Search Results

Search found 1204 results on 49 pages for 'agile'.

Page 19/49 | < Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >

  • Playing with http page cycle using JustMock

    - by mehfuzh
    In this post , I will cover a test code that will mock the various elements needed to complete a HTTP page request and  assert the expected page cycle steps. To begin, i have a simple enumeration that has my predefined page steps: public enum PageStep {     PreInit,     Load,     PreRender,     UnLoad } Once doing so, i  first created the page object [not mocking]. Page page = new Page(); Here, our target is to fire up the page process through ProcessRequest call, now if we take a look inside the method with reflector.net,  the call trace will go like : ProcessRequest –> ProcessRequestWithNoAssert –> SetInstrinsics –> Finallly ProcessRequest. Inside SetInstrinsics ,  it requires calls from HttpRequest, HttpResponse and HttpBrowserCababilities. With this clue at hand, we can easily know the classes / calls  we need to mock in order to get through the expected call. Accordingly, for  HttpBrowserCapabilities our required test code will look like: Mock.Arrange(() => browser.PreferredRenderingMime).Returns("text/html"); Mock.Arrange(() => browser.PreferredResponseEncoding).Returns("UTF-8"); Mock.Arrange(() => browser.PreferredRequestEncoding).Returns("UTF-8"); Now, HttpBrowserCapabilities is get though [Instance]HttpRequest.Browser. Therefore, we create the HttpRequest mock: var request = Mock.Create<HttpRequest>(); Then , add the required get call : Mock.Arrange(() => request.Browser).Returns(browser); As, [instance]Browser.PerferrredResponseEncoding and [instance]Browser.PreferredResponseEncoding  are also set to the request object and to make that they are set properly, we can add the following lines as well [not required though]. bool requestContentEncodingSet = false; Mock.ArrangeSet(() => request.ContentEncoding = Encoding.GetEncoding("UTF-8")).DoInstead(() =>  requestContentEncodingSet = true); Similarly, for response we can write:  var response = Mock.Create<HttpResponse>();    bool responseContentEncodingSet = false;  Mock.ArrangeSet(() => response.ContentEncoding = Encoding.GetEncoding("UTF-8")).DoInstead(() => responseContentEncodingSet = true); Finally , I created a mock of HttpContext and set the Request and Response properties that will returns the mocked version. var context = Mock.Create<HttpContext>();   Mock.Arrange(() => context.Request).Returns(request); Mock.Arrange(() => context.Response).Returns(response); As, Page internally calls RenderControl method , we just need to replace that with our one and optionally we can check if  invoked properly: bool rendered = false; Mock.Arrange(() => page.RenderControl(Arg.Any<HtmlTextWriter>())).DoInstead(() => rendered = true); That’s  it, the rest of the code is simple,  where  i asserted the page cycle with the PageSteps that i defined earlier: var pageSteps = new Queue<PageStep>();   page.PreInit +=      delegate      {          pageSteps.Enqueue(PageStep.PreInit);      }; page.Load +=      delegate      {          pageSteps.Enqueue(PageStep.Load);      };   page.PreRender +=      delegate      {          pageSteps.Enqueue(PageStep.PreRender);      };   page.Unload +=      delegate      {          pageSteps.Enqueue(PageStep.UnLoad);      };   page.ProcessRequest(context);    Assert.True(requestContentEncodingSet);  Assert.True(responseContentEncodingSet);  Assert.True(rendered);    Assert.Equal(pageSteps.Dequeue(), PageStep.PreInit);  Assert.Equal(pageSteps.Dequeue(), PageStep.Load);  Assert.Equal(pageSteps.Dequeue(), PageStep.PreRender);  Assert.Equal(pageSteps.Dequeue(), PageStep.UnLoad);    Mock.Assert(request);  Mock.Assert(response);   You can get the test class shown in this post here to give a try by yourself with of course JustMock :-).   Enjoy!!

