds. /** The time of the last shot fired, we set it to the current time in nano when the object is first created */ double lastShot = TimeUtils.nanoTime(); /** Convert 30 seconds into nano seconds, so 30,000 milli = 30 seconds */ double shotFreq = TimeUtils.millisToNanos(30000); // Game Assets private TextureRegion bg, bPop; private Animation bulletAnimation, ballAnimation; private Animation ballPopAnimation; public GameRenderer(GameWorld world) { myWorld = world; cam = new OrthographicCamera(); cam.setToOrtho(true, 480, 320); batcher = new SpriteBatch(); // Attach batcher to camera batcher.setProjectionMatrix(cam.combined); shapeRenderer = new ShapeRenderer(); shapeRenderer.setProjectionMatrix(cam.combined); // This is suppose to produce 10 bullets at random places on the background. bullets = new Array<Bullet>(); Bullet bullet = null; float bulletX = 00.0f; float bulletY = 00.0f; for (int i = 0; i < 10; i++) { bulletX = MathUtils.random(-10, 10); bulletY = MathUtils.random(-10, 10); bullet = new Bullet(bulletX, bulletY); AssetLoader.bullet1.flip(true, false); AssetLoader.bullet2.flip(true, false); bullets.add(bullet); } // Call helper methods to initialize instance variables initGameObjects(); initAssets(); } private void initGameObjects() { ball = GameWorld.getBall(); bullet1 = myWorld.getBullet1(); bPop = myWorld.getBulletPop(); scroller = myWorld.getScroller(); } private void initAssets() { bg = AssetLoader.bg; ballAnimation = AssetLoader.ballAnimation; bullet1Animation = AssetLoader.bullet1Animation; ballPopAnimation = AssetLoader.ballPopAnimation; } // This is to take the bullet away when clicked or touched. public void onClick() { for (int i = 0; i < bullets.size; i++) { if (bullets.get(i).getBounds().contains(0, 0)) bullets.removeIndex(i); } } private void drawBackground() { batcher.draw(bg1, background.getX(), background.getY(), background.getWidth(), backgroundMove.getHeight()); } public void render(float runTime) { Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL30.GL_COLOR_BUFFER_BIT); batcher.begin(); // Disable transparency // This is good for performance when drawing images that do not require // transparency. batcher.disableBlending(); drawBackground(); batcher.enableBlending(); // when the bullet hits the ball, it should be disposed or taken away and a ball pop sprite/texture should be put in its place if (bullet1.collides(ball)) { // draws the bPop texture but the bullet does not go just keeps going around, and the bPop texture goes. batcher.draw(AssetLoader.bPop, 195, 273); } batcher.draw(AssetLoader.ballAnimation.getKeyFrame(runTime), ball.getX(), ball.getY(), ball.getWidth(), ball.getHeight()); // this is where i am trying to make the bullets come one by one, and if removed via the onClick() then bPop animation // should play but does not??? if(TimeUtils.nanoTime() - lastShot > shotFreq){ // Create your stuff for (int i = 0; i < bullets.size; i++) { bullets.get(i); batcher.draw(AssetLoader.bullet1Animation.getKeyFrame(runTime), bullet1.getX(), bullet1.getY(), bullet1.getOriginX(), bullet1.getOriginY(), bullet1.getWidth(), bullet1.getHeight(), 1.0f, 1.0f, bullet1.getRotation()); if (bullets.removeValue(bullet1, false)) { batcher.draw(AssetLoader.ballPopAnimation.getKeyFrame(runTime), bPop1.getX(), bPop1.getY(), bPop1.getWidth(), bPop1.getHeight()); } } /* Very important to set the last shot to now, or it will mess up and go full auto */ lastShot = TimeUtils.nanoTime(); } // End SpriteBatch batcher.end(); } } Thank you

