Search Results

Search found 10388 results on 416 pages for 'hardware selection'.

Page 185/416 | < Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >

  • OBIEE 11.1.1 - Introduction to OBIEE 11g Full Sample App

    - by user809526
    Isn't it nice to discover OBIEE 11g around a nice "How To" catalog of features? to observe OBI and Essbase relationships at work? to discover TimesTen? The OBIEE 11g Full Sample App (FSA) is a comprehensive collection of examples designed to demonstrate the latest Oracle BIEE 11g capabilities and design best practices: Enhanced visualizations as Geo-spacial maps and interactive dashboards, Action Framework,  BI Publisher, Scorecard and Strategy Management, Mobile style sheets, Semantic layer modeling, Multi-source federation, Integration with products such as Essbase, Oracle OLAP, ODM, TimesTen, ODI and more The FSA is intended to be comprehensive, it is big (see CAVEAT below). The FSA is not an Oracle product, it is a good will free deployment of OBIEE/Essbase designed to exemplify OBIEE features, infrastructure and security around the Fusion Middleware components. Its contents and code are distributed free for demonstrative purposes only. It is neither maintained nor supported by Oracle as a licensed product. The OBIEE Full Sample App is independent of the default Sample App that comes with the OBIEE product. BENEFITS The FSA helps as a demonstrator of OBIEE 11g best practices, a tutorial, an environment "Test & Scrap", a SR bench (regression, conflicts), a tuning bench, a quick ready made POC seed for projects, a security options environment, ... The FSA - Is organized around a catalog of functional features - Has been deployed over 1000 times, it should be stable RELEASE The Full Sample App (V107) is bound to OBIEE 11.1.1.5 and Essbase 11.1.2.1 (November 2011). The FSA release dates are independent of the Product GA date (OBIEE). In early December 2011, a new functional Patch (V110) is released. It is easily applied (in less than 15 mins) on top of OBIEE SampleApp 11.1.1.5 (V107). The patch (V110) includes additional functional examples:        1. Web Catalog Statistics Application: Provides detailed insight into your web catalog content, dormant catalog objects, webcat impact analysis for metadata changes and more        2. Data inflation Scripts: A set of simple SQL procedures to quickly inflate SampleApp Fact and Dimension data to millions of records in a few minutes        3. Public Content Extensions Framework: A patching framework for public examples and contributions leveraging SampleApp        4. Additional report examples (including bridge report, external chart integrations) and bug fixes DISTRIBUTION as VBox image (November 2011) The ready made VBox image is designed to run on Virtual Box. It can be converted to VMware (see another BLOG). 1/ http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html VBox Image Deployment Guide Sampleapp_v107_GA.ovf - VBox image key file The above http URL provides the user:password for the ftp URLs below. 2/ ftp://user:[email protected]/static/SampleAppV107/ 12 "7-zip" files Sampleapp_v107_GA_7_20.7z.001 -> .012 We recommend 7-zip file manager for unzipping (http://www.7-zip.org/). Select Unzip here option, it will create the contents under a directory named "SampleApp_10722". On Windows, it is important to download and save zip file under the root directory (e.g. C:\ or D:\) because of possible long pathnames. 3/ ftp://user:[email protected]/static/SampleAppV107/Unzipped_Version/ 4 files Sampleapp_v107_GA-disk[1234].vmdk Important note: Check the provided checksums (md5sum). Please do it! DISTRIBUTION as Installation files for existing OBI 11.1.1.5 (November 2011) http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html Install files Deployment Guide SampleApp_10722_1.zip - 198 MB CAVEAT Many computers have RAM chips problems that keep often silent ... until you manipulate big files. It is strongly advised you run some memory check program eg MEMTEST in GRUB boot manager. Running md5sum repeatedly onto the very same big file must be consistent [same result], else a hardware memory problem is suspected. For Virtual Box, you should most likely enable VT-X (Vanderpool) hardware virtualization in BIOS. A free disk space of 80 GB is required to perform safely the VBox image installation. A Virtual Machine of minimum 6 to 7 GB memory fits the needs of combining OBIEE and Essbase execution.

    Read the article

  • Collaborate10 &ndash; THEconference

    - by jean-pierre.dijcks
    After spending a few days in Mandalay Bay's THEHotel, I guess I now call everything THE... Seriously, they even tag their toilet paper with THEtp... I guess the brand builders in Vegas thought that once you are on to something you keep on doing it, and granted it is a nice hotel with nice rooms. THEanalytics Most of my collab10 experience was in a room called Reef C, where the BIWA bootcamp was held. Two solid days of BI, Warehousing and Analytics organized by the BIWA SIG at IOUG. Didn't get to see all sessions, but what struck me was the high interest in Analytics. Marty Gubar's OLAP session was full and he did some very nice things with the OLAP option. The cool bit was that he actually gets all the advanced calculations in OLAP to show up in OBI EE without any effort. It was nice to see that the idea from OWB where you generate an RPD is now also in AWM. I think it makes life so much simpler to generate these RPD's from your data model. Even if the end RPD needs some tweaking, it is all a lot less effort to get something going. You can see this stuff for yourself in this demo (click here). OBI EE uses just SQL to get to the calculations, and so, if you prefer APEX, you can build you application there and get the same nice calculations in an APEX application. Marty also showed the Simba MDX driver used with Excel. I guess we should call that THEcoolone... and it is very slick and wonderfully useful for all of you who actually know Excel. The nice thing is that you leverage pure Excel for all operations (no plug-ins). That means no new tools to learn, no new controls, all just pure Excel. THEdatabasemachine Got some very good questions in my "what makes Exadata fast" session and overall, the interest in Exadata is overwhelming. One of the things that I did try to do in my session is to get people to think in new patterns rather than in patterns based on Oracle 9i running on some random hardware configuration. We talked a little bit about the often over-indexing and how everyone has to unlearn all of that on Exadata. The main thing however is that everyone needs to get used to the shear size of some of the components in a Database machine V2. 5TB of flash cache is a lot of very fast data storage, half a TB of memory gets quite interesting as well. So what I did there was really focus on some of the content in these earlier posts on Upward ILM and In-Memory processing. In short, I do believe the these newer media point out a trend. In-memory and other fast media will get cheaper and will see more use. Some of that we do automatically by adding new functionality, but in some cases I think the end user of the system needs to start thinking about how to leverage all this new hardware. I think most people got very excited about these new capabilities and opportunities. THEcoolkids One of the cool things about the BIWA track was the hand-on track. Very cool to see big crowds for both OLAP and OWB hands-on. Also quite nice to see that the folks at RittmanMead spent so much time on preparing for that session. While all of them put down cool stuff, none was more cool that seeing Data Mining on an Apple iPAD... it all just looks great on an iPAD! Very disappointing to see that Mark Rittman still wasn't showing OWB on his iPAD ;-) THEend All in all this was a great set of sessions in the BIWA track. Lots of value to our guests (we hope) and we hope they all come again next year!

    Read the article

  • Systems Solutions at COLLABORATE12

    - by ferhat
    Want to connect with fellow Oracle users and learn more about how to maximize your Oracle software environments with Oracle Systems?   Pack your bags for Las Vegas!   COLLABORATE 12  is right around the corner! COLLABORATE 12 Conference will be held at the Mandalay Bay in Las Vegas, NV 22-26 April, 2012. This is an event designed and delivered by users just like you with sessions, interactive panel discussions and hands-on learning opportunities packed with first-hand experiences, case studies and practical “how-to” content.. This year’s event includes a number of educational sessions and demos for users interested in learning from the experts how to use Oracle Optimized Solutions to get the most out of their Oracle Technology and Application software. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance.  And because they are highly flexible by design,  Oracle Optimized Solutions   can be implemented as an end-to-end solution or easily adapted into existing environments. Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions. Please come by our Exhibition Booth #1273 to see the demos and meet 1-1 with the experts behind a number of  Oracle Optimized Solutions  including those for JD Edwards EnterpriseOne, E-Business Suite, PeopleSoft HCM, Oracle WebCenter, and Oracle Database.  Exhibitor Showcase Booth #1273 DAY TIME TITLE Monday  April 23 6:00 pm - 8:00 pm Welcome Reception in the Exhibitor Showcase Tuesday  April 24 10:15 am - 4:00 pm Exhibitor Showcase Open 1:00 pm - 2:00 pm Dedicated Exhibitor Showcase Time 5:30 pm - 7:00 pm Exhibitor Showcase Happy Hour Wednesday  April 25 10:30 am - 3:00 pm Exhibitor Showcase Open 2:15 pm -3:00 pm Afternoon Break in Exhibitor Showcase  There are also a number of deep dive, educational sessions covering deployment best practices using Oracle’s engineered systems and best-in-class hardware, operating system and virtualization technologies.  Education Sessions DAY TIME TITLE LOCATION Monday  April 23 9:45 am - 10:45 am Architecting and Implementing Backup and Recovery Solutions Surf E Tuesday  April 24 2:00 pm – 3:00 pm Oracle's High Performance Systems for JD Edwards EnterpriseOne Mandalay Bay GH 4:30 pm - 5:30 pm Virtualization Boot Camp: What's New with Oracle VM Server for x86 Mandalay Bay C 9:30 am - 10:30 am Oracle on Oracle VM - Expert Panel Mandalay Bay L Wednesday  April 25 9:30 am - 10:30 am Cloud Computing Directions: Part II Understanding Oracle's Cloud Directions South Seas E  And don’t forget the keynotes and software roadmap sessions! Keynotes and Roadmap Sessions DAY TIME TITLE LOCATION Sunday  April 22 3:20 pm – 4:20 pm Oracle’s Cloud Computing Strategy Breakers B Monday  April 23 11:00 am – 12:00 pm JD Edwards - Vision, Promises and Execution: IT'S THE WAY WE ROLL and Why it Matters! Mandalay Bay A 11:00 am – 12:00 pm PeopleSoft Executive Update and Roadmap Mandalay Bay J 1:15 pm - 2:15 pm Oracle Database - Engineered for Innovation Mandalay Bay L 2:30 pm - 3:30 pm Oracle E-Business Suite Applications Strategy and General Manager Update Mandalay Bay D Tuesday  April 24 9:15 am - 10:15 am IT at Oracle: The Art of IT Transformation to Enable Business Growth Mandalay Bay Ballroom H