    Read the article

  • Testing Workflows &ndash; Test-After

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-after.aspxIn this post I’m going to outline a few common methods that can be used to increase the coverage of of your test suite.  This won’t be yet another post on why you should be doing testing; there are plenty of those types of posts already out there.  Assuming you know you should be testing, then comes the problem of how do I actual fit that into my day job.  When the opportunity to automate testing comes do you take it, or do you even recognize it? There are a lot of ways (workflows) to go about creating automated tests, just like there are many workflows to writing a program.  When writing a program you can do it from a top-down approach where you write the main skeleton of the algorithm and call out to dummy stub functions, or a bottom-up approach where the low level functionality is fully implement before it is quickly wired together at the end.  Both approaches are perfectly valid under certain contexts. Each approach you are skilled at applying is another tool in your tool belt.  The more vectors of attack you have on a problem – the better.  So here is a short, incomplete list of some of the workflows that can be applied to increasing the amount of automation in your testing and level of quality in general.  Think of each workflow as an opportunity that is available for you to take. Test workflows basically fall into 2 categories:  test first or test after.  Test first is the best approach.  However, this post isn’t about the one and only best approach.  I want to focus more on the lesser known, less ideal approaches that still provide an opportunity for adding tests.  In this post I’ll enumerate some test-after workflows.  In my next post I’ll cover test-first. Bug Reporting When someone calls you up or forwards you a email with a vague description of a bug its usually standard procedure to create or verify a reproduction plan for the bug via manual testing and log that in a bug tracking system.  This can be problematic.  Often reproduction plans when written down might skip a step that seemed obvious to the tester at the time or they might be missing some crucial environment setting. Instead of data entry into a bug tracking system, try opening up the test project and adding a failing unit test to prove the bug.  The test project guarantees that all aspects of the environment are setup properly and no steps are missing.  The language in the test project is much more precise than the English that goes into a bug tracking system. This workflow can easily be extended for Enhancement Requests as well as Bug Reporting. Exploratory Testing Exploratory testing comes in when you aren’t sure how the system will behave in a new scenario.  The scenario wasn’t planned for in the initial system requirements and there isn’t an existing test for it.  By definition the system behaviour is “undefined”. So write a new unit test to define that behaviour.  Add assertions to the tests to confirm your assumptions.  The new test becomes part of the living system specification that is kept up to date with the test suite. Examples This workflow is especially good when developing APIs.  When you are finally done your production API then comes the job of writing documentation on how to consume the API.  Good documentation will also include code examples.  Don’t let these code examples merely exist in some accompanying manual; implement them in a test suite. Example tests and documentation do not have to be created after the production API is complete.  It is best to write the example code (tests) as you go just before the production code. Smoke Tests Every system has a typical use case.  This represents the basic, core functionality of the system.  If this fails after an upgrade the end users will be hosed and they will be scratching their heads as to how it could be possible that an update got released with this core functionality broken. The tests for this core functionality are referred to as “smoke tests”.  It is a good idea to have them automated and run with each build in order to avoid extreme embarrassment and angry customers. Coverage Analysis Code coverage analysis is a tool that reports how much of the production code base is exercised by the test suite.  In Visual Studio this can be found under the Test main menu item. The tool will report a total number for the code coverage, which can be anywhere between 0 and 100%.  Coverage Analysis shouldn’t be used strictly for numbers reporting.  Companies shouldn’t set minimum coverage targets that mandate that all projects must have at least 80% or 100% test coverage.  These arbitrary requirements just invite gaming of the coverage analysis, which makes the numbers useless. The analysis tool will break down the coverage by the various classes and methods in projects.  Instead of focusing on the total number, drill down into this view and see which classes have high or low coverage.  It you are surprised by a low number on a class this is an opportunity to add tests. When drilling through the classes there will be generally two types of reaction to a surprising low test coverage number.  The first reaction type is a recognition that there is low hanging fruit to be picked.  There may be some classes or methods that aren’t being tested, which could easy be.  The other reaction type is “OMG”.  This were you find a critical piece of code that isn’t under test.  In both cases, go and add the missing tests. Test Refactoring The general theme of this post up to this point has been how to add more and more tests to a test suite.  I’ll step back from that a bit and remind that every line of code is a liability.  Each line of code has to be read and maintained, which costs money.  This is true regardless whether the code is production code or test code. Remember that the primary goal of the test suite is that it be easy to read so that people can easily determine the specifications of the system.  Make sure that adding more and more tests doesn’t interfere with this primary goal. Perform code reviews on the test suite as often as on production code.  Hold the test code up to the same high readability standards as the production code.  If the tests are hard to read then change them.  Look to remove duplication.  Duplicate setup code between two or more test methods that can be moved to a shared function.  Entire test methods can be removed if it is found that the scenario it tests is covered by other tests.  Its OK to delete a test that isn’t pulling its own weight anymore. Remember to only start refactoring when all the test are green.  Don’t refactor the tests and the production code at the same time.  An automated test suite can be thought of as a double entry book keeping system.  The unchanging, passing production code serves as the tests for the test suite while refactoring the tests. As with all refactoring, it is best to fit this into your regular work rather than asking for time later to get it done.  Fit this into the standard red-green-refactor cycle.  The refactor step no only applies to production code but also the tests, but not at the same time.  Perhaps the cycle should be called red-green-refactor production-refactor tests (not quite as catchy).   That about covers most of the test-after workflows I can think of.  In my next post I’ll get into test-first workflows.