    Read the article

  • Pirates, Treasure Chests and Architectural Mapping

    Pirate 1: Why do pirates create treasure maps? Pirate 2: I do not know.Pirate 1: So they can find their gold. Yes, that was a bad joke, but it does illustrate a point. Pirates are known for drawing treasure maps to their most prized possession. These documents detail the decisions pirates made in order to hide and find their chests of gold. The map allows them to trace the steps they took originally to hide their treasure so that they may return. As software engineers, programmers, and architects we need to treat software implementations much like our treasure chest. Why is software like a treasure chest? It cost money, time,  and resources to develop (Usually) It can make or save money, time, and resources (Hopefully) If we operate under the assumption that software is like a treasure chest then wouldn’t make sense to document the steps, rationale, concerns, and decisions about how it was designed? Pirates are notorious for documenting where they hide their treasure.  Shouldn’t we as creators of software do the same? By documenting our design decisions and rationale behind them will help others be able to understand and maintain implemented systems. This can only be done if the design decisions are correctly mapped to its corresponding implementation. This allows for architectural decisions to be traced from the conceptual model, architectural design and finally to the implementation. Mapping gives software professional a method to trace the reason why specific areas of code were developed verses other options. Just like the pirates we need to able to trace our steps from the start of a project to its implementation,  so that we will understand why specific choices were chosen. The traceability of a software implementation that actually maps back to its originating design decisions is invaluable for ensuring that architectural drifting and erosion does not take place. The drifting and erosion is prevented by allowing others to understand the rational of why an implementation was created in a specific manor or methodology The process of mapping distinct design concerns/decisions to the location of its implemented is called traceability. In this context traceability is defined as method for connecting distinctive software artifacts. This process allows architectural design models and decisions to be directly connected with its physical implementation. The process of mapping architectural design concerns to a software implementation can be very complex. However, most design decision can be placed in  a few generalized categories. Commonly Mapped Design Decisions Design Rationale Components and Connectors Interfaces Behaviors/Properties Design rational is one of the hardest categories to map directly to an implementation. Typically this rational is mapped or document in code via comments. These comments consist of general design decisions and reasoning because they do not directly refer to a specific part of an application. They typically focus more on the higher level concerns. Components and connectors can directly be mapped to architectural concerns. Typically concerns subdivide an application in to distinct functional areas. These functional areas then can map directly back to their originating concerns.Interfaces can be mapped back to design concerns in one of two ways. Interfaces that pertain to specific function definitions can be directly mapped back to its originating concern(s). However, more complicated interfaces require additional analysis to ensure that the proper mappings are created. Depending on the complexity some Behaviors\Properties can be translated directly into a generic implementation structure that is ready for business logic. In addition, some behaviors can be translated directly in to an actual implementation depending on the complexity and architectural tools used. Mapping design concerns to an implementation is a lot of work to maintain, but is doable. In order to ensure that concerns are mapped correctly and that an implementation correctly reflects its design concerns then one of two standard approaches are usually used. All Changes Come From ArchitectureBy forcing all application changes to come through the architectural model prior to implementation then the existing mappings will be used to locate where in the implementation changes need to occur. Allow Changes From Implementation Or Architecture By allowing changes to come from the implementation and/or the architecture then the other area must be kept in sync. This methodology is more complex compared to the previous approach.  One reason to justify the added complexity for an application is due to the fact that this approach tends to detect and prevent architectural drift and erosion. Additionally, this approach is usually maintained via software because of the complexity. Reference:Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture: Foundations, theory, and practice Hoboken, NJ: John Wiley & Sons  

    Read the article

  • Collaborative Whiteboard using WebSocket in GlassFish 4 - Text/JSON and Binary/ArrayBuffer Data Transfer (TOTD #189)

    - by arungupta
    This blog has published a few blogs on using JSR 356 Reference Implementation (Tyrus) as its integrated in GlassFish 4 promoted builds. TOTD #183: Getting Started with WebSocket in GlassFish TOTD #184: Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark TOTD #185: Processing Text and Binary (Blob, ArrayBuffer, ArrayBufferView) Payload in WebSocket TOTD #186: Custom Text and Binary Payloads using WebSocket One of the typical usecase for WebSocket is online collaborative games. This Tip Of The Day (TOTD) explains a sample that can be used to build such games easily. The application is a collaborative whiteboard where different shapes can be drawn in multiple colors. The shapes drawn on one browser are automatically drawn on all other peer browsers that are connected to the same endpoint. The shape, color, and coordinates of the image are transfered using a JSON structure. A browser may opt-out of sharing the figures. Alternatively any browser can send a snapshot of their existing whiteboard to all other browsers. Take a look at this video to understand how the application work and the underlying code. The complete sample code can be downloaded here. The code behind the application is also explained below. The web page (index.jsp) has a HTML5 Canvas as shown: <canvas id="myCanvas" width="150" height="150" style="border:1px solid #000000;"></canvas> And some radio buttons to choose the color and shape. By default, the shape, color, and coordinates of any figure drawn on the canvas are put in a JSON structure and sent as a message to the WebSocket endpoint. The JSON structure looks like: { "shape": "square", "color": "#FF0000", "coords": { "x": 31.59999942779541, "y": 49.91999053955078 }} The endpoint definition looks like: @WebSocketEndpoint(value = "websocket",encoders = {FigureDecoderEncoder.class},decoders = {FigureDecoderEncoder.class})public class Whiteboard { As you can see, the endpoint has decoder and encoder registered that decodes JSON to a Figure (a POJO class) and vice versa respectively. The decode method looks like: public Figure decode(String string) throws DecodeException { try { JSONObject jsonObject = new JSONObject(string); return new Figure(jsonObject); } catch (JSONException ex) { throw new DecodeException("Error parsing JSON", ex.getMessage(), ex.fillInStackTrace()); }} And the encode method looks like: public String encode(Figure figure) throws EncodeException { return figure.getJson().toString();} FigureDecoderEncoder implements both decoder and encoder functionality but thats purely for convenience. But the recommended design pattern is to keep them in separate classes. In certain cases, you may even need only one of them. On the client-side, the Canvas is initialized as: var canvas = document.getElementById("myCanvas");var context = canvas.getContext("2d");canvas.addEventListener("click", defineImage, false); The defineImage method constructs the JSON structure as shown above and sends it to the endpoint using websocket.send(). An instant snapshot of the canvas is sent using binary transfer with WebSocket. The WebSocket is initialized as: var wsUri = "ws://localhost:8080/whiteboard/websocket";var websocket = new WebSocket(wsUri);websocket.binaryType = "arraybuffer"; The important part is to set the binaryType property of WebSocket to arraybuffer. This ensures that any binary transfers using WebSocket are done using ArrayBuffer as the default type seem to be blob. The actual binary data transfer is done using the following: var image = context.getImageData(0, 0, canvas.width, canvas.height);var buffer = new ArrayBuffer(image.data.length);var bytes = new Uint8Array(buffer);for (var i=0; i<bytes.length; i++) { bytes[i] = image.data[i];}websocket.send(bytes); This comprehensive sample shows the following features of JSR 356 API: Annotation-driven endpoints Send/receive text and binary payload in WebSocket Encoders/decoders for custom text payload In addition, it also shows how images can be captured and drawn using HTML5 Canvas in a JSP. How could this be turned in to an online game ? Imagine drawing a Tic-tac-toe board on the canvas with two players playing and others watching. Then you can build access rights and controls within the application itself. Instead of sending a snapshot of the canvas on demand, a new peer joining the game could be automatically transferred the current state as well. Do you want to build this game ? I built a similar game a few years ago. Do somebody want to rewrite the game using WebSocket APIs ? :-) Many thanks to Jitu and Akshay for helping through the WebSocket internals! Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • Understanding implementation of glu.PickMatrix()