    Read the article

  • Sun Fire X4800 M2 Posts World Record x86 SPECjEnterprise2010 Result

    - by Brian
    Oracle's Sun Fire X4800 M2 using the Intel Xeon E7-8870 processor and Sun Fire X4470 M2 using the Intel Xeon E7-4870 processor, produced a world record single application server SPECjEnterprise2010 benchmark result of 27,150.05 SPECjEnterprise2010 EjOPS. The Sun Fire X4800 M2 server ran the application tier and the Sun Fire X4470 M2 server was used for the database tier. The Sun Fire X4800 M2 server demonstrated 63% better performance compared to IBM P780 server result of 16,646.34 SPECjEnterprise2010 EjOPS. The Sun Fire X4800 M2 server demonstrated 4% better performance than the Cisco UCS B440 M2 result, both results used the same number of processors. This result used Oracle WebLogic Server 12c, Java HotSpot(TM) 64-Bit Server 1.7.0_02, and Oracle Database 11g. This result was produced using Oracle Linux. Performance Landscape Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results. The table below compares against the best results from IBM and Cisco. SPECjEnterprise2010 Performance Chart as of 3/12/2012 Submitter EjOPS* Application Server Database Server Oracle 27,150.05 1x Sun Fire X4800 M2 8x 2.4 GHz Intel Xeon E7-8870 Oracle WebLogic 12c 1x Sun Fire X4470 M2 4x 2.4 GHz Intel Xeon E7-4870 Oracle Database 11g (11.2.0.2) Cisco 26,118.67 2x UCS B440 M2 Blade Server 4x 2.4 GHz Intel Xeon E7-4870 Oracle WebLogic 11g (10.3.5) 1x UCS C460 M2 Blade Server 4x 2.4 GHz Intel Xeon E7-4870 Oracle Database 11g (11.2.0.2) IBM 16,646.34 1x IBM Power 780 8x 3.86 GHz POWER 7 WebSphere Application Server V7 1x IBM Power 750 Express 4x 3.55 GHz POWER 7 IBM DB2 9.7 Workgroup Server Edition FP3a * SPECjEnterprise2010 EjOPS, bigger is better. Configuration Summary Application Server: 1 x Sun Fire X4800 M2 8 x 2.4 GHz Intel Xeon processor E7-8870 256 GB memory 4 x 10 GbE NIC 2 x FC HBA Oracle Linux 5 Update 6 Oracle WebLogic Server 11g Release 1 (10.3.5) Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.7.0_02 (Java SE 7 Update 2) Database Server: 1 x Sun Fire X4470 M2 4 x 2.4 GHz Intel Xeon E7-4870 512 GB memory 4 x 10 GbE NIC 2 x FC HBA 2 x Sun StorageTek 2540 M2 4 x Sun Fire X4270 M2 4 x Sun Storage F5100 Flash Array Oracle Linux 5 Update 6 Oracle Database 11g Enterprise Edition Release 11.2.0.2 Benchmark Description SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems. The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages, Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans. The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network. The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). This metric is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark. Key Points and Best Practices Sixteen Oracle WebLogic server instances were started using numactl, binding 2 instances per chip. Eight Oracle database listener processes were started, binding 2 instances per chip using taskset. Additional tuning information is in the report at http://spec.org. See Also Oracle Press Release -- SPECjEnterprise2010 Results Page Sun Fire X4800 M2 Server oracle.com OTN Sun Fire X4270 M2 Server oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Oracle Linux oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN WebLogic Suite oracle.com OTN Disclosure Statement SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Sun Fire X4800 M2, 27,150.05 SPECjEnterprise2010 EjOPS; IBM Power 780, 16,646.34 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M2, 26,118.67 SPECjEnterprise2010 EjOPS. Results from www.spec.org as of 3/27/2012.

    Read the article

  • Visual Studio 2010 SP1

    - by ScottGu
    Last week we shipped Service Pack 1 of Visual Studio 2010 and the Visual Studio Express Tools.  In addition to bug fixes and performance improvements, SP1 includes a number of feature enhancements.  This includes improved local help support, IntelliTrace support for 64-bit applications and SharePoint, built-in Silverlight 4 Tooling support in the box, unit testing support when targeting .NET 3.5, a new performance wizard for Silverlight, IIS Express and SQL CE Tooling support for web projects, HTML5 Intellisense for ASP.NET, and more.  TFS 2010 SP1 was also released last week, together with a new TFS Project Server Integration Pack and Load Test Feature Pack.  Brian Harry has a good blog post about the TFS updates here. VS 2010 SP1 Download Click here to download and install SP1 for all versions of Visual Studio (including express).  This installer examines what you have installed on your machine, and only downloads the servicing downloads necessary to update them to SP1.  The time it takes to download and update will consequently depend on what all you have installed.  Jon Galloway has a good blog post on tips to speed up the SP1 install by uninstalling unused components. Web Platform Installer Bundles In addition to the core VS 2010 SP1 installer, we have also put together two Web Platform Installer (WebPI) bundles that automate installing SP1 together with additional web-specific components: VS 2010 SP1 WebPI Bundle Visual Web Developer 2010 SP1 WebPI Bundle The above WebPI bundles automate installing: VS 2010/VWD 2010 SP1 ASP.NET MVC 3 (runtime + tools support) IIS 7.5 Express SQL Server Compact Edition 4.0 (runtime + tools support) Web Deployment 2.0 Only the components that are not already installed on your machine will be downloaded when you use the above WebPI bundles.  This means that you can run the WebPI bundle at any time (even if you have already installed SP1 or ASP.NET MVC 3) and not have to worry about wasting time downloading/installing these components again. Earlier this year I did two posts that discussed how to use IIS Express and SQL CE with ASP.NET projects in SP1.  Read the below posts to learn more about how to use them after you run the above bundles: Visual Studio 2010 SP1 and IIS Express Visual Studio 2010 SP1 and SQL CE for ASP.NET The above feature additions work with any web project type – including both ASP.NET Web Forms and ASP.NET MVC. Additional SP1 Notes Two additional notes about VS 2010 SP1: 1) One change we made between RTM and SP1 is that by default Visual Studio now uses software rendering instead of hardware acceleration when running on Windows XP.  We made this change because we’ve seen reports of (often inconsistent) performance issues caused by older video drivers.  Running in software mode eliminates these and delivers consistent speeds.  You can optionally re-enable hardware acceleration with SP1 using Visual Studio’s Tools->Options menu command – we did not remove support for HW acceleration on XP, we simply changed the default setting for it.  Jason Zander has written more details on the change and how to re-enable HW acceleration inside VS here. 2) We have discovered an issue where installing SP1 can cause TSQL intellisense within SQL Server Management Studio 2008 R2 to stop working (typing still works – but intellisense doesn’t show up).  The SQL team is investigating this now and I’ll post an update on how to fix this once more details are known.  Hope this helps, Scott P.S. I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • To sample or not to sample...

    - by [email protected]
    Ideally, we would know the exact answer to every question. How many people support presidential candidate A vs. B? How many people suffer from H1N1 in a given state? Does this batch of manufactured widgets have any defective parts? Knowing exact answers is expensive in terms of time and money and, in most cases, is impractical if not impossible. Consider asking every person in a region for their candidate preference, testing every person with flu symptoms for H1N1 (assuming every person reported when they had flu symptoms), or destructively testing widgets to determine if they are "good" (leaving no product to sell). Knowing exact answers, fortunately, isn't necessary or even useful in many situations. Understanding the direction of a trend or statistically significant results may be sufficient to answer the underlying question: who is likely to win the election, have we likely reached a critical threshold for flu, or is this batch of widgets good enough to ship? Statistics help us to answer these questions with a certain degree of confidence. This focuses on how we collect data. In data mining, we focus on the use of data, that is data that has already been collected. In some cases, we may have all the data (all purchases made by all customers), in others the data may have been collected using sampling (voters, their demographics and candidate choice). Building data mining models on all of your data can be expensive in terms of time and hardware resources. Consider a company with 40 million customers. Do we need to mine all 40 million customers to get useful data mining models? The quality of models built on all data may be no better than models built on a relatively small sample. Determining how much is a reasonable amount of data involves experimentation. When starting the model building process on large datasets, it is often more efficient to begin with a small sample, perhaps 1000 - 10,000 cases (records) depending on the algorithm, source data, and hardware. This allows you to see quickly what issues might arise with choice of algorithm, algorithm settings, data quality, and need for further data preparation. Instead of waiting for a model on a large dataset to build only to find that the results don't meet expectations, once you are satisfied with the results on the initial sample, you can  take a larger sample to see if model quality improves, and to get a sense of how the algorithm scales to the particular dataset. If model accuracy or quality continues to improve, consider increasing the sample size. Sampling in data mining is also used to produce a held-aside or test dataset for assessing classification and regression model accuracy. Here, we reserve some of the build data (data that includes known target values) to be used for an honest estimate of model error using data the model has not seen before. This sampling transformation is often called a split because the build data is split into two randomly selected sets, often with 60% of the records being used for model building and 40% for testing. Sampling must be performed with care, as it can adversely affect model quality and usability. Even a truly random sample doesn't guarantee that all values are represented in a given attribute. This is particularly troublesome when the attribute with omitted values is the target. A predictive model that has not seen any examples for a particular target value can never predict that target value! For other attributes, values may consist of a single value (a constant attribute) or all unique values (an identifier attribute), each of which may be excluded during mining. Values from categorical predictor attributes that didn't appear in the training data are not used when testing or scoring datasets. In subsequent posts, we'll talk about three sampling techniques using Oracle Database: simple random sampling without replacement, stratified sampling, and simple random sampling with replacement.

    Read the article

  • How Exactly Is One Linux OS “Based On” Another Linux OS?