    Read the article

  • What software development process should I learn first for a solo project?

    - by Omar Kohl
    I want to develop a project on my own (if it is sucessful more people might start working on it too). Also I want to apply some proper software engineering from the first until the last day. On one hand just to try it out and compare results with previous projects that were just about writing code quick and dirty, and on the other hand to learn! I know the proper answer to this question is "It depends very much on the project...", "There is no single correct answer...". But I just need someplace to start, somewhere where every step is written down and tells me what to do. If I'm not happy next time I'll try something else. So, how/where should I start? I would love to hear some book suggestions cause I'm all about books :-D.

    Read the article

  • wave-vs.net

    - by Sean Feldman
    This is an interesting plug-in for VS.NET 2008/2010 to allow remote pair-programming. I’m a big advocate for pair-programming and collaborative work, so this plug-in has its place in the real world. I used to pair-program with a developer that was remote, and we used VNC/RDC, but this one is way better.

    Read the article

  • DRY and SRP

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/06/11/dry-and-srp.aspxKent Beck’s XP Simplicity Rules (aka Four Rules of Simple Design) are a prioritized list of rules that when applied to your code generally yield a great design.  As you’ll see from the above link the list has slightly evolved over time.  I find today they are usually listed as: All Tests Pass Don’t Repeat Yourself (DRY) Express Intent Minimalistic These are prioritized.  If your code doesn’t work (rule 1) then everything else is forfeit.  Go back to rule one and get the code working before worrying about anything else. Over the years the community have debated whether the priority of rules 2 and 3 should be reversed.  Some say a little duplication in the code is OK as long as it helps express intent.  I’ve debated it myself.  This recent post got me thinking about this again, hence this post.   I don’t think it is fair to compare “Expressing Intent” against “DRY”.  This is a comparison of apples to oranges.  “Expressing Intent” is a principal of code quality.  “Repeating Yourself” is a code smell.  A code smell is merely an indicator that there might be something wrong with the code.  It takes further investigation to determine if a violation of an underlying principal of code quality has actually occurred. For example “using nouns for method names”, “using verbs for property names”, or “using Booleans for parameters” are all code smells that indicate that code probably isn’t doing a good job at expressing intent.  They are usually very good indicators.  But what principle is the code smell of Duplication pointing to and how good of an indicator is it? Duplication in the code base is bad for a couple reasons.  If you need to make a change and that needs to be made in a number of locations it is difficult to know if you have caught all of them.  This can lead to bugs if/when one of those locations is overlooked.  By refactoring the code to remove all duplication there will be left with only one place to change, thereby eliminating this problem. With most projects the code becomes the single source of truth for a project.  If a production code base is inconsistent with a five year old requirements or design document the production code that people are currently living with is usually declared as the current reality (or truth).  Requirement or design documents at this age in a project life cycle are usually of little value. Although comparing production code to external documentation is usually straight forward, duplication within the code base muddles this declaration of truth.  When code is duplicated small discrepancies will creep in between the two copies over time.  The question then becomes which copy is correct?  As different factions debate how the software should work, trust in the software and the team behind it erodes. The code smell of Duplication points to a violation of the “Single Source of Truth” principle.  Let me define that as: A stakeholder’s requirement for a software change should never cause more than one class to change. Violation of the Single Source of Truth principle will always result in duplication in the code.  However, the inverse is not always true.  Duplication in the code does not necessarily indicate that there is a violation of the Single Source of Truth principle. To illustrate this, let’s look at a retail system where the system will (1) send a transaction to a bank and (2) print a receipt for the customer.  Although these are two separate features of the system, they are closely related.  The reason for printing the receipt is usually to provide an audit trail back to the bank transaction.  Both features use the same data:  amount charged, account number, transaction date, customer name, retail store name, and etcetera.  Because both features use much of the same data, there is likely to be a lot of duplication between them.  This duplication can be removed by making both features use the same data access layer. Then start coming the divergent requirements.  The receipt stakeholder wants a change so that the account number has the last few digits masked out to protect the customer’s privacy.  That can be solve with a small IF statement whilst still eliminating all duplication in the system.  Then the bank wants to take a picture of the customer as well as capture their signature and/or PIN number for enhanced security.  Then the receipt owner wants to pull data from a completely different system to report the customer’s loyalty program point total. After a while you realize that the two stakeholders have somewhat similar, but ultimately different responsibilities.  They have their own reasons for pulling the data access layer in different directions.  Then it dawns on you, the Single Responsibility Principle: There should never be more than one reason for a class to change. In this example we have two stakeholders giving two separate reasons for the data access class to change.  It is clear violation of the Single Responsibility Principle.  That’s a problem because it can often lead the project owner pitting the two stakeholders against each other in a vein attempt to get them to work out a mutual single source of truth.  But that doesn’t exist.  There are two completely valid truths that the developers need to support.  How is this to be supported and honour the Single Responsibility Principle?  The solution is to duplicate the data access layer and let each stakeholder control their own copy. The Single Source of Truth and Single Responsibility Principles are very closely related.  SST tells you when to remove duplication; SRP tells you when to introduce it.  They may seem to be fighting each other, but really they are not.  The key is to clearly identify the different responsibilities (or sources of truth) over a system.  Sometimes there is a single person with that responsibility, other times there are many.  This can be especially difficult if the same person has dual responsibilities.  They might not even realize they are wearing multiple hats. In my opinion Single Source of Truth should be listed as the second rule of simple design with Express Intent at number three.  Investigation of the DRY code smell should yield to the proper application SST, without violating SRP.  When necessary leave duplication in the system and let the class names express the different people that are responsible for controlling them.  Knowing all the people with responsibilities over a system is the higher priority because you’ll need to know this before you can express it.  Although it may be a code smell when there is duplication in the code, it does not necessarily mean that the coder has chosen to be expressive over DRY or that the code is bad.