    - by stoney78us
    I am working on an OpenGL project which requires object selection feature. I use OpenTK framework to do this; however OpenTK doesn't support glu.PickMatrix() method to define the picking region. I ended up googling its implementation and here is what i got: void GluPickMatrix(double x, double y, double deltax, double deltay, int[] viewport) { if (deltax <= 0 || deltay <= 0) { return; } GL.Translate((viewport[2] - 2 * (x - viewport[0])) / deltax, (viewport[3] - 2 * (y - viewport[1])) / deltay, 0); GL.Scale(viewport[2] / deltax, viewport[3] / deltay, 1.0); } I totally fail to understand this piece of code. Moreover, this doesn't work with my following code sample: //selectbuffer private int[] _selectBuffer = new int[512]; private void Init() { float[] triangleVertices = new float[] { 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f }; float[] _triangleColors = new float[] { 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; GL.GenBuffers(2, _vBO); GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[0]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(sizeof(float) * _triangleVertices.Length), _triangleVertices, BufferUsageHint.StaticDraw); GL.VertexPointer(3, VertexPointerType.Float, 0, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[1]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(sizeof(float) * _triangleColors.Length), _triangleColors, BufferUsageHint.StaticDraw); GL.ColorPointer(3, ColorPointerType.Float, 0, 0); GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.ColorArray); //Selectbuffer set up GL.SelectBuffer(512, _selectBuffer); } private void glControlWindow_Paint(object sender, PaintEventArgs e) { GL.Clear(ClearBufferMask.ColorBufferBit); GL.Clear(ClearBufferMask.DepthBufferBit); float[] eyes = { 0.0f, 0.0f, -10.0f }; float[] target = { 0.0f, 0.0f, 0.0f }; Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView(0.785398163f, 4.0f / 3.0f, 0.1f, 100f); //45 degree = 0.785398163 rads Matrix4 view = Matrix4.LookAt(eyes[0], eyes[1], eyes[2], target[0], target[1], target[2], 0, 1, 0); Matrix4 model = Matrix4.Identity; Matrix4 MV = view * model; //First Clear Buffers GL.Clear(ClearBufferMask.ColorBufferBit); GL.Clear(ClearBufferMask.DepthBufferBit); GL.MatrixMode(MatrixMode.Projection); GL.LoadIdentity(); GL.LoadMatrix(ref projection); GL.MatrixMode(MatrixMode.Modelview); GL.LoadIdentity(); GL.LoadMatrix(ref MV); GL.Viewport(0, 0, glControlWindow.Width, glControlWindow.Height); GL.Enable(EnableCap.DepthTest); //Enable correct Z Drawings GL.DepthFunc(DepthFunction.Less); //Enable correct Z Drawings GL.MatrixMode(MatrixMode.Modelview); GL.PushMatrix(); GL.Translate(3.0f, 0.0f, 0.0f); DrawTriangle(); GL.PopMatrix(); GL.PushMatrix(); GL.Translate(-3.0f, 0.0f, 0.0f); DrawTriangle(); GL.PopMatrix(); //Finally... GraphicsContext.CurrentContext.VSync = true; //Caps frame rate as to not over run GPU glControlWindow.SwapBuffers(); //Takes from the 'GL' and puts into control } private void DrawTriangle() { GL.BindBuffer(BufferTarget.ArrayBuffer, _vBO[0]); GL.VertexPointer(3, VertexPointerType.Float, 0, 0); GL.EnableClientState(ArrayCap.VertexArray); GL.DrawArrays(BeginMode.Triangles, 0, 3); GL.DisableClientState(ArrayCap.VertexArray); } //mouse click event implementation private void glControlWindow_MouseClick(object sender, System.Windows.Forms.MouseEventArgs e) { //Enter Select mode. Pretend drawing. GL.RenderMode(RenderingMode.Select); int[] viewport = new int[4]; GL.GetInteger(GetPName.Viewport, viewport); GL.PushMatrix(); GL.MatrixMode(MatrixMode.Projection); GL.LoadIdentity(); GluPickMatrix(e.X, e.Y, 5, 5, viewport); Matrix4 projection = Matrix4.CreatePerspectiveFieldOfView(0.785398163f, 4.0f / 3.0f, 0.1f, 100f); // this projection matrix is the same as one in glControlWindow_Paint method. GL.LoadMatrix(ref projection); GL.MatrixMode(MatrixMode.Modelview); int i = 0; int hits; GL.PushMatrix(); GL.Translate(3.0f, 0.0f, 0.0f); GL.PushName(i); DrawTriangle(); GL.PopName(); GL.PopMatrix(); i++; GL.PushMatrix(); GL.Translate(-3.0f, 0.0f, 0.0f); GL.PushName(i); DrawTriangle(); GL.PopName(); GL.PopMatrix(); hits = GL.RenderMode(RenderingMode.Render); .....hits processing code goes here... GL.PopMatrix(); glControlWindow.Invalidate(); } I expect to get only one hit everytime i click inside a triangle, but i always get 2 no matter where i click. I suspect there is something wrong with the implementation of the GluPickMatrix, I haven't figured out yet.