    - by Jason Fitzpatrick
    When reviewing different flavors of Linux, you’ll frequently come across phrases like “Ubuntu is based on Debian” but what exactly does that mean? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader PLPiper is trying to get a handle on how Linux variants work: I’ve been looking through quite a number of Linux distros recently to get an idea of what’s around, and one phrase that keeps coming up is that “[this OS] is based on [another OS]“. For example: Fedora is based on Red Hat Ubuntu is based on Debian Linux Mint is based on Ubuntu For someone coming from a Mac environment I understand how “OS X is based on Darwin”, however when I look at Linux Distros, I find myself asking “Aren’t they all based on Linux..?” In this context, what exactly does it mean for one Linux OS to be based on another Linux OS? So, what exactly does it mean when we talk about one version of Linux being based off another version? The Answer SuperUser contributor kostix offers a solid overview of the whole system: Linux is a kernel — a (complex) piece of software which works with the hardware and exports a certain Application Programming Interface (API), and binary conventions on how to precisely use it (Application Binary Interface, ABI) available to the “user-space” applications. Debian, RedHat and others are operating systems — complete software environments which consist of the kernel and a set of user-space programs which make the computer useful as they perform sensible tasks (sending/receiving mail, allowing you to browse the Internet, driving a robot etc). Now each such OS, while providing mostly the same software (there are not so many free mail server programs or Internet browsers or desktop environments, for example) differ in approaches to do this and also in their stated goals and release cycles. Quite typically these OSes are called “distributions”. This is, IMO, a somewhat wrong term stemming from the fact you’re technically able to build all the required software by hand and install it on a target machine, so these OSes distribute the packaged software so you either don’t need to build it (Debian, RedHat) or they facilitate such building (Gentoo). They also usually provide an installer which helps to install the OS onto a target machine. Making and supporting an OS is a very complicated task requiring a complex and intricate infrastructure (upload queues, build servers, a bug tracker, and archive servers, mailing list software etc etc etc) and staff. This obviously raises a high barrier for creating a new, from-scratch OS. For instance, Debian provides ca. 37k packages for some five hardware architectures — go figure how much work is put into supporting this stuff. Still, if someone thinks they need to create a new OS for whatever reason, it may be a good idea to use an existing foundation to build on. And this is exactly where OSes based on other OSes come into existence. For instance, Ubuntu builds upon Debian by just importing most packages from it and repackaging only a small subset of them, plus packaging their own, providing their own artwork, default settings, documentation etc. Note that there are variations to this “based on” thing. For instance, Debian fosters the creation of “pure blends” of itself: distributions which use Debian rather directly, and just add a bunch of packages and other stuff only useful for rather small groups of users such as those working in education or medicine or music industry etc. Another twist is that not all these OSes are based on Linux. For instance, Debian also provide FreeBSD and Hurd kernels. They have quite tiny user groups but anyway. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • How to detect and configure an output with xrandr?

    - by ysap
    I have a DELL U2410 monitor connected to a Compaq 100B desktop equipped with an integrated AMD/ATI graphics card (AMD E-350). The installed O/S is Ubuntu 10.04 LTS. The computer is connected to the monitor via the DVI connection. The problem is that I cannot set the desktop resolution to the native 1920x1200. The maximum allowed resolution is 1600x1200. Doing some research I found about the xrandr utility. Unfortunately, when trying to use it I cannot configure it to the required resolution. First, it does not report the output name (which supposed to be DVI-0), saying default instead. Without it I cannot use the --fb option. The EDID utility seems to identify the monitor well. Here's the output from get-edid: # EDID version 1 revision 3 Section "Monitor" # Block type: 2:0 3:ff # Block type: 2:0 3:fc Identifier "DELL U2410" VendorName "DEL" ModelName "DELL U2410" # Block type: 2:0 3:ff # Block type: 2:0 3:fc # Block type: 2:0 3:fd HorizSync 30-81 VertRefresh 56-76 # Max dot clock (video bandwidth) 170 MHz # DPMS capabilities: Active off:yes Suspend:yes Standby:yes Mode "1920x1200" # vfreq 59.950Hz, hfreq 74.038kHz DotClock 154.000000 HTimings 1920 1968 2000 2080 VTimings 1200 1203 1209 1235 Flags "-HSync" "+VSync" EndMode # Block type: 2:0 3:ff # Block type: 2:0 3:fc # Block type: 2:0 3:fd EndSection but the xrandr -q command returns: Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 When I try to set the resolution, I get: $ xrandr --fb 1920x1200 xrandr: screen cannot be larger than 1600x1200 (desired size 1920x1200) $ xrandr --output DVI-0 --auto warning: output DVI-0 not found; ignoring How can I set the screen resolution to 1920x1200? Why doesn't xrandr identify the DVI-0 output? Note that the same computer running Ubuntu version higher than 10.04 detects the correct resolution with no problems. On this machine I cannot upgrade due to some legacy hardware compatibility problems. Also, I don't see any optional screen drivers available in the Hardware Drivers dialog. ---- UPDATE: following the answer to this question, I got some advance. Now the required mode is listed in the xrandr -q list, but I can't switch to that mode. Using the Monitors applet (which now shows the new mode), I get the response that: The selected configuration for displays could not be applied. Could not set the configuration to CRTC 262. From the command line it looks like this: $ cvt 1920 1200 60 # 1920x1200 59.88 Hz (CVT 2.30MA) hsync: 74.56 kHz; pclk: 193.25 MHz Modeline "1920x1200_60.00" 193.25 1920 2056 2256 2592 1200 1203 1209 1245 -hsync +vsync $ xrandr --newmode "1920x1200_60.00" 193.25 1920 2056 2256 2592 1200 1203 1209 1245 -hsync +vsync $ xrandr -q Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 1920x1200_60.00 (0x120) 193.0MHz h: width 1920 start 2056 end 2256 total 2592 skew 0 clock 74.5KHz v: height 1200 start 1203 end 1209 total 1245 clock 59.8Hz $ xrandr --addmode default 1920x1200_60.00 $ xrandr -q Screen 0: minimum 640 x 400, current 1600 x 1200, maximum 1600 x 1200 default connected 1600x1200+0+0 0mm x 0mm 1600x1200 0.0* 1280x1024 0.0 1152x864 0.0 1024x768 0.0 800x600 0.0 640x480 0.0 720x400 0.0 1920x1200_60.00 59.8 $ xrandr --output default --mode 1920x1200_60.00 xrandr: Configure crtc 0 failed Another piece of info (if it helps anyone): $ sudo lshw -c video *-display UNCLAIMED description: VGA compatible controller product: ATI Technologies Inc vendor: ATI Technologies Inc physical id: 1 bus info: pci@0000:00:01.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: latency=0 resources: memory:c0000000-cfffffff(prefetchable) ioport:f000(size=256) memory:feb00000-feb3ffff

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • career in Mobile sw/Application Development [closed]

    - by pramod
    i m planning to do a course on Wireless & mobile computing.The syllabus are given below.Please check & let me know whether its worth to do.How is the job prospects after that.I m a fresher & from electronic Engg.The modules are- *Wireless and Mobile Computing (WiMC) – Modules* C, C++ Programming and Data Structures 100 Hours C Revision C, C++ programming tools on linux(Vi editor, gdb etc.) OOP concepts Programming constructs Functions Access Specifiers Classes and Objects Overloading Inheritance Polymorphism Templates Data Structures in C++ Arrays, stacks, Queues, Linked Lists( Singly, Doubly, Circular) Trees, Threaded trees, AVL Trees Graphs, Sorting (bubble, Quick, Heap , Merge) System Development Methodology 18 Hours Software life cycle and various life cycle models Project Management Software: A Process Various Phases in s/w Development Risk Analysis and Management Software Quality Assurance Introduction to Coding Standards Software Project Management Testing Strategies and Tactics Project Management and Introduction to Risk Management Java Programming 110 Hours Data Types, Operators and Language Constructs Classes and Objects, Inner Classes and Inheritance Inheritance Interface and Package Exceptions Threads Java.lang Java.util Java.awt Java.io Java.applet Java.swing XML, XSL, DTD Java n/w programming Introduction to servlet Mobile and Wireless Technologies 30 Hours Basics of Wireless Technologies Cellular Communication: Single cell systems, multi-cell systems, frequency reuse, analog cellular systems, digital cellular systems GSM standard: Mobile Station, BTS, BSC, MSC, SMS sever, call processing and protocols CDMA standard: spread spectrum technologies, 2.5G and 3G Systems: HSCSD, GPRS, W-CDMA/UMTS,3GPP and international roaming, Multimedia services CDMA based cellular mobile communication systems Wireless Personal Area Networks: Bluetooth, IEEE 802.11a/b/g standards Mobile Handset Device Interfacing: Data Cables, IrDA, Bluetooth, Touch- Screen Interfacing Wireless Security, Telemetry Java Wireless Programming and Applications Development(J2ME) 100 Hours J2ME Architecture The CLDC and the KVM Tools and Development Process Classification of CLDC Target Devices CLDC Collections API CLDC Streams Model MIDlets MIDlet Lifecycle MIDP Programming MIDP Event Architecture High-Level Event Handling Low-Level Event Handling The CLDC Streams Model The CLDC Networking Package The MIDP Implementation Introduction to WAP, WML Script and XHTML Introduction to Multimedia Messaging Services (MMS) Symbian Programming 60 Hours Symbian OS basics Symbian OS services Symbian OS organization GUI approaches ROM building Debugging Hardware abstraction Base porting Symbian OS reference design porting File systems Overview of Symbian OS Development – DevKits, CustKits and SDKs CodeWarrior Tool Application & UI Development Client Server Framework ECOM STDLIB in Symbian iPhone Programming 80 Hours Introducing iPhone core specifications Understanding iPhone input and output Designing web pages for the iPhone Capturing iPhone events Introducing the webkit CSS transforms transitions and animations Using iUI for web apps Using Canvas for web apps Building web apps with Dashcode Writing Dashcode programs Debugging iPhone web pages SDK programming for web developers An introduction to object-oriented programming Introducing the iPhone OS Using Xcode and Interface builder Programming with the SDK Toolkit OS Concepts & Linux Programming 60 Hours Operating System Concepts What is an OS? Processes Scheduling & Synchronization Memory management Virtual Memory and Paging Linux Architecture Programming in Linux Linux Shell Programming Writing Device Drivers Configuring and Building GNU Cross-tool chain Configuring and Compiling Linux Virtual File System Porting Linux on Target Hardware WinCE.NET and Database Technology 80 Hours Execution Process in .NET Environment Language Interoperability Assemblies Need of C# Operators Namespaces & Assemblies Arrays Preprocessors Delegates and Events Boxing and Unboxing Regular Expression Collections Multithreading Programming Memory Management Exceptions Handling Win Forms Working with database ASP .NET Server Controls and client-side scripts ASP .NET Web Server Controls Validation Controls Principles of database management Need of RDBMS etc Client/Server Computing RDBMS Technologies Codd’s Rules Data Models Normalization Techniques ER Diagrams Data Flow Diagrams Database recovery & backup SQL Android Application 80 Hours Introduction of android Why develop for android Android SDK features Creating android activities Fundamental android UI design Intents, adapters, dialogs Android Technique for saving data Data base in Androids Maps, Geocoding, Location based services Toast, using alarms, Instant messaging Using blue tooth Using Telephony Introducing sensor manager Managing network and wi-fi connection Advanced androids development Linux kernel security Implement AIDL Interface. Project 120 Hours