    Read the article

  • How do I convince my team that a requirements specification is unnecessary if we adopt user-stories?

    - by Nupul
    We are planning to adopt user-stories to capture stakeholder 'intent' in a lightweight fashion rather than a heavy SRS (software requirements specifications). However, it seems that though they understand the value of stories, there is still a desire to 'convert' the stories into an SRS-like language with all the attributes, priorities, input, outputs, source, destination etc. User-stories 'eliminate' the need for a formal SRS like artifact to begin with so what's the point in having an SRS? How should I convince my team (who are all very qualified CS folks by the way - both by education and practice) that the SRS would be 'eliminated' if we adopted user-stories for capturing the functional requirements of the system? (NFRs etc can be captured too, but that's not the intent of the question). So here's my 'work-flow' argument: Capture initial requirements as user-stories and later elaborate them to use-cases (which are required to be documented at a low level i.e. describing interactions with the UI prototypes/mockups and are a deliverable post deployment). Thus going from user-stories to use-cases rather than user-stories to SRS to use-cases. How are you all currently capturing user-stories at your workplace (if at all) and how do you suggest I 'make a case' for absence of SRS in presence of user-stories?

    Read the article

  • How to measure the right time to bring a new client?

    - by Byron Sommardahl
    My growing company has a team of developers working on a number of separate projects. Our developers depend on us to keep them working, and we depend on them to make our clients happy. Our projects have differing start and end dates, as you can imagine. The company's responsibility to the developers is to make sure we have clients waiting in the wings so that when one project ends, another can start. For now, finding clients is not a problem and not the topic of this question. What I'm trying to think through right now is, how can I best measure/view/evaluate the end dates of projects so that I know when I need to start courting the next client. Is there a tool that does this? If it's just a spreadsheet, what might it look like?