    Read the article

  • Why is my animation getting aborted?

    - by Homer_Simpson
    I have a class named Animation which handles my animations. The animation class can be called from multiple other classes. For example, the class Player.cs can call the animation class like this: Animation Playeranimation; Playeranimation = new Animation(TimeSpan.FromSeconds(2.5f), 80, 40, Animation.Sequences.forwards, 0, 5, false, true); //updating the animation public void Update(GameTime gametime) { Playeranimation.Update(gametime); } //drawing the animation public void Draw(SpriteBatch batch) { playeranimation.Draw(batch, PlayerAnimationSpritesheet, PosX, PosY, 0, SpriteEffects.None); } The class Lion.cs can call the animation class with the same code, only the animation parameters are changing because it's another animation that should be played: Animation Lionanimation; Lionanimation = new Animation(TimeSpan.FromSeconds(2.5f), 100, 60, Animation.Sequences.forwards, 0, 8, false, true); Other classes can call the animation class with the same code like the Player class. But sometimes I have some trouble with the animations. If an animation is running and then shortly afterwards another class calls the animation class too, the second animation starts but the first animation is getting aborted. In this case, the first animation couldn't run until it's end because another class started a new instance of the animation class. Why is an animation sometimes getting aborted when another animation starts? How can I solve this problem? My animation class: public class Animation { private int _animIndex, framewidth, frameheight, start, end; private TimeSpan PassedTime; private List<Rectangle> SourceRects = new List<Rectangle>(); private TimeSpan Duration; private Sequences Sequence; public bool Remove; private bool DeleteAfterOneIteration; public enum Sequences { forwards, backwards, forwards_backwards, backwards_forwards } private void forwards() { for (int i = start; i < end; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); } private void backwards() { for (int i = start; i < end; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); } private void forwards_backwards() { for (int i = start; i < end - 1; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); for (int i = start; i < end; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); } private void backwards_forwards() { for (int i = start; i < end - 1; i++) SourceRects.Add(new Rectangle((end - 1 - i) * framewidth, 0, framewidth, frameheight)); for (int i = start; i < end; i++) SourceRects.Add(new Rectangle(i * framewidth, 0, framewidth, frameheight)); } public Animation(TimeSpan duration, int frame_width, int frame_height, Sequences sequences, int start_interval, int end_interval, bool remove, bool deleteafteroneiteration) { Remove = remove; DeleteAfterOneIteration = deleteafteroneiteration; framewidth = frame_width; frameheight = frame_height; start = start_interval; end = end_interval; switch (sequences) { case Sequences.forwards: { forwards(); break; } case Sequences.backwards: { backwards(); break; } case Sequences.forwards_backwards: { forwards_backwards(); break; } case Sequences.backwards_forwards: { backwards_forwards(); break; } } Duration = duration; Sequence = sequences; } public void Update(GameTime dt) { PassedTime += dt.ElapsedGameTime; if (PassedTime > Duration) { PassedTime -= Duration; } var percent = PassedTime.TotalSeconds / Duration.TotalSeconds; if (DeleteAfterOneIteration == true) { if (_animIndex >= SourceRects.Count) Remove = true; _animIndex = (int)Math.Round(percent * (SourceRects.Count)); } else { _animIndex = (int)Math.Round(percent * (SourceRects.Count - 1)); } } public void Draw(SpriteBatch batch, Texture2D Textures, float PositionX, float PositionY, float Rotation, SpriteEffects Flip) { if (DeleteAfterOneIteration == true) { if (_animIndex >= SourceRects.Count) return; } batch.Draw(Textures, new Rectangle((int)PositionX, (int)PositionY, framewidth, frameheight), SourceRects[_animIndex], Color.White, Rotation, new Vector2(framewidth / 2.0f, frameheight / 2.0f), Flip, 0f); } }