    Read the article

  • STOP PRESS: FY15 Q1 Oracle ZS3 Contest for Partners

    - by Cinzia Mascanzoni
    04 JUNE 2014 Oracle EMEA Partners Stop Press Stay Connected Oracle Media Network   OPN on PartnerCast   STOP PRESS: FY15 Q1 Oracle ZS3 Contest for PartnersShare an unforgettable experience at the Teatro Alla Scala in Milan Dear valued Partner, We are pleased to launch a partner contest exclusive to our partners dedicated to promoting and selling Oracle Systems! You are essential to the success of Oracle and we want to recognize your contribution and effort in driving Oracle Storage to the market. To show our appreciation we are delighted to announce a contest, giving the winners the opportunity to attend a roundtable chaired by Senior Oracle Executives and spend an unforgettable evening at the magnificent Teatro Alla Scala in Milan, followed by a stay at the Grand Hotel et de Milan, courtesy of Oracle. Recognition will be given to 12 partner companies (10 VARs & 2 VADs) who will be recognized for their ZFS storage booking achievement in the broad market between June 1st and July 18th 2014. Criteria of Eligibility A minimum deal value of $30k is required for qualification Partners who are wholly or partially owned by a public sector organization are not eligible for participation Winners The winning VARs will be: The highest ZS3 or ZBA bookings achievers by COB on July 18th, 2014 in each Oracle EMEA region (1) The highest Oracle on Oracle (2) ZS3 or ZBA bookings achievers by COB on July 18th, 2014 in each Oracle EMEA region The winning VADs (3) will be: The highest ZS3 or ZBA bookings achiever by COB on July 18th 2014 in EMEA The highest Oracle on Oracle (2) ZS3 or ZBA bookings achiever by COB on July 18th 2014 in EMEA (1) Two VAR winners for each EMEA region – Eastern Europe & CIS, Middle East & Africa, South Europe, North Europe, UK/Ireland & Israel - as per the criteria outlined above(2) Oracle on Oracle, in this instance, means ZS3 or ZBA storage attached to DB or DB options, Engineered Systems or Sparc servers sold to the same customer by the same partner within the contest timelines.(3) Two VAD winners, one for each of the criteria outlined above, will be selected from across EMEA. Oracle shall be the final arbiter in selecting the winners. All winners will be notified via their Oracle account manager. Full details about the contest, expenses covered by Oracle and timetable of events can be found on the Oracle EMEA Hardware (Servers & Storage) Partner Community workspace (FY15 Q1 ZFS Partner Contest). Access to the community workspace requires membership. If you are not a member please register here. The Prize Winners will be invited to participate to a roundtable chaired by Oracle on Monday September 8th 2014 in Milan and to be guests of Oracle in the evening of September 8th, 2014 at the Teatro Alla Scala. The evening will comprise of a private tour of the Scala museum, cocktail reception at the elegant museum rooms and attending the performance by the renowned Soprano, Maria Agresta. Our guests will then retire for the evening to the Grand Hotel et de Milan, courtesy of Oracle. Good Luck!! For more information, please contact Sasan Moaveni. Regards, Olivier TordoSenior Director - Systems Business DevelopmentOracle EMEA Alliances & Channels Resources EMEA Hardware Partner Community EMEA Oracle Partner Days Find Partner Events EMEA Partner News Blog EMEA Partner Enablement Blog Oracle PartnerNetwork Copyright © 2014, Oracle and/or its affiliates.All rights reserved. Contact Us | Legal Notices and Terms of Use | Privacy Statement

    Read the article

  • Die glücklichen Gewinner der Oracle Partner Awards Germany 2012

    - by A&C Redaktion
    Es war ein Höhepunkt des Oracle Partner Days: Die Award Ceremony, auf der deutsche Oracle Partner für ihr besonderes Engagement und herausragende Erfolge bei der Spezialisierung ausgezeichnet wurden. Jeder Preisträger erhielt neben dem Award eine Urkunde sowie einen Wertscheck in Höhe von 2.000 Euro für eine Demand Generation Kampagne. Wir gratulieren allen Gewinnern ganz herzlich und stellen sie Ihnen im Folgenden kurz vor:Database Partner of the Year Germany: inforsacom Informationssysteme GmbHDass der EMEA Database Partner of the Year inforsacom auch im bundesweiten Vergleich überzeugen würde, war keine große Überraschung, ist aber ein Riesenerfolg! Übrigens war inforsacom auch schon 2011 unter den Preisträgern des OPN Day Satellite (wir berichteten). Der Platinum Partner inforsacom Informationssysteme GmbH entwickelt und liefert seit 1997 integrierte IT-Lösungen im Data-Center. Als „trusted advisor“ ist es ein Schwerpunkt von Inforsacom, in der Beratung den größtmöglichen Kundennutzen aufzuzeigen. inforsacom setzt einen deutlichen Fokus auf Oracle Datenbanktechnologien sowie das Hardware und Engineered Systems Portfolio -  inklusive der damit verbundenen Spezialisierung und Ausbildung der Mitarbeiter. Middleware Partner of the Year Germany: People at Work Systems AGZum Middleware Partner of the Year wurde die People at Work Systems AG gekürt, ein Software- und Beratungsunternehmen aus München, das  Kunden individuelle Dienstleistungen und Lösungen für Customer Relationship Management (CRM) und  Business Process Management (BPM) auf der Basis von Oracle anbietet. Seit Jahren zeigt der Oracle Partner ein hohes Commitment zu Oracle, unter anderem durch sein umfassendes Engagement im Rahmen der Solution Partner Community SOA. Die große technologische und vertriebliche Kompetenz in Sachen BPM, SOA & Integration hat die People at Work GmbH in verschiedenen komplexen Fusion Middleware-Projekten erfolgreich unter Beweis gestellt. Applications Partner of the Year Germany: ifb AGDie ifb-group deckt als einer der wenigen Partner das komplette Hyperion, Oracle EPM und BI Portfolio ab. Dabei ist das Markenzeichen der ifb die enge Verbindung von Fachexpertise und Umsetzungsstärke, denn weltweit setzen über 800 Unternehmen seit vielen Jahren erfolgreich auf Lösungen der ifb. Der Award „Applications Partner of the Year“ würdigt die Spezialisierung der ifb auf EPM. Industry Partner of the Year Germany: PORTRIX LOGISTIC SOFTWARE GmbHÜber den Preis als bester Industry Partner freute sich die PORTRIX LOGISTIC SOFTWARE GmbH aus Hamburg, eine Tochter der portrix.net GmbH. Mit einer eigenen Software-Lösung bietet der ISV Speditionen eine Lösung an, die die Abrechnung und Transparenz von Vertragskonditionen über die ganze Transportkette hinweg vereinfacht. Die Unternehmensgruppe portrix.net ist mit mehr als vier Spezialisierungen mit sehr gutem Oracle Know-how ausgestattet und somit in der Lage, zu unterschiedlichsten Anforderungen von Endkunden und Oracle Partnern exzellent zu beraten. Oracle Accelerate Partner of the Year Germany: ICP Solution GmbHICP Solution unterstützt als "One-Stop-Shop" auf dem europäischen Markt Kunden in allen Fragen rund um PLM und Agile von Oracle. Das Leistungsspektrum reicht dabei von der Prozessoptimierung und PLM Einführung, über ERP Integration bis hin zum Wartungsvertrag und speziellen Schulungen.Server & Storage Systems Partner of the Year Germany: CCF AGDie CCF AG ist schon seit 19 Jahren ein überzeugter Sun/Oracle Partner, der ca. 90% seines Umsatzes mit Sun/Oracle Produkten macht. Als flexibles regionales Unternehmen mit angeschlossener Consulting Firma, die auf Solaris und Unix spezialisiert ist, ist die CCF einer der wenigen Oracle Partner mit eigenen Solaris Administratoren. Der Award würdigt auch die herausragenden Umsatzergebnisse von CCF im Hardware Segment.Oracle on Oracle Partner of the Year Germany: anykey GmbHAuch ankey ist bereits ein langjähriger Partner von Sun/Oracle und verfügt über hohes Consulting-Know-how. 2012 ist anykey richtig durchgestartet: Viele Zertifizierungen sowie Datenbankspezialisierung wurden erworben und der Platinum Partner hat sich damit den Bereich „Oracle on Oracle“ erschlossen. Durch die erfolgreiche Platzierung bei Kunden konnte anykey im letzten Fiskaljahr sogar den Umsatz verdoppeln.