    Read the article

  • Mocking property sets

    - by mehfuzh
    In this post, i will be showing how you can mock property sets with your expected values or even action using JustMock. To begin, we have a sample interface: public interface IFoo {     int Value { get; set; } } Now,  we can create a mock that will throw on any call other than the one expected, generally its a strict mock and we can do it like: bool expected = false;  var foo = Mock.Create<IFoo>(BehaviorMode.Strict);  Mock.ArrangeSet(() => { foo.Value = 1; }).DoInstead(() => expected  = true);    foo.Value = 1;    Assert.True(expected); Here , the method for running though our expectation for set is Mock.ArrangeSet , where we can directly set our expectations or can even set matchers into it like: var foo = Mock.Create<IFoo>(BehaviorMode.Strict);   Mock.ArrangeSet(() => foo.Value = Arg.Matches<int>(x => x > 3));   foo.Value = 4; foo.Value = 5;   Assert.Throws<MockException>(() => foo.Value = 3);   In the example, any set for value not satisfying matcher expression will throw an MockException as this is a strict mock but what will be the case for loose mocks, where we also have to assert it. Here, let’s take an interface with an indexed property. Indexers are treated in the same way as properties, as with basic indexers let you access your class if it were an array. public interface IFooIndexed {     string this[int key] { get; set; } } We want to  setup a value for a particular index,  we then will pass that mock to some implementer where it will be actually called. Once done, we want to assert that if it has been invoked properly. var foo = Mock.Create<IFooIndexed>();   Mock.ArrangeSet(() => foo[0] = "ping");   foo[0] = "ping";   Mock.AssertSet(() => foo[0] = "ping"); In the above example, both the values are user defined, it might happen that we want to make it more dynamic, In this example, i set it up for set with any value and finally checked if it is set with the one i am looking for. var foo = Mock.Create<IFooIndexed>();   Mock.ArrangeSet(() => foo[0] = Arg.Any<string>());   foo[0] = "ping";   Mock.AssertSet(() => foo[0] = Arg.Matches<string>(x => string.Compare("ping", x) == 0)); This is more or less of mocking user sets , but we can further have it to throw exception or even do our own task for a particular set , like : Mock.ArrangeSet(() => foo.MyProperty = 10).Throws(new ArgumentException()); Or  bool expected = false;  var foo = Mock.Create<IFoo>(BehaviorMode.Strict);  Mock.ArrangeSet(() => { foo.Value = 1; }).DoInstead(() => expected  = true);    foo.Value = 1;    Assert.True(expected); Or call the original setter , in this example it will throw an NotImplementedExpectation var foo = Mock.Create<FooAbstract>(BehaviorMode.Strict); Mock.ArrangeSet(() => { foo.Value = 1; }).CallOriginal(); Assert.Throws<NotImplementedException>(() => { foo.Value = 1; });   Finally, try all these, find issues, post them to forum and make it work for you :-). Hope that helps,

    Read the article

  • Solutions for Project management [closed]

    - by user14416
    The team consists of 3 people. The method of development is Scrum. The language of the project is C++. The project will be under the control of the git system. The start up budget is 0. The following things have to be chosen: Build and Version Numbering Project documentation ( file with the most common info for current stage of the project, which will be changed every time the new version or subversion of the project emerges ) Project management tool ( like Trac or Redmine, I cannot use them, because there is no hosting ) Code documentation ( I consider Doxygen ) The following questions have arisen: What can you add to the above list of the main solutions for project management in the described project? One of three project participants has linux os (No MS Office), one has Windows and MS Office (does not want to use Libre or Open Office), one has Windows, but does not have MS Office. What formats, tools can u suggest using for project documentation? The variant of using online wiki does not fit, it must be files. OneNote mb is a good tool for project management, but because of the reason mentioned above it is not possible. What can you advise? Offer a system for Build and Version Numbering.

    Read the article

  • Behavior-Driven Development / Use case diagram

    - by Mik378
    Regarding growing of Behavior-Driven Development imposing acceptance testing, are use cases diagram useful or do they lead to an "over-documentation"? Indeed, acceptance tests representing specifications by example, as use cases promote despite of a more generic manner (since cases, not scenarios), aren't they too similar to treat them both at the time of a newly created project? From this link, one opinion is: Another realization I had is that if you do UseCases and automated AcceptanceTests you are essentially doubling your work. There is duplication between the UseCases and the AcceptanceTests. I think there is a good case to be made that UserStories + AcceptanceTests are more efficient way to work when compared to UseCases + AcceptanceTests. What to think about?

    Read the article

  • Learning PostgreSql: Functions and refcursors

    - by Alexander Kuznetsov
    In this post we shall create a function that returns data, and invoke it from our C# client. There are no stored procedures in PostgreSql, only functions. This is different from T-SQL, but consistent with many other languages, such as C#. Creating a function Functions can return many different types. Learning all the available options might take some time. However, for the project we are working on, we need to replicate several T-SQL stored procedures which take column list as a parameter, and use...(read more)

    Read the article

  • When to do Code Review

    - by mcass20
    We have recently moved to a scrum process and are working on tasks and user stories inside of sprints. We would like to do code reviews frequently to make them less daunting. We are thinking that doing them on a user story level but are unsure how to branch our code to account for this. We are using VS and TFS 2010 and we are a team of 6. We currently branch for features but are working on changing to branching for scrum. We do not currently use shelvesets and don't really want to implement if there are other techniques available. How do you recommend we implement code review per user story?