    Read the article

  • C# MP3 Player using winmm.dll

    - by JoeBeez
    I'm trying to bash together a (very) rough MP3 player during my lunch hour, and so far I've got it to play the files, and I'm working on a way of building a list of filenames to enable random songs, but I think I've just hit a snag. Is there a way of knowing when the currently playing MP3 has finished? An event or some such? As it stands I don't think I'd be able to have playlists etc unless this was possible due to it stopping after every playback. I've attatched the whole source below, feel free to pick it apart and give me any feedback you may have, cheers. using System; using System.IO; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Runtime.InteropServices; namespace X { public partial class Form1 : Form { List<string> Names = new List<string>(); StreamReader reader = File.OpenText(@"C:\X.txt"); string line; OpenFileDialog ofd = new OpenFileDialog(); StringBuilder buffer = new StringBuilder(128); string CommandString; [DllImport("winmm.dll")] private static extern long mciSendString(string lpstrCommand, StringBuilder lpstrReturnString, int uReturnLength, int hwndCallback); public Form1() { InitializeComponent(); while ((line = reader.ReadLine()) != null) { if (line.Trim() != "") { Names.Add(line.Trim()); } } } private void btnplay_Click(object sender, EventArgs e) { if (ofd.FileName == "") { if (ofd.ShowDialog() == DialogResult.OK) { ofd.Filter = "MP3 Files|*.mp3"; CommandString = "open " + "\"" + ofd.FileName + "\"" + " type MPEGVideo alias Mp3File"; mciSendString(CommandString, null, 0, 0); CommandString = "play Mp3File"; mciSendString(CommandString, null, 0, 0); } } else { CommandString = "play Mp3File"; mciSendString(CommandString, null, 0, 0); } } private void btnpause_Click(object sender, EventArgs e) { CommandString = "pause mp3file"; mciSendString(CommandString, null, 0, 0); } private void btnbrowse_Click(object sender, EventArgs e) { ofd.Filter = "Mp3 files |*.mp3"; if (ofd.ShowDialog() == DialogResult.OK) { txtpath.Text = ofd.FileName; CommandString = "close Mp3File"; mciSendString(CommandString, null, 0, 0); CommandString = "open " + "\"" + ofd.FileName + "\"" + " type MPEGVideo alias Mp3File"; mciSendString(CommandString, null, 0, 0); } } } }

    Read the article

  • Facebook Connect: Error when clicking the Facebook Connect button

    - by Garrett
    I am getting this error when I click on the facebook connect button: API Error Code: 100 API Error Description: Invalid parameter Error Message: next is not owned by the application. I am not too sure how to do this, but I've read all the documentation for facebook connect and came up with this: <?php date_default_timezone_set("America/Toronto"); define('FACEBOOK_APP_ID', '##################'); define('FACEBOOK_SECRET', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'); function get_facebook_cookie($app_id, $application_secret) { if(!isset($_COOKIE['fbs_' . $app_id])) return null; $args = array(); parse_str(trim($_COOKIE['fbs_' . $app_id], '\\"'), $args); ksort($args); $payload = ''; foreach ($args as $key => $value) { if ($key != 'sig') { $payload .= $key . '=' . $value; } } if (md5($payload . $application_secret) != $args['sig']) { return null; } return $args; } $cookie = get_facebook_cookie(FACEBOOK_APP_ID, FACEBOOK_SECRET); ?> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="http://www.facebook.com/2008/fbml"> <head> <!-- JQUERY INCLUDE --> <script src="js/jquery-1.4.2.min.js" type="text/javascript"></script> <!-- FACEBOOK CONNECT INCLUDE --> <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php/en_US" type="text/javascript"></script> <script type="text/javascript"> <!-- $(document).load(function() { }); FB.init("XXXXXXXXXXXXXXXXXXXXXXx ", "xd_receiver.htm"); FB.Event.subscribe('auth.login', function(response) { window.location.reload(); }); function facebook_onlogin() { FB.getLoginStatus(function(response) { if (response.session) { // logged in and connected user, someone you know fb_login.hide(); } else { // no user session available, someone you dont know } }); } // --> </script> </head> <body> <div id="fb_login"> <fb:login-button onlogin="facebook_onlogin();" v="2">Log In with Facebook</fb:login-button> </div> <?php $user = json_decode(file_get_contents( 'https://graph.facebook.com/me?access_token=' . $cookie['access_token']))->id; ?> </body> </html> how on earth can i get this to work? thanks!

    Read the article

  • Core Data NSPredicate for relationships.