    Read the article

  • Die glücklichen Gewinner der Oracle Partner Awards Germany 2012

    - by A&C Redaktion
    Es war ein Höhepunkt des Oracle Partner Days: Die Award Ceremony, auf der deutsche Oracle Partner für ihr besonderes Engagement und herausragende Erfolge bei der Spezialisierung ausgezeichnet wurden. Jeder Preisträger erhielt neben dem Award eine Urkunde sowie einen Wertscheck in Höhe von 2.000 Euro für eine Demand Generation Kampagne. Wir gratulieren allen Gewinnern ganz herzlich und stellen sie Ihnen im Folgenden kurz vor:Database Partner of the Year Germany: inforsacom Informationssysteme GmbHDass der EMEA Database Partner of the Year inforsacom auch im bundesweiten Vergleich überzeugen würde, war keine große Überraschung, ist aber ein Riesenerfolg! Übrigens war inforsacom auch schon 2011 unter den Preisträgern des OPN Day Satellite (wir berichteten). Der Platinum Partner inforsacom Informationssysteme GmbH entwickelt und liefert seit 1997 integrierte IT-Lösungen im Data-Center. Als „trusted advisor“ ist es ein Schwerpunkt von Inforsacom, in der Beratung den größtmöglichen Kundennutzen aufzuzeigen. inforsacom setzt einen deutlichen Fokus auf Oracle Datenbanktechnologien sowie das Hardware und Engineered Systems Portfolio -  inklusive der damit verbundenen Spezialisierung und Ausbildung der Mitarbeiter. Middleware Partner of the Year Germany: People at Work Systems AGZum Middleware Partner of the Year wurde die People at Work Systems AG gekürt, ein Software- und Beratungsunternehmen aus München, das  Kunden individuelle Dienstleistungen und Lösungen für Customer Relationship Management (CRM) und  Business Process Management (BPM) auf der Basis von Oracle anbietet. Seit Jahren zeigt der Oracle Partner ein hohes Commitment zu Oracle, unter anderem durch sein umfassendes Engagement im Rahmen der Solution Partner Community SOA. Die große technologische und vertriebliche Kompetenz in Sachen BPM, SOA & Integration hat die People at Work GmbH in verschiedenen komplexen Fusion Middleware-Projekten erfolgreich unter Beweis gestellt. Applications Partner of the Year Germany: ifb AGDie ifb-group deckt als einer der wenigen Partner das komplette Hyperion, Oracle EPM und BI Portfolio ab. Dabei ist das Markenzeichen der ifb die enge Verbindung von Fachexpertise und Umsetzungsstärke, denn weltweit setzen über 800 Unternehmen seit vielen Jahren erfolgreich auf Lösungen der ifb. Der Award „Applications Partner of the Year“ würdigt die Spezialisierung der ifb auf EPM. Industry Partner of the Year Germany: PORTRIX LOGISTIC SOFTWARE GmbHÜber den Preis als bester Industry Partner freute sich die PORTRIX LOGISTIC SOFTWARE GmbH aus Hamburg, eine Tochter der portrix.net GmbH. Mit einer eigenen Software-Lösung bietet der ISV Speditionen eine Lösung an, die die Abrechnung und Transparenz von Vertragskonditionen über die ganze Transportkette hinweg vereinfacht. Die Unternehmensgruppe portrix.net ist mit mehr als vier Spezialisierungen mit sehr gutem Oracle Know-how ausgestattet und somit in der Lage, zu unterschiedlichsten Anforderungen von Endkunden und Oracle Partnern exzellent zu beraten. Oracle Accelerate Partner of the Year Germany: ICP Solution GmbHICP Solution unterstützt als "One-Stop-Shop" auf dem europäischen Markt Kunden in allen Fragen rund um PLM und Agile von Oracle. Das Leistungsspektrum reicht dabei von der Prozessoptimierung und PLM Einführung, über ERP Integration bis hin zum Wartungsvertrag und speziellen Schulungen.Server & Storage Systems Partner of the Year Germany: CCF AGDie CCF AG ist schon seit 19 Jahren ein überzeugter Sun/Oracle Partner, der ca. 90% seines Umsatzes mit Sun/Oracle Produkten macht. Als flexibles regionales Unternehmen mit angeschlossener Consulting Firma, die auf Solaris und Unix spezialisiert ist, ist die CCF einer der wenigen Oracle Partner mit eigenen Solaris Administratoren. Der Award würdigt auch die herausragenden Umsatzergebnisse von CCF im Hardware Segment.Oracle on Oracle Partner of the Year Germany: anykey GmbHAuch ankey ist bereits ein langjähriger Partner von Sun/Oracle und verfügt über hohes Consulting-Know-how. 2012 ist anykey richtig durchgestartet: Viele Zertifizierungen sowie Datenbankspezialisierung wurden erworben und der Platinum Partner hat sich damit den Bereich „Oracle on Oracle“ erschlossen. Durch die erfolgreiche Platzierung bei Kunden konnte anykey im letzten Fiskaljahr sogar den Umsatz verdoppeln.

    Read the article

  • My Doors - Why Standards Matter to Business

    - by Brian Dayton
    "Standards save money." "Standards accelerate projects." "Standards make better solutions."   What do these statements mean to you? You buy technology solutions like Oracle Applications but you're a business person--trying to close the quarter, get performance reviews processed, negotiate a new sourcing contract, etc.   When "standards" come up in presentations and discussions do you: -          Nod your head politely -          Tune out and check your smart phone -          Turn to your IT counterpart and say "Bob's all over this standards thing, right Bob?"   Here's why standards matter. My wife wants new external doors downstairs, ones that would get more light into the rooms. Am I OK with that? "Uhh, sure...it's a little dark in the kitchen."   -          24 hours ago - wife calls to tell me that she's going to the hardware store and may look at doors -          20 hours ago - wife pulls into driveway, informs me that two doors are in the back of her station wagon, ready for me to carry -          19 hours ago - I re-discovered the fact that it's not fun to carry a solid wood door by myself -          5 hours ago - Local handyman, who was at our house anyway, tells me that the doors we bought will likely cost 2-3x the material cost in installation time and labor...the doors are standard but our doorways aren't   We could have done more research. I could be more handy. Sure. But the fact is, my 1951 house wasn't built with me in mind. They built what worked and called it a day.   The same holds true with a lot of business applications. They were designed and architected for one-time use with one use-case in mind. Today's business climate is different. If you're going to use your processes and technology to differentiate your business you should have at least a working knowledge of: -          How standards can benefit your business -          Your IT organization's philosophy around standards -          Your vendor's track-record around standards...and watch for those who pay lip-service to standards but don't follow through   The rallying cry in most IT organizations today is "learn more about the business, drop the acronyms." I'm not advocating that you go out and learn how to code in Java. But I do believe it will help your business and your decision-making process if you meet IT ½...even ¼ of the way there.   Epilogue: The door project has been put on hold and yours truly has to return the doors to the hardware store tomorrow.

    Read the article

  • Unleash the Power of Cryptography on SPARC T4

    - by B.Koch
    by Rob Ludeman Oracle’s SPARC T4 systems are architected to deliver enhanced value for customer via the inclusion of many integrated features.  One of the best examples of this approach is demonstrated in the on-chip cryptographic support that delivers wire speed encryption capabilities without any impact to application performance.  The Evolution of SPARC Encryption SPARC T-Series systems have a long history of providing this capability, dating back to the release of the first T2000 systems that featured support for on-chip RSA encryption directly in the UltraSPARC T1 processor.  Successive generations have built on this approach by support for additional encryption ciphers that are tightly coupled with the Oracle Solaris 10 and Solaris 11 encryption framework.  While earlier versions of this technology were implemented using co-processors, the SPARC T4 was redesigned with new crypto instructions to eliminate some of the performance overhead associated with the former approach, resulting in much higher performance for encrypted workloads. The Superiority of the SPARC T4 Approach to Crypto As companies continue to engage in more and more e-commerce, the need to provide greater degrees of security for these transactions is more critical than ever before.  Traditional methods of securing data in transit by applications have a number of drawbacks that are addressed by the SPARC T4 cryptographic approach. 1. Performance degradation – cryptography is highly compute intensive and therefore, there is a significant cost when using other architectures without embedded crypto functionality.  This performance penalty impacts the entire system, slowing down performance of web servers (SSL), for example, and potentially bogging down the speed of other business applications.  The SPARC T4 processor enables customers to deliver high levels of security to internal and external customers while not incurring an impact to overall SLAs in their IT environment. 2. Added cost – one of the methods to avoid performance degradation is the addition of add-in cryptographic accelerator cards or external offload engines in other systems.  While these solutions provide a brute force mechanism to avoid the problem of slower system performance, it usually comes at an added cost.  Customers looking to encrypt datacenter traffic without the overhead and expenditure of extra hardware can rely on SPARC T4 systems to deliver the performance necessary without the need to purchase other hardware or add-on cards. 3. Higher complexity – the addition of cryptographic cards or leveraging load balancers to perform encryption tasks results in added complexity from a management standpoint.  With SPARC T4, encryption keys and the framework built into Solaris 10 and 11 means that administrators generally don’t need to spend extra cycles determining how to perform cryptographic functions.  In fact, many of the instructions are built-in and require no user intervention to be utilized.  For example, For OpenSSL on Solaris 11, SPARC T4 crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "t4 engine."  For a deeper technical dive into the new instructions included in SPARC T4, consult Dan Anderson’s blog. Conclusion In summary, SPARC T4 systems offer customers much more value for applications than just increased performance. The integration of key virtualization technologies, embedded encryption, and a true Enterprise Operating System, Oracle Solaris, provides direct business benefits that supersedes the commodity approach to data center computing.   SPARC T4 removes the roadblocks to secure computing by offering integrated crypto accelerators that can save IT organizations in operating cost while delivering higher levels of performance and meeting objectives around compliance. For more on the SPARC T4 family of products, go to here.

    Read the article

  • Big Data – Basics of Big Data Architecture – Day 4 of 21

    - by Pinal Dave
    In yesterday’s blog post we understood how Big Data evolution happened. Today we will understand basics of the Big Data Architecture. Big Data Cycle Just like every other database related applications, bit data project have its development cycle. Though three Vs (link) for sure plays an important role in deciding the architecture of the Big Data projects. Just like every other project Big Data project also goes to similar phases of the data capturing, transforming, integrating, analyzing and building actionable reporting on the top of  the data. While the process looks almost same but due to the nature of the data the architecture is often totally different. Here are few of the question which everyone should ask before going ahead with Big Data architecture. Questions to Ask How big is your total database? What is your requirement of the reporting in terms of time – real time, semi real time or at frequent interval? How important is the data availability and what is the plan for disaster recovery? What are the plans for network and physical security of the data? What platform will be the driving force behind data and what are different service level agreements for the infrastructure? This are just basic questions but based on your application and business need you should come up with the custom list of the question to ask. As I mentioned earlier this question may look quite simple but the answer will not be simple. When we are talking about Big Data implementation there are many other important aspects which we have to consider when we decide to go for the architecture. Building Blocks of Big Data Architecture It is absolutely impossible to discuss and nail down the most optimal architecture for any Big Data Solution in a single blog post, however, we can discuss the basic building blocks of big data architecture. Here is the image which I have built to explain how the building blocks of the Big Data architecture works. Above image gives good overview of how in Big Data Architecture various components are associated with each other. In Big Data various different data sources are part of the architecture hence extract, transform and integration are one of the most essential layers of the architecture. Most of the data is stored in relational as well as non relational data marts and data warehousing solutions. As per the business need various data are processed as well converted to proper reports and visualizations for end users. Just like software the hardware is almost the most important part of the Big Data Architecture. In the big data architecture hardware infrastructure is extremely important and failure over instances as well as redundant physical infrastructure is usually implemented. NoSQL in Data Management NoSQL is a very famous buzz word and it really means Not Relational SQL or Not Only SQL. This is because in Big Data Architecture the data is in any format. It can be unstructured, relational or in any other format or from any other data source. To bring all the data together relational technology is not enough, hence new tools, architecture and other algorithms are invented which takes care of all the kind of data. This is collectively called NoSQL. Tomorrow Next four days we will answer the Buzz Words – Hadoop. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • IE9, HTML5 and truck load of other stuff happening around the web