    Read the article

  • Extreme Programming Dying? [closed]

    - by jonny
    Is Extreme Programming Dying? I've been reviewing my fellow students reports on extreme programming.(I am a student myself) Some students are claiming that extreme programming lacks in empirical evidences, and is relevantly new, hence lacking in empirical evidence. XP is already 13 years old it should be considered as new, from my perspective. I guess the practices of XP has been tweaked and used in newer methodologies such as scrum. What are your point of view on this, do you guys think XP is Dying?

    Read the article

  • Mscorlib mocking minus the attribute

    - by mehfuzh
    Mocking .net framework members (a.k.a. mscorlib) is always a daunting task. It’s the breed of static and final methods and full of surprises. Technically intercepting mscorlib members is completely different from other class libraries. This is the reason it is dealt differently. Generally, I prefer writing a wrapper around an mscorlib member (Ex. File.Delete(“abc.txt”)) and expose it via interface but that is not always an easy task if you already have years old codebase. While mocking mscorlib members first thing that comes to people’s mind is DateTime.Now. If you Google through, you will find tons of example dealing with just that. May be it’s the most important class that we can’t ignore and I will create an example using JustMock Q2 with the same. In Q2 2012, we just get rid of the MockClassAtrribute for mocking mscorlib members. JustMock is already attribute free for mocking class libraries. We radically think that vendor specific attributes only makes your code smelly and therefore decided the same for mscorlib. Now, I want to fake DateTime.Now for the following class: public class NestedDateTime { public DateTime GetDateTime() { return DateTime.Now; } } It is the simplest one that can be. The first thing here is that I tell JustMock “hey we have a DateTime.Now in NestedDateTime class that we want to mock”. To do so, during the test initialization I write this: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Mock.Replace(() => DateTime.Now).In<NestedDateTime>(x => x.GetDateTime());.csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I can also define it for all the members in the class, but that’s just a waste of extra watts. Mock.Replace(() => DateTime.Now).In<NestedDateTime>(); Now question, why should I bother doing it? The answer is that I am not using attribute and with this approach, I can mock any framework members not just File, FileInfo or DateTime. Here to note that we already mock beyond the three but when nested around a complex class, JustMock was not intercepting it correctly. Therefore, we decided to get rid of the attribute altogether fixing the issue. Finally, I write my test as usual. [TestMethod] public void ShouldAssertMockingDateTimeFromNestedClass() { var expected = new DateTime(2000, 1, 1); Mock.Arrange(() => DateTime.Now).Returns(expected); Assert.Equal(new NestedDateTime().GetDateTime(), expected); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s it, we are good. Now let me do the same for a random one, let’s say I want mock a member from DriveInfo: Mock.Replace<DriveInfo[]>(() => DriveInfo.GetDrives()).In<MsCorlibFixture>(x => x.ShouldReturnExpectedDriveWhenMocked()); Moving forward, I write my test: [TestMethod] public void ShouldReturnExpectedDriveWhenMocked() { Mock.Arrange(() => DriveInfo.GetDrives()).MustBeCalled(); DriveInfo.GetDrives(); Mock.Assert(()=> DriveInfo.GetDrives()); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here is one convention; you have to replace the mscorlib member before executing the target method that contains it. Here the call to DriveInfo is within the MsCorlibFixture therefore it should be defined during test initialization or before executing the test method. Hope this gives you the idea.

    Read the article

  • What are the boundaries of the product owner in scrum?

    - by Saeed Neamati
    In another question, I asked about why I feel scrum turns active developers into passive developers, and it seems that the overall problem is not scrumy (related to scrum), and rather it's related to the bad implementation of scrum. So, here I have some questions about the scope of the responsibilities of PO (product owner) and the limitations he/she shouldn't pass. Should PO interfere the UI design, when there are designers at work in scrum team? (an example of this which has happened to us, is to replace checkboxes with a drop down list with two items, namely, yes and no; or to make some boxes larger, or to left-align some content instead of centering them on the page, or stuff like that). If yeah, to what extent? Colors? Layout? Should PO interfere in Design and architecture of coding? This hasn't happened to us yet, but I'm really curious about the boundaries. For example does PO has the right to change the platform (moving from ASP.NET MVC to PHP, or something like that), or choosing the count of servers (tier architecture), etc. Should PO interfere in validation mechanisms? For example, this field should be required, or we don't need to get this piece of information from user. Sometimes, analyzers and designers confirm that something can be handled behind the scene, like extracting the user profile info from another source, instead of asking for it in UI. How granular could/should PO get into the analysis and design? For example, a user story might be: "As a customer, I'd like to be able to buy new domains online". However, scrum team can implement this user story in a wizard of five steps, or in one single page. To which level PO should monitor, or govern, or supervise the technical analysis, design, and implementation? I asked these questions to judge whether our implementation is right or wrong?

    Read the article

  • Requirements/issue tracker similar to online spreadsheet

    - by Maxim Eliseev
    Is there a requirements/issue tracker software which is similar to Google spreadsheet? We have Fogbugz but I find it more heavyweight and slow than a simple spreadsheet. Is there a Fogbugz alternative which is - fast - can show issues/requirements as a spreadsheet (at) and allows in-place editing - supports tree structures (where issue can have child issues)? It is required for a small project. There will be 2 developers and 1-2 other users. I guess that only one user will be actively maintaining it. UPDATE I do not say that a spreadsheet is better than Fogbugz or similar tools. In fact I am looking for a tool which is similar to Fogbugz and could replace a spreadsheet, but faster than Fogbugz and has an additional feature (table-like mode). I'd like to find a tool which can operate in a mode which looks like a table (one row per issue) but has a rich set features (similar to Fogbugs and JIRA). I find Fogbugz (and similar tools) inconvenient because I must enter the web form in order to edit anything. In-place editing (when issues are shown as a table) would be much faster.

    Read the article

  • Working with multiple interfaces on a single mock.

    - by mehfuzh
    Today , I will cover a very simple topic, which can be useful in cases we want to mock different interfaces on our expected mock object.  Our target interface is simple and it looks like:   public interface IFoo : IDisposable {     void Do(); } Now, as we can see that our target interface has implemented IDisposable and in normal cases if we have to implement it in class where language rules require use to implement that as well[no doubt about it] and whether or not there can be more complex cases, we want to ensure that rather having an extra call(..As()) or constructs to prepare it for us, we should do it in the simplest way possible. Therefore, keeping that in mind, first we create a mock of IFoo var foo = Mock.Create<IFooDispose>(); Then, as we are interested with IDisposable, we simply do: var iDisposable = foo as IDisposable;   Finally, we proceed with our existing mock code. Considering the current context, we I will check if the dispose method has invoked our mock code successfully.   bool called = false;   Mock.Arrange(() => iDisposable.Dispose()).DoInstead(() => called = true);     iDisposable.Dispose();   Assert.True(called);   Further, we assert our expectation as follows: Mock.Assert(() => iDisposable.Dispose(), Occurs.Once());   Hopefully that will help a bit and stay tuned. Enjoy!!

    Read the article

  • Is writing software in the absence of requirements a skill to possess or a situation I should avoid?

    - by Brian Reindel
    I find that some software developers are very adept at this, and often times are praised for their ability to deliver a working concept with abstract requirements. Frankly, this drives me crazy, and I don't like "making it up" as I go. I used to think this was problematic, but I've started to sense a shift, and I'm wondering if I need to adjust my thought (and programming) process when given very little direction. Should I begin to acquire this ability as a skill, or stick to the idea that requirement's gathering and business rules are the first priority?

    Read the article

  • What is 'work' in the Pomodoro Technique?

    - by Sachin Kainth
    I have just started to use Pomodoro today and I am trying to work out what I should and should not do during my 25 minute work time. For my 25 minute work stint I started to write some code and realised that I had done something similar in a related project so I opened that solution to copy and paste that existing code. Question is, is this allowed? Also, if during my 25 minutes I realise that there is an important work-related email that I need to send can I do that or should that wait for the next 25 minutes or the break. I am writing this question during my, now extended, 5 minute break. Is this work or is it a break? I really would appreciate some guidance as I really want to use Pomodoro to focus better on my work. Another thing that happened to me was that a Adobe AIR update alert came up on my desktop during the 25 minutes. Should I ignore such things until the break? Sachin

    Read the article

  • One-week release cycle: how do I make this feasible?

    - by Arkaaito
    At my company (3-yr-old web industry startup), we have frequent problems with the product team saying "aaaah this is a crisis patch it now!" (doesn't everybody?) This has an impact on the productivity (and morale) of engineering staff, self included. Management has spent some time thinking about how to reduce the frequency of these same-day requests and has come up with the solution that we are going to have a release every week. (Previously we'd been doing one every two weeks, which usually slipped by a couple of days or so.) There are 13 developers and 6 local / 9 offshore testers; the theory is that only 4 developers (and all testers) will work on even-numbered releases, unless a piece of work comes up that really requires some specific expertise from one of the other devs. Each cycle will contain two days of dev work and two days of QA work (plus 1 day of scoping / triage / ...). My questions are: (a) Does anyone have experience with this length of release cycle? (b) Has anyone heard of this length of release cycle even being attempted? (c) If (a) or (b), how on Earth do you make it work? (Any pitfalls to avoid, etc., are also appreciated.) (d) How can we minimize the damage if this effort fails?

    Read the article

  • How to handle estimates for programmers joining the team?

    - by Jordan
    Iteration has already started, new programmer joins the team, task X has already been estimated to be 30 hours by a different developer. What is the best practice in this situation? new developer runs with the given estimate (the idea being that any discrepancy will be corrected for when velocity is calculated?) new developer re-estimates task? (if so, what if it's significantly higher and no longer fits in the iteration?) throw our hands up and go back to waterfall? something else entirely?

    Read the article

  • How to guide stakeholder(s) not to get far from the scrum vision?

    - by Saeed Neamati
    Consider this scenario: Stakeholder(s): Let's build a web application to manage user's financial data. Scrum team: Ok, let's do it. . . . After 3 sprints Stakeholder(s): Let's also implement a mailing system, so that when user's financial status is not good, (s)he would be warned. Scrum team: Ok, it's not that hard. We'll do it. . . . After 5 sprints Stakholder(s): Let's become a mailing provider. Here, how should scrum team guide stakeholder to stay inside the scope of scrum vision? Maybe a more fundamental question is, should the at all? Update: Of course there is a product owner. But by scrum team I meant PO, SM, and Team.

    Read the article

  • How can I get the business analysts more involved in BDD?

    - by Robert S.
    I am a proponent of Behavior Driven Development, mainly with Cucumber and RSpec, and at my current gig (a Microsoft shop) I am introducing SpecFlow as a tool to help with testing. I'd like to get the business analysts on my team involved in writing the features and scenarios, but they are put off by the "technical" aspect of it, meaning creating the files in Visual Studio (or even having Visual Studio on their machines). They want to know if we can put all the scenarios for a feature in Jira. What I'm looking for is suggestions for a workflow that will work well with BA types that are accustomed to project management/work tracking tools like Jira (we also use Greenhopper).

    Read the article

  • What relationship do software Scrum or Lean have to industrial engineering concepts like theory of constraints?

    - by DeveloperDon
    In Scrum, work is delivered to customers through a series of sprints in which project work is time boxed to a fixed number of days or weeks, usually 30 days. In lean software development, the goal is to deliver as soon as possible, permitting early feedback for the next iteration. Both techniques stress the importance of workflow in which software work product does not accumulate in development awaiting release at some future date. Both permit new or refined requirements and feedback from QA and customers to be acted on with as little delay as possible based on priority. A few years ago I heard a lecture where the speaker talked briefly about a family of concepts from industrial engineering called theory of constraints. In the factory, they use an operations model based on three components: drum, buffer, and rope. The drum synchronizes work product as it flows through the system. Buffers that protect the system by holding output from one stage as it waits to be consumed by the next. The rope pulls product from one work station to the next. Historically, are these ideas part of the heritage of Scrum and Lean, or are they on a separate track? It we wanted to think about Scrum and Lean in terms of drum-buffer-rope, what are the parts? Drum = {daily scrum meeting, monthly release)? Buffer = {burn down list, source control system)? Rope = { daily meeting, constant integration server, monthly releases}? Industrial engineers define work flow in terms of different kinds of factories. I-Factories: straight pipeline. One input, one output. A-Factories: many inputs and one output. V-Factories: one input, many output products. T-Plants: many inputs, many outputs. If it applies, what kind of factory is most like Scrum or Lean and why?

    Read the article

  • Running Objects – Associations and Relationships

    - by edurdias
    After the introduction to the Running Objects with the tutorial Movie Database in 2 Minutes (available here), I would like to demonstrate how Running Objects interprets the Associations where we will cover: Direct Association – A reference to another complex object. Aggregation – A collection of another complex object. For those coming with a database perspective, by demonstrating these associations we will also exemplify the underline relationships such as 1 to Many and Many to Many relationships...(read more)

    Read the article

< Previous Page | 15 16 17 18 19 20 21 22 23 24 25 26  | Next Page >