    - by Mugunth Kumar
    My object graph is simple. I've a feedentry object that stores info about RSS feeds and a relationship called Tag that links to "TagValues" object. Both the relation (to and inverse) are to-many. i.e, a feed can have multiple tags and a tag can be associated to multiple feeds. I referred to http://stackoverflow.com/questions/844162/how-to-do-core-data-queries-through-a-relationship and created a NSFetchRequest. But when fetch data, I get an exception stating, NSInvalidArgumentException unimplemented SQL generation for predicate What should I do? I'm a newbie to core data :( I know I've done something terribly wrong... Please help... Thanks -- NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; // Edit the entity name as appropriate. NSEntityDescription *entity = [NSEntityDescription entityForName:@"FeedEntry" inManagedObjectContext:managedObjectContext]; [fetchRequest setEntity:entity]; // Edit the sort key as appropriate. NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"authorname" ascending:NO]; NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil]; [fetchRequest setSortDescriptors:sortDescriptors]; NSEntityDescription *tagEntity = [NSEntityDescription entityForName:@"TagValues" inManagedObjectContext:self.managedObjectContext]; NSPredicate *tagPredicate = [NSPredicate predicateWithFormat:@"tagName LIKE[c] 'nyt'"]; NSFetchRequest *tagRequest = [[NSFetchRequest alloc] init]; [tagRequest setEntity:tagEntity]; [tagRequest setPredicate:tagPredicate]; NSError *error = nil; NSArray* predicates = [self.managedObjectContext executeFetchRequest:tagRequest error:&error]; TagValues *tv = (TagValues*) [predicates objectAtIndex:0]; NSLog(tv.tagName); // it is nyt here... NSPredicate *predicate = [NSPredicate predicateWithFormat:@"tag IN %@", predicates]; [fetchRequest setPredicate:predicate]; // Edit the section name key path and cache name if appropriate. // nil for section name key path means "no sections". NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest managedObjectContext:managedObjectContext sectionNameKeyPath:nil cacheName:@"Root"]; aFetchedResultsController.delegate = self; self.fetchedResultsController = aFetchedResultsController; --

    Read the article

  • .Net Custom Configuration Section and Saving Changes within PropertyGrid

    - by Paul
    If I load the My.Settings object (app.config) into a PropertyGrid, I am able to edit the property inside the propertygrid and the change is automatically saved. PropertyGrid1.SelectedObject = My.Settings I want to do the same with a Custom Configuration Section. Following this code example (from here http://www.codeproject.com/KB/vb/SerializePropertyGrid.aspx), he is doing explicit serialization to disk when a "Save" button is pushed. Public Class Form1 'Load AppSettings Dim _appSettings As New AppSettings() Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click _appSettings = AppSettings.Load() ' Actually change the form size Me.Size = _appSettings.WindowSize PropertyGrid1.SelectedObject = _appSettings End Sub Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click _appSettings.Save() End Sub End Class In my code, my custom section Inherits from ConfigurationSection (see below) Question: Is there something built into ConfigurationSection class that does the autosave? If not, what is the best way to handle this, should it be in the PropertyGrid.PropertyValueChagned? (how does the My.Settings handle this internally?) Here is the example Custom Class that I am trying to get to auto-save and how I load into property grid. Dim config As System.Configuration.Configuration = _ ConfigurationManager.OpenExeConfiguration( _ ConfigurationUserLevel.None) PropertyGrid2.SelectedObject = config.GetSection("CustomSection") Public NotInheritable Class CustomSection Inherits ConfigurationSection ' The collection (property bag) that contains ' the section properties. Private Shared _Properties As ConfigurationPropertyCollection ' The FileName property. Private Shared _FileName As New ConfigurationProperty("fileName", GetType(String), "def.txt", ConfigurationPropertyOptions.IsRequired) ' The MasUsers property. Private Shared _MaxUsers _ As New ConfigurationProperty("maxUsers", _ GetType(Int32), 1000, _ ConfigurationPropertyOptions.None) ' The MaxIdleTime property. Private Shared _MaxIdleTime _ As New ConfigurationProperty("maxIdleTime", _ GetType(TimeSpan), TimeSpan.FromMinutes(5), _ ConfigurationPropertyOptions.IsRequired) ' CustomSection constructor. Public Sub New() _Properties = New ConfigurationPropertyCollection() _Properties.Add(_FileName) _Properties.Add(_MaxUsers) _Properties.Add(_MaxIdleTime) End Sub 'New ' This is a key customization. ' It returns the initialized property bag. Protected Overrides ReadOnly Property Properties() _ As ConfigurationPropertyCollection Get Return _Properties End Get End Property <StringValidator( _ InvalidCharacters:=" ~!@#$%^&*()[]{}/;'""|\", _ MinLength:=1, MaxLength:=60)> _ <EditorAttribute(GetType(System.Windows.Forms.Design.FileNameEditor), GetType(System.Drawing.Design.UITypeEditor))> _ Public Property FileName() As String Get Return CStr(Me("fileName")) End Get Set(ByVal value As String) Me("fileName") = value End Set End Property <LongValidator(MinValue:=1, _ MaxValue:=1000000, ExcludeRange:=False)> _ Public Property MaxUsers() As Int32 Get Return Fix(Me("maxUsers")) End Get Set(ByVal value As Int32) Me("maxUsers") = value End Set End Property <TimeSpanValidator(MinValueString:="0:0:30", _ MaxValueString:="5:00:0", ExcludeRange:=False)> _ Public Property MaxIdleTime() As TimeSpan Get Return CType(Me("maxIdleTime"), TimeSpan) End Get Set(ByVal value As TimeSpan) Me("maxIdleTime") = value End Set End Property End Class 'CustomSection