    - by Harish Ranganathan
    First of all, I haven’t been updating this blog as regularly as it used to be.  Primarily, due to the fact was I was visiting a lot of cities talking about SharePoint, Web Matrix, IE9 and few other stuff.  IE9 is my new found love and I simply think we have done great work in improving the browser and browsing experiences for our users. This post would talk about IE, general things happening around the web and few misconceptions around IE (I had earlier written about IE8 and common myths When you think about the way web has transformed, its truly amazing.  Rewind back to late 90s and early 2000s, web was a luxury.  There were lot of desktop applications running around and web applications was starting to pick up.  Primarily reason was not a lot of folks were into web development and the areas of web were confined to HTML and JavaScript.  CSS was around here and there but no one took it so seriously.  XML, XSLT was fast picking up and contributed to decent web development techniques. So as a web developer all we had to worry about was, building good looking websites which worked well with IE6 and occasionally with Safari.  Firefox was  not even in the picture then and so was Chrome.  But with the various arms of W3C consortium and other bodies working actively on stuff like CSS, SVG and XHTML, few more areas came into picture when it comes to browsers supporting standards.  IE6 for sure wasn’t up to the speed and the main issue we were tackling then was privacy and piracy.  We did invest a lot of our efforts to curb piracy and one of the steps into it was that, IE7 the next version of IE would install only on genuine windows machines.  What this means, is that, people who were running pirated windows xp knowingly/unknowingly could not install IE7 and the limitations of IE6 really hurt them.  One more thing of importance is that, if you were running pirated windows, lots of chances that you didn’t get the security updates and thereby were vulnerable to run viruses/trojans on your system. Many of them actually block using IE in the first place and make it difficult to browse.  SP2 came as a big boon but again was there only for genuine windows machines. With Firefox coming as a free install and also heavily pushed by Google then, it was natural that people would try an alternative.  By then, we had started working on IE8 supporting the best standards (note HTML5, CSS 2.1 and other specs were then work in progress.  they are still) Later, Google in their infinite wisdom realized that with Firefox they were going nowhere and they released Chrome.  Now, they heavily push Chrome even for Firefox users, which is natural since its their browser. In the meanwhile, these browsers push their updates as mandatory and therefore have a very short lifecycle to add enhancements and support for stuff like CSS etc., Meanwhile, when IE8 came out, it really was the best standards supported browser and a lot of people saw our efforts in improving our browser. HTML5 is the buzz word in the industry and there is a lot of noise being made by many browsers claiming their support for it.  IE8 doesn’t have much support for HTML5.  But, with IE9 Beta, we have great support for many of HTML5 specifications.  Note that, HTML5 is still work under progress and one of the board of members working on the spec has mentioned that these specs might change and relying on them heavily is dangerous.  But, some of the advances such as video tag, etc., are indeed supported in IE9 Beta.  IE9 Beta also has full hardware acceleration support which other browsers don’t have. IE8 had advanced security features such as smartscreen filter, in-private browsing, anti-phishing and a lot of other stuff.  IE9 builds on top of these with the best in town security standards as well as support for HTML5, CSS3, Hardware acceleration, SVG and many other advancements in browser.  Read more at http://www.beautyoftheweb.com/#/highlights/html5  To summarize, IE9 Beta is really innovative and you should try it to believe what it provides.  You can visit http://www.beautyoftheweb.com/  to install as well as read more on this. Cheers !!!

    Read the article

  • Ubuntu 12.04 - No sound - HELP!

    - by Bruno Tacca
    I'm panicking... my sound stopped working after I tried to set-up my notebook speakers, plus two headphone jacks... My idea was to multichannel the sound to 3 channels, built-in speakers, and sound-card 2 headphone jacks. After a couple efforts I did it with 2 channels, speakers and 1 headphone jack, but the other wasn't working. After more tries and tries, sound stop working. I just want my sound back... crying like a baby on the floor. And, if possible, but not necessary, a simple guide to active the 3 channels. xD I will post the diagnosis according to https://help.ubuntu.com/community/SoundTroubleshootingProcedure STEP 1 Did it, still no sound. STEP 2 Did it, still no sound. STEP 3 and #STEP 4 (I removed the log cause there is a limit of characters to be posted.) The log can be found here: https://answers.launchpad.net/ubuntu/+source/alsa-driver/+question/238653 STEP 5 Rebooted, still no sound. STEP 6 Did it. In the Output Devices tab, nothing is muted. I play a music with the Rhythmbox Music Player, I don't hear anything but in the pavucontrol I can see in the Built-in Audio Analog Stereo a sound bar shaking... but, no sound. STEP 7 In alsamixer, AlsaMixer v1.0.25 Card: HDA Intel PCH Chip: Creative CA0132 information View: F3:[Playback] F4: Capture F5: All Item: Headphone [dB gain: 25.00, 25.00] Then, I have 5 columns Headphone, Speaker, PCM, S/PDIF, S/PDIF Default PCM A little weird when I try to mute the Headphone and the Speaker, here what happens: Starting both unmutted, mutting headphone cause speaker being mutted automaticaly. Starting both unmutted, mutting speaker cause headphone being mutted automaticaly. Starting both mutted, possible to unmute both separately. STEP 8 I cannot hear sound on both (headphone and/or speaker). STEP 9 Dual boot... Restarted, windows was with sound at max volume. Restarted again, still no sound at ubuntu. I heard something when ubuntu started, a little noise, then silence again. The sound icon always start mutted, after unmutting, I have no sound. STEP 10 I dont have this command in my ubuntu. STEP 11 Tried at STEP 8, no sound. There are no problem with jumpers or hardware, cause I have sound working on windows. STEP 12 No way to open my alienware and loss the warranty x.X" STEP 13 I think it's loaded, judging my the logs STEP 14 Alienware M17xR4, the hardware is listed in the logs above, at STEP 4. There are two headphone hacks, one with just an headphone printed above, and the other with an headset (with mic) printed, there is a mic jack too, and a spdif (optical) too. STEP 15 I dont want to enable S/PDIF STEP 16 I never used the HDMI output, yet... Thanks in advance. I hope I listed all the information you need.

    Read the article

  • F1 Pit Pragmatics

    - by mikef
    "I hate computers. No, really, I hate them. I love the communications they facilitate, I love the conveniences they provide to my life. but I actually hate the computers themselves." - Scott Merrill, 'I hate computers: confessions of a Sysadmin' If Scott's goal was to polarize opinion and trigger raging arguments over the 'real reasons why computers suck', then he certainly succeeded. Impassioned vitriol sits side-by-side with rational debate. Yet Scott's fundamental point is absolutely on the money - Computers are a means to an end. The IT industry is finally starting to put weight behind the notion that good User Experience is an absolutely crucial goal, a cause championed by the likes of Microsoft's Bill Buxton, and which Apple's increasingly ubiquitous touch screen interface exemplifies. However, that doesn't change the fact that, occasionally, you just have to man up and deal with complex systems. In fact, sometimes you just need to sacrifice everything else in the name of performance. You'll find a perfect example of this Faustian bargain in Trevor Clarke's fascinating look into the (diabolical) IT infrastructure of modern F1 racing - high performance, high availability. high everything. To paraphrase, each car has up to 100 sensors, transmitting around 30Gb of data over the course of a race (70% in real-time). This data is then processed by no less than 3 servers (per car) so that the engineers in the pit have access to telemetry, strategy information, timing feeds, a connection back to the operations room in the team's home base - the list goes on. All of this while the servers are exposed "to carbon dust, oil, vibration, rain, heat, [and] variable power". Now, this is admittedly an extreme context where there's no real choice but to use complex systems where ease-of-use is, at best, a secondary concern. The flip-side is seen in small-scale personal computing such as that seen in Apple's iDevices, which are incredibly intuitive but limited in their scope. In terms of what kinds of systems they prefer to use, I suspect that most SysAdmins find themselves somewhere along this axis of Power vs. Usability, and which end of this axis you resonate with also hints at where you think the IT industry should focus its energy. Do you see yourself in the F1 pit, making split-second decisions, wrestling with information flows and reticent hardware to bend them to your will? If so, I imagine you feel that computers are subtle tools which need to be tuned and honed, using the advanced knowledge possessed only by responsible SysAdmins (If you have an iPhone, I suspect it's jail-broken). If the machines throw enigmatic errors, it's the price of flexibility and raw power. Alternatively, would you prefer to have your role more accessible, with users empowered by knowledge, spreading the load of managing IT environments? In that case, then you want hardware and software to have User Experience as their primary focus, and are of the "means to an end" school of thought (you're probably also fed up with users not listening to you when you try and help). At its heart, the dichotomy is between raw power (which might be difficult to use) and ease-of-use (which might have some limitations, but you can be up and running immediately). Of course, the ultimate goal is a fusion of flexibility, power and usability all in one system. It's achievable in specific software environments, and Red Gate considers it a target worth aiming for, but in other cases it's a goal right up there with cold fusion. I think it'll be a long time before we see it become ubiquitous. In the meantime, are you Power-Hungry or a Champion of Usability? Cheers, Michael Francis Simple Talk SysAdmin Editor

    Read the article

  • Ubuntu Server 12 not spawning a serial ttyS0 when running on Xen

    - by segfaultreloaded
    I have this problem on more than one host, so the specific hardware is not an issue. Bare metal Ubuntu 12 is not creating a login process on the only serial port, in the default configuration. The serial port works correctly with the firmware. It works correctly with Grub2. I have even connected the serial line to 2 different external client boxes, so the problem is neither the hardware nor the remote client. When finally booted, the system fails to create the login process. root@xenpro3:~# ps ax | grep tty 1229 tty4 Ss+ 0:00 /sbin/getty -8 38400 tty4 1233 tty5 Ss+ 0:00 /sbin/getty -8 38400 tty5 1239 tty2 Ss+ 0:00 /sbin/getty -8 38400 tty2 1241 tty3 Ss+ 0:00 /sbin/getty -8 38400 tty3 1245 tty6 Ss+ 0:00 /sbin/getty -8 38400 tty6 1403 tty1 Ss+ 0:00 /sbin/getty -8 38400 tty1 1996 pts/0 S+ 0:00 grep --color=auto tty root@xenpro3:~# dmesg | grep tty [ 0.000000] Command line: BOOT_IMAGE=/vmlinuz-3.2.0-30-generic root=/dev/mapper/xenpro3-root ro console=ttyS0,115200n8 [ 0.000000] Kernel command line: BOOT_IMAGE=/vmlinuz-3.2.0-30-generic root=/dev/mapper/xenpro3-root ro console=ttyS0,115200n8 [ 0.000000] console [ttyS0] enabled [ 2.160986] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.203396] serial8250: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.263296] 00:08: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.323102] 00:09: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A root@xenpro3:~# uname -a Linux xenpro3 3.2.0-30-generic #48-Ubuntu SMP Fri Aug 24 16:52:48 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux root@xenpro3:~# I have tried putting a ttyS0.conf file in /etc/initab, which solves the problem bare metal but I still cannot get the serial port to work when booting Ubuntu on top of Xen, as domain 0. My serial line output looks like this, when booting Xen /dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A * Exporting directories for NFS kernel daemon... [ OK ] * Starting NFS kernel daemon [ OK ] SSL tunnels disabled, see /etc/default/stunnel4 [ 18.654627] XENBUS: Unable to read cpu state [ 18.659631] XENBUS: Unable to read cpu state [ 18.664398] XENBUS: Unable to read cpu state [ 18.669248] XENBUS: Unable to read cpu state * Starting Xen daemons [ OK ] mountall: Disconnected from Plymouth At this point, the serial line is no longer connected to a process. Xen itself is running just fine. Dmesg gives me a long list of [ 120.236841] init: ttyS0 main process ended, respawning [ 120.239717] ttyS0: LSR safety check engaged! [ 130.240265] init: ttyS0 main process (1631) terminated with status 1 [ 130.240294] init: ttyS0 main process ended, respawning [ 130.242970] ttyS0: LSR safety check engaged! which is no surprise because I see root@xenpro3:~# ls -l /dev/ttyS? crw-rw---- 1 root tty 4, 64 Nov 7 14:04 /dev/ttyS0 crw-rw---- 1 root dialout 4, 65 Nov 7 14:04 /dev/ttyS1 crw-rw---- 1 root dialout 4, 66 Nov 7 14:04 /dev/ttyS2 crw-rw---- 1 root dialout 4, 67 Nov 7 14:04 /dev/ttyS3 crw-rw---- 1 root dialout 4, 68 Nov 7 14:04 /dev/ttyS4 crw-rw---- 1 root dialout 4, 69 Nov 7 14:04 /dev/ttyS5 crw-rw---- 1 root dialout 4, 70 Nov 7 14:04 /dev/ttyS6 crw-rw---- 1 root dialout 4, 71 Nov 7 14:04 /dev/ttyS7 crw-rw---- 1 root dialout 4, 72 Nov 7 14:04 /dev/ttyS8 crw-rw---- 1 root dialout 4, 73 Nov 7 14:04 /dev/ttyS9 If I manually change the group of /dev/ttyS0 to dialout, it gets changed back. I have made no changes to the default udev rules, so I cannot see where this problem is coming from. Sincerely, John

    Read the article

  • Oracle Enterprise Manager Cloud Control 12c Release 2 (12.1.0.2) Now Available!

    - by Javier Puerta
    Oracle Enterprise Manager Cloud Control 12c Release 2 (12.1.0.2) is now available on OTN on ALL platforms. This is the first major release since the launch of Enterprise Manager 12c in October of 2011 and the first ever Enterprise Manager release available on all platforms simultaneously. This is primarily a stability release which incorporates many of issues and feedback reported by early adopters. In addition, this release contains many new features and enhancements in areas across the board.   New Capabilities and Features   Enhanced management capabilities for enterprise private clouds: Introduces new capabilities to allow customers to build and manage a Java Platform-as-a-Service (PaaS) cloud based on Oracle Weblogic Server. The new capabilities include guided set up of PaaS Cloud, self-service provisioning, automatic scale out and metering and chargeback. Enhanced lifecycle management capabilities for Oracle WebLogic Server environments: Combining in-context multiple domain, patching and configuration file synchronizations. Integrated Hardware-Software management for Oracle Exalogic Elastic Cloud through features such as rack schematics visualization and integrated monitoring of all hardware and software components. The latest management capabilities for business-critical applications include: Business Application Management: A new Business Application (BA) target type and dashboard with flexible definitions provides a logical view of an application’s business transactions, end-user experiences and the cloud infrastructure the monitored application is running on. Enhanced User Experience Reporting: Oracle Real User Experience Insight has been enhanced to provide reporting capabilities on client-side issues for applications running in the cloud and has been more tightly coupled with Oracle Business Transaction Management to help ensure that real-time user experience and transaction tracing data is provided to users in context. Several key improvements address ease of administration, reporting and extensibility for massively scalable cloud environments including dynamic groups, self-updateable monitoring templates, bulk operations against many events, etc. New and Revised Plug-Ins:   Several plug-Ins have been updated as a part of this release resulting in either new versions or revisions. Revised plug-ins contain only bug-fixes and while new plug-ins incorporate both bug fixes as well as new functionality.   Plug-In Name Version Enterprise Manager for Oracle Database 12.1.0.2 (revision) Enterprise Manager for Oracle Fusion Middleware 12.1.0.3 (new) Enterprise Manager for Chargeback and Capacity Planning 12.1.0.3 (new) Enterprise Manager for Oracle Fusion Applications 12.1.0.3 (new) Enterprise Manager for Oracle Virtualization 12.1.0.3 (new) Enterprise Manager for Oracle Exadata 12.1.0.3 (new) Enterprise Manager for Oracle Cloud 12.1.0.4 (new) Installation and Upgrade:   All major platforms have been released simultaneously (Linux 32 / 64 bit, Solaris (SPARC), Solaris x86-64, IBM AIX 64-bit, and Windows x86-64 (64-bit) ) Enterprise Manager 12.1.0.2 is a complete release that includes both the EM OMS and Agent versions of 12.1.0.2. Installation options available with EM 12.1.0.2: User can do fresh Install or an upgrade from versions EM 10.2.0.5, 11.1, or 12.1.0.2 ( Bundle Patch 1 not mandatory). Upgrading to EM 12.1.0.2 from EM 12.1.0.1 is not a patch application (similar to Bundle Patch 1) but is achieved through a 1-system upgrade. Documentation:   Oracle Enterprise Manager Cloud Control Introduction Document provides a broad overview of capabilities and highlights"What's New" in EM 12.1.0.2.   All updated Oracle Enterprise Manager documentation can be found on OTN   Customer Webcast - EM 12c Installation and Upgrade: This webcast is for customers who are interested in learning how to successfully deploy or upgrade to EM 12.1.0.2.   Customer Webcast - Installation and Upgrade - September 21(registration and info on OTN starting September 12)   Enterprise Manager 12c R2 Resources:   OTN Download Page Upgrade Guide

    Read the article

  • Live vom Oracle Partner Day 2012 in Frankfurt

    - by A&C Redaktion
    Frankfurt a. M. gegen 11:30 UhrCharmante Idee, mit einem Welcome-Lunch in den Oracle Partner Day 2012 zu starten. So kann man bei einem Snack auch gleich die beeindruckende Atmosphäre der Commerzbank Arena auf sich wirken lassen und ist, ehe man sich versieht, mit dem nebenstehenden Geschäftsführer, einer Managerin und zwei Vertriebsmitarbeitern in ein Gespräch über die jeweils letzten Stadionbesuche verwickelt. Überall fröhliches Wiedersehen, viele haben sich das letzte Mal vor genau einem Jahr getroffen, im Radisson Blu, beim OPN Day Satellite. So, die Masse setzt sich in Bewegung – auf geht’s zur Eröffnung: Silvia Kaske fängt an! 13:45 Uhr Die Keynotes waren mal wieder ein thematischer Rundumschlag – und ein kleines Who-is-Who im Oracle Universum zugleich: Silvia Kaske, Senior Director Channel A&C eröffnete den Partner Day, danach stellte David Callaghan (Senior Vice President UK, Ireland, Israel) die EMEA-Strategien für das FY13 vor und Jürgen Kunz (SVP Technology Northern Europe & Country Leader Germany) sprach über die Geschäftsmöglichkeiten mit Partnern. Christian Werner gab in seiner neuen Funktion als Senior Director Alliances & Channels Germany einen Überblick über die neue Struktur des Oracle Channels und stellte das deutsche Team vor. Zum Abschluss folgte mit Prof. Hermann Maurer ein Gastredner von der Academia Europaea, einer prominent besetzten akademischen Gesellschaft, die sich dem besseren Verständnis der Wissenschaft in der Öffentlichkeit verschrieben hat. Er wagte einen Blick in die Zukunft der IT: „Das Beste kommt erst noch“. Wie immer, in einem so komprimierten Programm, bleibt noch die eine oder andere Frage – aber jetzt ist ja Zeit, bei Coffee & Networking noch mal nachzufragen. Kurz nach 14 Uhr Viele haben inzwischen auch das erste Obergeschoss erkundet. In der Partner Service Zone ist das Angebot breit gefächert: Von Oracle Financing über das License Management bis hin zu OPN Specialized dreht sich hier alles um konkrete Angebote für Partner. Nach einem kurzen Abstecher in die ISV-Lounge, geht es weiter zur Expert Zone: Oracle Database, Oracle Options, Fusion Middleware, Applications und Oracle Hardware heißen hier die Themen und an den Infoständen wird bereits lautstark gefachsimpelt. Zurück im Erdgeschoss sieht man noch diverse Partner, Oracle Executives und andere Teilnehmer durcheinander wuseln, um ihre Breakout Session zu finden. Andere blättern im druckfrischen A&C Kursbuch. In den nächsten zwei Stunden stehen Business Opportunities im Fokus – aufgeteilt nach Hardware, Technology oder Sales Partnern – dazu noch die Angebote der VADs, die A&C Partner Sessions und das 1:1 Speed Dating. Einige Partner nutzen parallel die angebotenen Implementation Tests, um direkt vor Ort die Zertifizierung zu erhalten. Das doppelte Angebot der Breakouts ermöglicht den Teilnehmern, an möglichst vielen Sessions nacheinander teilzunehmen. Kein Thema soll zu kurz kommen! Ein AusblickWas erwartet uns noch, im Laufe des Nachmittags? Sehr informativ wird sicherlich das Leader Panel, in dem die teilnehmenden Partner Fragen an Oracle Executives stellen können. Wenn dann die ersten Teilnehmer unruhig werden, hat das nichts mit den Themen zu tun. Nein, es steht vielmehr noch ein spannender Höhepunkt bevor: die Partner Award Ceremony (über die wir später ausführlich berichten werden). Nach einer hoffentlich gelungenen Veranstaltung stellt sich zum Schluss nur noch die Frage, was sich genau hinter der „Red Stack Arena Sports Challenge“ verbirgt. Brauchen wir Turnschuhe?

    Read the article

  • VirtualBox 3.2 is released! A Red Letter Day?

    - by Fat Bloke
    Big news today! A new release of VirtualBox packed full of innovation and improvements. Over the next few weeks we'll take a closer look at some of these new features in a lot more depth, but today we'll whet your appetite with the headline descriptions. To start with, we should point out that this is the first Oracle-branded version which makes today a real Red-letter day ;-)  Oracle VM VirtualBox 3.2 Version 3.2 moves VirtualBox forward in 3 main areas ( handily, all beginning with "P" ) : performance, power and supported guest operating system platforms.  Let's take a look: Performance New Latest Intel hardware support - Harnessing the latest in chip-level support for virtualization, VirtualBox 3.2 supports new Intel Core i5 and i7 processor and Intel Xeon processor 5600 Series support for Unrestricted Guest Execution bringing faster boot times for everything from Windows to Solaris guests; New Large Page support - Reducing the size and overhead of key system resources, Large Page support delivers increased performance by enabling faster lookups and shorter table creation times. New In-hypervisor Networking - Significant optimization of the networking subsystem has reduced context switching between guests and host, increasing network throughput by up to 25%. New New Storage I/O subsystem - VirtualBox 3.2 offers a completely re-worked virtual disk subsystem which utilizes asynchronous I/O to achieve high-performance whilst maintaining high data integrity; New Remote Video Acceleration - The unique built-in VirtualBox Remote Display Protocol (VRDP), which is primarily used in virtual desktop infrastructure deployments, has been enhanced to deliver video acceleration. This delivers a rich user experience coupled with reduced computational expense, which is vital when servers are running hundreds of virtual machines; Power New Page Fusion - Traditional Page Sharing techniques have suffered from long and expensive cache construction as pages are scrutinized as candidates for de-duplication. Taking a smarter approach, VirtualBox Page Fusion uses intelligence in the guest virtual machine to determine much more rapidly and accurately those pages which can be eliminated thereby increasing the capacity or vm density of the system; New Memory Ballooning- Ballooning provides another method to increase vm density by allowing the memory of one guest to be recouped and made available to others; New Multiple Virtual Monitors - VirtualBox 3.2 now supports multi-headed virtual machines with up to 8 virtual monitors attached to a guest. Each virtual monitor can be a host window, or be mapped to the hosts physical monitors; New Hot-plug CPU's - Modern operating systems such Windows Server 2008 x64 Data Center Edition or the latest Linux server platforms allow CPUs to be dynamically inserted into a system to provide incremental computing power while the system is running. Version 3.2 introduces support for Hot-plug vCPUs, allowing VirtualBox virtual machines to be given more power, with zero-downtime of the guest; New Virtual SAS Controller - VirtualBox 3.2 now offers a virtual SAS controller, enabling it to run the most demanding of high-end guests; New Online Snapshot Merging - Snapshots are powerful but can eat up disk space and need to be pruned from time to time. Historically, machines have needed to be turned off to delete or merge snapshots but with VirtualBox 3.2 this operation can be done whilst the machines are running. This allows sophisticated system management with minimal interruption of operations; New OVF Enhancements - VirtualBox has supported the OVF standard for virtual machine portability for some time. Now with 3.2, VirtualBox specific configuration data is also stored in the standard allowing richer virtual machine definitions without compromising portability; New Guest Automation - The Guest Automation APIs allow host-based logic to drive operations in the guest; Platforms New USB Keyboard and Mouse - Support more guests that require USB input devices; New Oracle Enterprise Linux 5.5 - Support for the latest version of Oracle's flagship Linux platform; New Ubuntu 10.04 ("Lucid Lynx") - Support for both the desktop and server version of the popular Ubuntu Linux distribution; And as a man once said, "just one more thing" ... New Mac OS X (experimental) - On Apple hardware only, support for creating virtual machines run Mac OS X. All in all this is a pretty powerful release packed full of innovation and speedups. So what are you waiting for?  -FB 

    Read the article

  • Hyper-V Live Migration across Sites!

    - by Ryan Roussel
    One of the great sessions I sat in on at Tech Ed this week was stretching a Windows 2008 R2 Hyper-V  Failover Cluster across sites.  With this ability, you could actually implement a Hyper-V cluster where you could migrate or even Live Migrate VMs across sites.   With this area’s propensity for Hurricanes, this will be a very popular topic for me over the next few months. While this technology is possible today, it’s also very complicated and can be very expensive to implement.    First your WAN connection has to support the ability to trunk your VLAN across both sites in order to Live Migrate.  This means you can’t use a Layer 3 routed connection like MPLS.  It has to be a Metro Ethernet connection or "Dark Fiber”.  Dark Fiber is unused Fiber already in the ground that can be leased from  various providers. Both of these connections would allow you to trunk layer 2 across your WAN.  Cisco does have the ability to trunk layer 2 across a routed connection by muxing the traffic but this is only available in their Nexus product line which has a very steep price tag.   If you are stuck with MPLS or the like and Nexus switching is not a realistic possibility, you will have to implement a multi-subnet cluster in which case Live Migration won’t be possible.  However you can still failover VMs to the remote site with some planning and manual intervention.  The consideration here is that the VMs will be on a different subnet once migrated, so you will have to change the IP addressing of your VMs.  This also has ramifications with DNS and Name resolution to control your down time.  DHCP with Reservations for your VMs is the preferred method to achieve the IP changes as this will automate that part of the process.   Secondly, you will have to have  a mechanism to replicate your storage across both sites.  Many SAN vendors natively support hardware based synchronous and asynchronous replication.  Some even support cluster shared volumes which were introduced in 2008 R2.   If your SANs do not support this natively, there are alternative file based replication products either software based like Double Take or hardware appliance like EMC.  Be sure to check with your vendor on the support of Disk majority if you’re replicating your quorum disk between SANs.   The last consideration is the ability to maintain quorum for your cluster.  If your replication provider does not support Disk Majority through replication, you will have to explore Node Majority with File Share Witness.  This will affect your design as a 3 node cluster with 1 node at the remote site and FSW at the production site would not have the ability to maintain quorum if the production site was lost. MS best practice for this would be to implement an even node cluster with 2 nodes at  each site and the FSW at a third site.   And there you have it.  While some considerations and research goes into implementing this solution, even a multi-subnet solution would be invaluable to organizations in the implementations of “warm” DR sites.

    Read the article

  • Oracle Retail Mobile Point-of-Service

    - by David Dorf
    When most people discuss mobile in retail, they immediately go to shopping applications.  While I agree the consumer side of mobile is huge, I believe its also important to arm store associates with mobile tools.  There are around a dozen major roll-outs of mobile POS to chain retailers, and all have been successful.  This does not, however, signal the demise of traditional registers.  Retailers will adopt mobile POS slowly and reduce the number of fixed registers over time, but there's likely to be a combination of both for the foreseeable future.  Even Apple retains at least one fixed register in every store, you just have to know where to look. The business benefits for mobile POS are pretty straightforward: 1. Faster checkout.  Walmart's CFO recently reported that for every second they shave off the average transaction time, they can potentially save $12M a year in labor.  I think its more likely that labor will be redeployed to enhance the customer experience. 2. Smarter associates.  The sales associates on the floor need the same access to information that consumers have, if not more.  They need ready access to product details, reviews, inventory, etc. to meet consumer expectations.  In a recent study, 40% of consumers said a savvy store associate can impact their final product selection more than a website. 3. Lower costs.  Mobile POS hardware (iPod touch + sled) costs about a fifth of fixed registers, not to mention the reclaimed space that can be used for product displays. But almost all Mobile POS solutions can claim those benefits equally.  Where there's differentiation is on the technical side.  Oracle recently announced availability of the Oracle Retail Mobile Point-of-Service, and it has three big technology advantages in the market: 1. Portable. We used a popular open-source component called PhoneGap that abstracts the app from the underlying OS and hardware so that iOS, Android, and other platforms could be supported.  Further, we used Web technologies such as HTML5 and JavaScript, which are commonly known by many programmers, as opposed to ObjectiveC which is more difficult to find.  The screen can adjust to different form-factors and sizes, just like you see with browsers.  In the future when a new, zippy device gets released, retailers will have the option to move to that device more easily than if they used a native app. 2. Flexible.  Our Mobile POS is free with the Oracle Retail Point-of-Service product.  Retailers can use any combination of fixed and mobile registers, and those ratios can change as required.  Perhaps start with 1 mobile and 4 fixed per store, then transition over time to 4 mobile and 1 fixed without any additional software licenses.  Our scalable solution supports lots of combinations. 3. Consistent.  Because our Mobile POS is fully integrated to our traditional POS, the same business logic is reused.  Third-party Mobile POS solutions often handle pricing, promotions, and tax calculations separately leading to possible inconsistencies within the store.  That won't happen with Oracle's solution. For many retailers, Mobile POS can lower costs, increase customer service, and generally enhance a consumer's in-store experience.  Apple led the way, but lots of other retailers are discovering the many benefits of adding mobile capabilities in their stores.  Just be sure to examine both the business and technology benefits so you get the most value from your solution for the longest period of time.

    Read the article

< Previous Page | 181 182 183 184 185 186 187 188 189 190 191 192  | Next Page >