    Read the article

  • .NET Code Generataion | Unable to create a T4 template in Visual Studio 2008

    - by cedar715
    I've the Visual Studio 2008 installed on my machine(licensed one). When I try to add a new .tt(say bar.tt) file to the project, the following code is generated: I've seen in a screencast, where in an empty .tt file should be opened and the developer enters the T4 code. Even if I remove the code and enter T4 code, am getting build errors. using System; using System.Collections.Generic; using System.ComponentModel; using System.Drawing; using System.Linq; using System.Reflection; using System.Windows.Forms; namespace Foobar { partial class bar : Form { public bar() { InitializeComponent(); this.Text = String.Format("About {0} {0}", AssemblyTitle); this.labelProductName.Text = AssemblyProduct; this.labelVersion.Text = String.Format("Version {0} {0}", AssemblyVersion); this.labelCopyright.Text = AssemblyCopyright; this.labelCompanyName.Text = AssemblyCompany; this.textBoxDescription.Text = AssemblyDescription; } #region Assembly Attribute Accessors public string AssemblyTitle { get { object[] attributes = Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyTitleAttribute), false); if(attributes.Length > 0) { AssemblyTitleAttribute titleAttribute = (AssemblyTitleAttribute)attributes[0]; if(titleAttribute.Title != "") { return titleAttribute.Title; } } return System.IO.Path.GetFileNameWithoutExtension(Assembly.GetExecutingAssembly().CodeBase); } } public string AssemblyVersion { get { return Assembly.GetExecutingAssembly().GetName().Version.ToString(); } } public string AssemblyDescription { get { object[] attributes = Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyDescriptionAttribute), false); if (attributes.Length == 0) { return ""; } return ((AssemblyDescriptionAttribute)attributes[0]).Description; } } public string AssemblyProduct { get { object[] attributes = Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyProductAttribute), false); if (attributes.Length == 0) { return ""; } return ((AssemblyProductAttribute)attributes[0]).Product; } } public string AssemblyCopyright { get { object[] attributes = Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyCopyrightAttribute), false); if (attributes.Length == 0) { return ""; } return ((AssemblyCopyrightAttribute)attributes[0]).Copyright; } } public string AssemblyCompany { get { object[] attributes = Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyCompanyAttribute), false); if (attributes.Length == 0) { return ""; } return ((AssemblyCompanyAttribute)attributes[0]).Company; } } #endregion } } EDIT: I didn't download any T4 software separately as I got to know that it already ships with Visual Studio 2008.

    Read the article

  • BounceEase and silverlight 4 BarSeries

    - by Pharabus
    Hi, I am trying to get a bar series to "bounce" when drawing, I assumed the BounceEase TransitionEasingFunction would do this but the lines just fade in, I have posted the xaml and code behind below, does anyone know where I have gone wrong or is it more complex than I though, I am fairly new to silverlight XAML <Grid x:Name="LayoutRoot" Background="White"> <chartingToolkit:Chart x:Name="MyChart"> <chartingToolkit:BarSeries Title="Sales" ItemsSource="{Binding}" IndependentValuePath="Name" DependentValuePath="Value" AnimationSequence="FirstToLast" TransitionDuration="00:00:3"> <chartingToolkit:BarSeries.TransitionEasingFunction> <BounceEase EasingMode="EaseInOut" Bounciness="5" /> </chartingToolkit:BarSeries.TransitionEasingFunction> <chartingToolkit:BarSeries.DataPointStyle> <Style TargetType="Control"> <Setter Property="Background" Value="Red"/> </Style> </chartingToolkit:BarSeries.DataPointStyle> </chartingToolkit:BarSeries> <chartingToolkit:Chart.Axes> <chartingToolkit:LinearAxis Title="Types owned" Orientation="X" Minimum="0" Maximum="300" Interval="10" ShowGridLines="True" FontStyle='Italic'/> </chartingToolkit:Chart.Axes> </chartingToolkit:Chart> </Grid> code behind public class MyClass : DependencyObject { public string Name { get; set; } public Double Value { get { return (Double)GetValue(myValueProperty); } set{SetValue(myValueProperty,value);} } public static readonly DependencyProperty myValueProperty = DependencyProperty.Register("Value", typeof(Double), typeof(MyClass), null); } public MainPage() { InitializeComponent(); //Get the data IList<MyClass> l = this.GetData(); //Get a reference to the SL Chart MyChart.DataContext = l.OrderBy(e => e.Value); //Find the highest number and round it up to the next digit DispatcherTimer myDispatcherTimer = new DispatcherTimer(); myDispatcherTimer.Interval = new TimeSpan(0, 0, 0, 5, 0); // 100 Milliseconds myDispatcherTimer.Tick += new EventHandler(Each_Tick); myDispatcherTimer.Start(); } public void Each_Tick(object o, EventArgs sender) { ((BarSeries)MyChart.Series[0]).DataContext = GetData(); } private IList<MyClass> GetData() { Random random = new Random(); return new List<MyClass>() { new MyClass() {Name="Bob Zero",Value=(random.NextDouble() * 100.0)}, new MyClass() {Name="Bob One",Value=(random.NextDouble() * 100.0)}, new MyClass() {Name="Bob Two",Value=(random.NextDouble() * 100.0)}, new MyClass() {Name="Bob Three",Value=(random.NextDouble() * 100.0)} }; }

    Read the article

  • The Skyline Problem.

    - by zeroDivisible
    I just came across this little problem on UVA's Online Judge and thought, that it may be a good candidate for a little code-golf. The problem: You are to design a program to assist an architect in drawing the skyline of a city given the locations of the buildings in the city. To make the problem tractable, all buildings are rectangular in shape and they share a common bottom (the city they are built in is very flat). The city is also viewed as two-dimensional. A building is specified by an ordered triple (Li, Hi, Ri) where Li and Ri are left and right coordinates, respectively, of building i and Hi is the height of the building. In the diagram below buildings are shown on the left with triples (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), (24,4,28) and the skyline, shown on the right, is represented by the sequence: 1, 11, 3, 13, 9, 0, 12, 7, 16, 3, 19, 18, 22, 3, 23, 13, 29, 0 The output should consist of the vector that describes the skyline as shown in the example above. In the skyline vector (v1, v2, v3, ... vn) , the vi such that i is an even number represent a horizontal line (height). The vi such that i is an odd number represent a vertical line (x-coordinate). The skyline vector should represent the "path" taken, for example, by a bug starting at the minimum x-coordinate and traveling horizontally and vertically over all the lines that define the skyline. Thus the last entry in the skyline vector will be a 0. The coordinates must be separated by a blank space. If I will not count declaration of provided (test) buildings and including all spaces and tab characters, my solution, in Python, is 223 characters long. Here is the condensed version: B=[[1,11,5],[2,6,7],[3,13,9],[12,7,16],[14,3,25],[19,18,22],[23,13,29],[24,4,28]] # Solution. R=range v=[0 for e in R(max([y[2] for y in B])+1)] for b in B: for x in R(b[0], b[2]): if b[1]>v[x]: v[x]=b[1] p=1 k=0 for x in R(len(v)): V=v[x] if p and V==0: continue elif V!=k: p=0 print "%s %s" % (str(x), str(V)), k=V I think that I didn't made any mistake but if so - feel free to criticize me. EDIT I don't have much reputation, so I will pay only 100 for a bounty - I am curious, if anyone could try to solve this in less than .. lets say, 80 characters. Solution posted by cobbal is 101 characters long and currently it is the best one. ANOTHER EDIT I thought, that 80 characters is a sick limit for this kind of problem. cobbal, with his 46 character solution totaly amazed me - though I must admit, that I spent some time reading his explanation before I partially understood what he had written.

    Read the article

  • Keeping the DI-container usage in the composition root in Silverlight and MVVM

    - by adrian hara
    It's not quite clear to me how I can design so I keep the reference to the DI-container in the composition root for a Silverlight + MVVM application. I have the following simple usage scenario: there's a main view (perhaps a list of items) and an action to open an edit view for one single item. So the main view has to create and show the edit view when the user takes the action (e.g. clicks some button). For this I have the following code: public interface IView { IViewModel ViewModel {get; set;} } Then, for each view that I need to be able to create I have an abstract factory, like so public interface ISomeViewFactory { IView CreateView(); } This factory is then declared a dependency of the "parent" view model, like so: public class SomeParentViewModel { public SomeParentViewModel(ISomeViewFactory viewFactory) { // store it } private void OnSomeUserAction() { IView view = viewFactory.CreateView(); dialogService.ShowDialog(view); } } So all is well until here, no DI-container in sight :). Now comes the implementation of ISomeViewFactory: public class SomeViewFactory : ISomeViewFactory { public IView CreateView() { IView view = new SomeView(); view.ViewModel = ???? } } The "????" part is my problem, because the view model for the view needs to be resolved from the DI-container so it gets its dependencies injected. What I don't know is how I can do this without having a dependency to the DI-container anywhere except the composition root. One possible solution would be to have either a dependency on the view model that gets injected into the factory, like so: public class SomeViewFactory : ISomeViewFactory { public SomeViewFactory(ISomeViewModel viewModel) { // store it } public IView CreateView() { IView view = new SomeView(); view.ViewModel = viewModel; } } While this works, it has the problem that since the whole object graph is wired up "statically" (i.e. the "parent" view model will get an instance of SomeViewFactory, which will get an instance of SomeViewModel, and these will live as long as the "parent" view model lives), the injected view model implementation is stateful and if the user opens the child view twice, the second time the view model will be the same instance and have the state from before. I guess I could work around this with an "Initialize" method or something similar, but it doesn't smell quite right. Another solution might be to wrap the DI-container and have the factories depend on the wrapper, but it'd still be a DI-container "in disguise" there :) Any thoughts on this are greatly appreciated. Also, please forgive any mistakes or rule-breaking, since this is my first post on stackoverflow :) Thanks! ps: my current solution is that the factories know about the DI-container, and it's only them and the composition root that have this dependency.

    Read the article

< Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >