Search Results

Search found 16894 results on 676 pages for 'private members'.

Page 191/676 | < Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >

  • seriouosly elusive for loop (racking my brains!)

    - by user1693359
    I've got a loop issue in Python 2.72 that's really frustrating me. Basically the loop is not iterating fast the first index (j), and I've tried all sorts of ways to fix it with no luck. def learn(dataSet): for i in dataSet.getNext(): recall = raw_input("Enter all members of %s you are able to recall >>> (separated by commas) " % (i.getName())) missed = i.getMembers() missedString = [] for a in missed: missedString.append(a.getName()) Here is the loop I can't get to iterate. The first for loop only goes through the first iteration of 'j' in the split string list, then removes it from 'missedString'. I would like for all members of the split-string 'recall' to be removed from 'missedString'. for j in string.split(recall, ','): if j in missedString: missedString.remove(j) continue for b in missed: if b.getName() not in missedString: missed.remove(b) print 'You missed %d. ' % (len(missed)) if (len(missed)) > 0: print 'Maybe a hint or two will help...' for miss in missed: remind(miss.getSecs(), i.getName(), missed) I really have no clue, help would be appreciated!

    Read the article

  • PHP & MySQL delete image link problem

    - by IMAGE
    I'm trying to create a delete image link if the image is present and when the user clicks the delete image link it should delete the image. But for some reason this is not working can someone help me fix the delete image link problem? Thanks! Here is the PHP code. if (isset($_POST['delete_image'])) { $img_dir = "../members/" . $user_id . "/images/thumbs/"; $img_thmb = "../members/" . $user_id . "/images/"; $image_name = $row['image']; if(file_exists($img_dir . $image_name)){ if(unlink($img_dir.$image_name) && unlink($img_thmb.$image_name)){ $mysqli = mysqli_connect("localhost", "root", "", "sitename"); $dbc = mysqli_query($mysqli, "DELETE FROM users* WHERE image_id = '.$image_id.' AND user_id = '$user_id'"); }else{ echo '<p class="error">Sorry unable to delete image file!</p>'; } } } if(isset($_POST['image']) || !empty($image)) { echo '<a href="'. $_POST['delete_image'] .'">Delete Image</a>'; }

    Read the article

  • JS best practice for member functions

    - by MickMalone1983
    I'm writing a little mobile games library, and I'm not sure the best practice for declaring member functions of instantiated function objects. For instance, I might create a simple object with one property, and a method to print it: function Foo(id){ this.id = id; this.print = function(){ console.log(this.id); }; }; However, a function which does not need access to 'private' members of the function does not need to be declared in the function at all. I could equally have written: function print(){ console.log(this.id); }; function Foo(id){ this.id = id; this.print = print; }; When the function is invoked through an instance of Foo, the instance becomes the context for this, so the output is the same in either case. I'm not entirely sure how memory is allocated with JS, and I can't find anything that I can understand about something this specific, but it seems to me that with the first example all members of Foo, including the print function, are duplicated each time it is instantiated - but with the second, it just gets a pointer to one, pre-declared function, which would save any more memory having to be allocated as more instances of Foo are created. Am I correct, and if I am, is there any memory/performance benefit to doing this?

    Read the article

  • Nullpointerexcption & abrupt IOStream closure with inheritence and subclasses

    - by user1401652
    A brief background before so we can communicate on the same wave length. I've had about 8-10 university courses on programming from data structure, to one on all languages, to specific ones such as java & c++. I'm a bit rusty because i usually take 2-3 month breaks from coding. This is a personal project that I started thinking of two years back. Okay down to the details, and a specific question, I'm having problems with my mutator functions. It seems to be that I am trying to access a private variable incorrectly. The question is, am I nesting my classes too much and trying to mutate a base class variable the incorrect way. If so point me in the way of the correct literature, or confirm this is my problem so I can restudy this information. Thanks package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Date { private int hour, minute, day, month, year; Date() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What's the hour? (Use 1-24 military notation"); hour = Integer.parseInt(keyboard.readLine()); System.out.println("what's the minute? "); minute = Integer.parseInt(keyboard.readLine()); System.out.println("What's the day of the month?"); day = Integer.parseInt(keyboard.readLine()); System.out.println("Which month of the year is it, use an integer"); month = Integer.parseInt(keyboard.readLine()); System.out.println("What year is it?"); year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (IOException e) { System.out.println("Yo houston we have a problem"); } } public void setHour(int hour) { this.hour = hour; } public void setHour() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What hour, use military notation?"); this.hour = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getHour() { return hour; } public void setMinute(int minute) { this.minute = minute; } public void setMinute() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What minute?"); this.minute = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ": doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": minute shall not cooperate"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the setMinute function of the Date class"); } } public int getMinute() { return minute; } public void setDay(int day) { this.day = day; } public void setDay() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What day 0-6?"); this.day = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getDay() { return day; } public void setMonth(int month) { this.month = month; } public void setMonth() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What month 0-11?"); this.month = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getMonth() { return month; } public void setYear(int year) { this.year = year; } public void setYear() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What year?"); this.year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getYear() { return year; } public void set() { setMinute(); setHour(); setDay(); setMonth(); setYear(); } public Vector<Integer> get() { Vector<Integer> holder = new Vector<Integer>(5); holder.add(hour); holder.add(minute); holder.add(month); holder.add(day); holder.add(year); return holder; } }; That is the Date class obviously, next is the other base class Location. package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Location { String streetName, state, city, country; int zipCode, address; Location() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What is the street name"); streetName = keyboard.readLine(); System.out.println("Which state?"); state = keyboard.readLine(); System.out.println("Which city?"); city = keyboard.readLine(); System.out.println("Which country?"); country = keyboard.readLine(); System.out.println("Which zipcode?");//if not u.s. continue around this step zipCode = Integer.parseInt(keyboard.readLine()); System.out.println("What address?"); address = Integer.parseInt(keyboard.readLine()); } catch (IOException e) { System.out.println(e.toString()); } } public void setZipCode(int zipCode) { this.zipCode = zipCode; } public void setZipCode() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What zipCode?"); this.zipCode = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public void set() { setAddress(); setCity(); setCountry(); setState(); setStreetName(); setZipCode(); } public int getZipCode() { return zipCode; } public void setAddress(int address) { this.address = address; } public void setAddress() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.address = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getAddress() { return address; } public void setStreetName(String streetName) { this.streetName = streetName; } public void setStreetName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.streetName = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getStreetName() { return streetName; } public void setState(String state) { this.state = state; } public void setState() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.state = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getState() { return state; } public void setCity(String city) { this.city = city; } public void setCity() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.city = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCity() { return city; } public void setCountry(String country) { this.country = country; } public void setCountry() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.country = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCountry() { return country; } }; their parent(What is the proper name?) class package GroceryReceiptProgram; import java.io.*; public class FoodGroup { private int price, count; private Date purchaseDate, expirationDate; private Location location; private String name; public FoodGroup() { try { setPrice(); setCount(); expirationDate.set(); purchaseDate.set(); location.set(); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the constructor of the FoodGroup class"); } } public void setPrice(int price) { this.price = price; } public void setPrice() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What Price?"); price = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setPrice function"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class. SetPrice()"); } } public int getPrice() { return price; } public void setCount(int count) { this.count = count; } public void setCount() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What count?"); count = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setCount()"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class, setCount"); } } public int getCount() { return count; } public void setName(String name) { this.name = name; } public void setName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.name = keyboard.readLine(); } catch (IOException e) { System.out.println(e.toString()); } } public String getName() { return name; } public void setLocation(Location location) { this.location = location; } public Location getLocation() { return location; } public void setPurchaseDate(Date purchaseDate) { this.purchaseDate = purchaseDate; } public void setPurchaseDate() { this.purchaseDate.set(); } public Date getPurchaseDate() { return purchaseDate; } public void setExpirationDate(Date expirationDate) { this.expirationDate = expirationDate; } public void setExpirationDate() { this.expirationDate.set(); } public Date getExpirationDate() { return expirationDate; } } and finally the main class, so I can get access to all of this work. package GroceryReceiptProgram; public class NewMain { public static void main(String[] args) { FoodGroup test = new FoodGroup(); } } If anyone is further interested, here is a link the UML for this. https://www.dropbox.com/s/1weigjnxih70tbv/GRP.dia

    Read the article

  • count specific values in a multidimensional array

    - by user1680701
    I have an odd set of arrays that I need to count how many times specific values show in the results. Currently I have this bit of code. $nested_arrays = shopp_orders( '2011-11-30 00:00:00', '2012-11-30 12:59:59', false, '', 2 ); print_r($nested_arrays); This code pulls multiple arrays (serialized data) from the database and outputs like this Array ( [30] => Purchase Object ( [purchased] => Array ( ) [columns] => Array ( ) [message] => Array ( ) [data] => Array ( ) [invoiced] => [authorized] => [captured] => [refunded] => [voided] => [balance] => 0 [downloads] => [shipable] => [shipped] => [stocked] => [_position:DatabaseObject:private] => 0 [_properties:DatabaseObject:private] => Array ( ) [_ignores:DatabaseObject:private] => Array ( [0] => _ ) [_map:protected] => Array ( ) [_table] => wp_shopp_demo_shopp_purchase [_key] => id [_datatypes] => Array ( [id] => int [customer] => int [shipping] => int [billing] => int [currency] => int [ip] => string [firstname] => string [lastname] => string [email] => string [phone] => string [company] => string [card] => string [cardtype] => string [cardexpires] => date [cardholder] => string [address] => string [xaddress] => string [city] => string [state] => string [country] => string [postcode] => string [shipname] => string [shipaddress] => string [shipxaddress] => string [shipcity] => string [shipstate] => string [shipcountry] => string [shippostcode] => string [geocode] => string [promos] => string [subtotal] => float [freight] => float [tax] => float [total] => float [discount] => float [fees] => float [taxing] => list [txnid] => string [txnstatus] => string [gateway] => string [paymethod] => string [shipmethod] => string [shipoption] => string [status] => int [data] => string [secured] => string [created] => date [modified] => date ) [_lists] => Array ( [taxing] => Array ( [0] => exclusive [1] => inclusive ) ) [id] => 30 [customer] => 12 [shipping] => 23 [billing] => 23 [currency] => 0 [ip] => 24.125.58.205 [firstname] => test [lastname] => test [email] => [email protected] [phone] => 1234567890 [company] => [card] => 1111 [cardtype] => Visa [cardexpires] => 1420070400 [cardholder] => test [address] => 123 Any Street [xaddress] => [city] => Danville [state] => VA [country] => US [postcode] => 24541 [shipname] => [shipaddress] => 123 Any Street [shipxaddress] => [shipcity] => Danville [shipstate] => VA [shipcountry] => US [shippostcode] => 24541 [geocode] => [promos] => Array ( ) [subtotal] => 49.37 [freight] => 9.98 [tax] => 9.874 [total] => 69.22 [discount] => 0 [fees] => 0 [taxing] => exclusive [txnid] => [txnstatus] => authed [gateway] => TestMode [paymethod] => credit-card-test-mode [shipmethod] => ItemRates-0 [shipoption] => Fast Shipping [status] => 0 [secured] => [created] => 1354096946 [modified] => 1354096946 ) [29] => Purchase Object ( [purchased] => Array ( ) [columns] => Array ( ) [message] => Array ( ) [data] => Array ( ) [invoiced] => [authorized] => [captured] => [refunded] => [voided] => [balance] => 0 [downloads] => [shipable] => [shipped] => [stocked] => [_position:DatabaseObject:private] => 0 [_properties:DatabaseObject:private] => Array ( ) [_ignores:DatabaseObject:private] => Array ( [0] => _ ) [_map:protected] => Array ( ) [_table] => wp_shopp_demo_shopp_purchase [_key] => id [_datatypes] => Array ( [id] => int [customer] => int [shipping] => int [billing] => int [currency] => int [ip] => string [firstname] => string [lastname] => string [email] => string [phone] => string [company] => string [card] => string [cardtype] => string [cardexpires] => date [cardholder] => string [address] => string [xaddress] => string [city] => string [state] => string [country] => string [postcode] => string [shipname] => string [shipaddress] => string [shipxaddress] => string [shipcity] => string [shipstate] => string [shipcountry] => string [shippostcode] => string [geocode] => string [promos] => string [subtotal] => float [freight] => float [tax] => float [total] => float [discount] => float [fees] => float [taxing] => list [txnid] => string [txnstatus] => string [gateway] => string [paymethod] => string [shipmethod] => string [shipoption] => string [status] => int [data] => string [secured] => string [created] => date [modified] => date ) [_lists] => Array ( [taxing] => Array ( [0] => exclusive [1] => inclusive ) ) [id] => 29 [customer] => 13 [shipping] => 26 [billing] => 25 [currency] => 0 [ip] => 70.176.223.40 [firstname] => Bryan [lastname] => Crawford [email] => [email protected] [phone] => 4802323049 [company] => ggg [card] => 1111 [cardtype] => Visa [cardexpires] => 1356998400 [cardholder] => ggg [address] => 1300 W Warner Rd [xaddress] => [city] => Gilbert [state] => AZ [country] => US [postcode] => 85224 [shipname] => [shipaddress] => 1300 W Warner Rd [shipxaddress] => [shipcity] => Gilbert [shipstate] => AZ [shipcountry] => US [shippostcode] => 85224 [geocode] => [promos] => Array ( ) [subtotal] => 29.95 [freight] => 9.98 [tax] => 0 [total] => 39.93 [discount] => 0 [fees] => 0 [taxing] => exclusive [txnid] => [txnstatus] => authed [gateway] => TestMode [paymethod] => credit-card-test-mode [shipmethod] => ItemRates-0 [shipoption] => Fast Shipping [status] => 0 [secured] => [created] => 1353538691 [modified] => 1353538691 ) ) This is order data from only two orders. I need to count how many times each state, each city, shipmethod, etc occur in the array. I tried the following but it only counted the 2 large arrays. function count_nested_array_keys(array &$a, array &$res=array()) { $i = 0; foreach ($a as $key=>$value) { if (is_array($value)) { $i += count_nested_array_keys($value, &$res); } else { if(!isset($res[$key])) $res[$key] = 0; $res[$key]++; $i++; } } return $i; } $total_item_count = count_nested_array_keys($nested_arrays, $count_per_key); echo "count per key: ", print_r($count_per_key), "\n"; If someone could show me how to count how many times each state value occurs, example, VA = 2 NC = 1 I can take it from there. Thank You.

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Windows Phone 7 development: Using isolated storage

    - by DigiMortal
    In my previous posting about Windows Phone 7 development I showed how to use WebBrowser control in Windows Phone 7. In this posting I make some other improvements to my blog reader application and I will show you how to use isolated storage to store information to phone. Why isolated storage? Isolated storage is place where your application can save its data and settings. The image on right (that I stole from MSDN library) shows you how application data store is organized. You have no other options to keep your files besides isolated storage because Windows Phone 7 does not allow you to save data directly to other file system locations. From MSDN: “Isolated storage enables managed applications to create and maintain local storage. The mobile architecture is similar to the Silverlight-based applications on Windows. All I/O operations are restricted to isolated storage and do not have direct access to the underlying operating system file system. Ultimately, this helps to provide security and prevents unauthorized access and data corruption.” Saving files from web to isolated storage I updated my RSS-reader so it reads RSS from web only if there in no local file with RSS. User can update RSS-file by clicking a button. Also file is created when application starts and there is no RSS-file. Why I am doing this? I want my application to be able to work also offline. As my code needs some more refactoring I provide it with some next postings about Windows Phone 7. If you want it sooner then please leave me a comment here. Here is the code for my RSS-downloader that downloads RSS-feed and saves it to isolated storage file calles rss.xml. public class RssDownloader {     private string _url;     private string _fileName;       public delegate void DownloadCompleteDelegate();     public event DownloadCompleteDelegate DownloadComplete;       public RssDownloader(string url, string fileName)     {         _url = url;         _fileName = fileName;     }       public void Download()     {         var request = (HttpWebRequest)WebRequest.Create(_url);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);            }       private void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           using(var stream = response.GetResponseStream())         using(var reader = new StreamReader(stream))         using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication())         using(var file = appStorage.OpenFile("rss.xml", FileMode.OpenOrCreate))         using(var writer = new StreamWriter(file))         {             writer.Write(reader.ReadToEnd());         }           if (DownloadComplete != null)             DownloadComplete();     } } Of course I modified RSS-source for my application to use rss.xml file from isolated storage. As isolated storage files also base on streams we can use them everywhere where streams are expected. Reading isolated storage files As isolated storage files are opened as streams you can read them like usual files in your usual applications. The next code fragment shows you how to open file from isolated storage and how to read it using XmlReader. Previously I used response stream in same place. using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication()) using(var file = appStorage.OpenFile("rss.xml", FileMode.Open)) {     var reader = XmlReader.Create(file);                      // more code } As you can see there is nothing complex. If you have worked with System.IO namespace objects then you will find isolated storage classes and methods to be very similar to these. Also mention that application storage and isolated storage files must be disposed after you are not using them anymore.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • International Radio Operators Alphabet in F# &amp; Silverlight &ndash; Part 2

    - by MarkPearl
    So the brunt of my my very complex F# code has been done. Now it’s just putting the Silverlight stuff in. The first thing I did was add a new project to my solution. I gave it a name and VS2010 did the rest of the magic in creating the .Web project etc. In this instance because I want to take the MVVM approach and make use of commanding I have decided to make the frontend a Silverlight4 project. I now need move my F# code into a proper Silverlight Library. Warning – when you create the Silverlight Library VS2010 will ask you whether you want it to be based on Silverlight3 or Silverlight4. I originally went for Silverlight4 only to discover when I tried to compile my solution that I was given an error… Error 12 F# runtime for Silverlight version v4.0 is not installed. Please go to http://go.microsoft.com/fwlink/?LinkId=177463 to download and install matching.. After asking around I discovered that the Silverlight4 F# runtime is not available yet. No problem, the suggestion was to change the F# Silverlight Library to a Silverlight3 project however when going to the properties of the project file – even though I changed it to Silverlight3, VS2010 did not like it and kept reverting it to a Silverlight4 project. After a few minutes of scratching my head I simply deleted Silverlight4 F# Library project and created a new F# Silverlight Library project in Silverlight3 and VS2010 was happy. Now that the project structure is set up, rest is fairly simple. You need to add the Silverlight Library as a reference to the C# Silverlight Front End. Then setup your views, since I was following the MVVM pattern I made a Views & ViewModel folder and set up the relevant View and ViewModels. The MainPageViewModel file looks as follows using System; using System.Net; using System.Windows; using System.Windows.Controls; using System.Windows.Documents; using System.Windows.Ink; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Shapes; using System.Collections.ObjectModel; namespace IROAFrontEnd.ViewModels { public class MainPageViewModel : ViewModelBase { private string _iroaString; private string _inputCharacters; public string InputCharacters { get { return _inputCharacters; } set { if (_inputCharacters != value) { _inputCharacters = value; OnPropertyChanged("InputCharacters"); } } } public string IROAString { get { return _iroaString; } set { if (_iroaString != value) { _iroaString = value; OnPropertyChanged("IROAString"); } } } public ICommand MySpecialCommand { get { return new MyCommand(this); } } public class MyCommand : ICommand { readonly MainPageViewModel _myViewModel; public MyCommand(MainPageViewModel myViewModel) { _myViewModel = myViewModel; } public event EventHandler CanExecuteChanged; public bool CanExecute(object parameter) { return true; } public void Execute(object parameter) { var result = ModuleMain.ConvertCharsToStrings(_myViewModel.InputCharacters); var newString = ""; foreach (var Item in result) { newString += Item + " "; } _myViewModel.IROAString = newString.Trim(); } } } } One of the features I like in Silverlight4 is the new commanding. You will notice in my I have put the code under the command execute to reference to my F# module. At the moment this could be cleaned up even more, but will suffice for now.. public void Execute(object parameter) { var result = ModuleMain.ConvertCharsToStrings(_myViewModel.InputCharacters); var newString = ""; foreach (var Item in result) { newString += Item + " "; } _myViewModel.IROAString = newString.Trim(); } I then needed to set the view up. If we have a look at the MainPageView.xaml the xaml code will look like the following…. Nothing to fancy, but battleship grey for now… take careful note of the binding of the command in the button to MySpecialCommand which was created in the ViewModel. <UserControl x:Class="IROAFrontEnd.Views.MainPageView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="400"> <Grid x:Name="LayoutRoot" Background="White"> <Grid.RowDefinitions> <RowDefinition/> <RowDefinition/> <RowDefinition/> </Grid.RowDefinitions> <TextBox Grid.Row="0" Text="{Binding InputCharacters, Mode=TwoWay}"/> <Button Grid.Row="1" Command="{Binding MySpecialCommand}"> <TextBlock Text="Generate"/> </Button> <TextBlock Grid.Row="2" Text="{Binding IROAString}"/> </Grid> </UserControl> Finally in the App.xaml.cs file we need to set the View and link it to the ViewModel. private void Application_Startup(object sender, StartupEventArgs e) { var myView = new MainPageView(); var myViewModel = new MainPageViewModel(); myView.DataContext = myViewModel; this.RootVisual = myView; }   Once this is done – hey presto – it worked. I typed in some “Test Input” and clicked the generate button and the correct Radio Operators Alphabet was generated. And that’s the end of my first very basic F# Silverlight application.

    Read the article

  • [Windows 8] Application bar popup button

    - by Benjamin Roux
    Here is a small control to create an application bar button which will display a content in a popup when the button is clicked. Visually it gives this So how to create this? First you have to use the AppBarPopupButton control below.   namespace Indeed.Controls { public class AppBarPopupButton : Button { public FrameworkElement PopupContent { get { return (FrameworkElement)GetValue(PopupContentProperty); } set { SetValue(PopupContentProperty, value); } } public static readonly DependencyProperty PopupContentProperty = DependencyProperty.Register("PopupContent", typeof(FrameworkElement), typeof(AppBarPopupButton), new PropertyMetadata(null, (o, e) => (o as AppBarPopupButton).CreatePopup())); private Popup popup; private SerialDisposable sizeChanged = new SerialDisposable(); protected override void OnTapped(Windows.UI.Xaml.Input.TappedRoutedEventArgs e) { base.OnTapped(e); if (popup != null) { var transform = this.TransformToVisual(Window.Current.Content); var offset = transform.TransformPoint(default(Point)); sizeChanged.Disposable = PopupContent.ObserveSizeChanged().Do(_ => popup.VerticalOffset = offset.Y - (PopupContent.ActualHeight + 20)).Subscribe(); popup.HorizontalOffset = offset.X + 24; popup.DataContext = this.DataContext; popup.IsOpen = true; } } private void CreatePopup() { popup = new Popup { IsLightDismissEnabled = true }; popup.Closed += (o, e) => this.GetParentOfType<AppBar>().IsOpen = false; popup.ChildTransitions = new Windows.UI.Xaml.Media.Animation.TransitionCollection(); popup.ChildTransitions.Add(new Windows.UI.Xaml.Media.Animation.PopupThemeTransition()); var container = new Grid(); container.Children.Add(PopupContent); popup.Child = container; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ObserveSizeChanged method is just an extension method which observe the SizeChanged event (using Reactive Extensions - Rx-Metro package in Nuget). If you’re not familiar with Rx, you can replace this line (and the SerialDisposable stuff) by a simple subscription to the SizeChanged event (using +=) but don’t forget to unsubscribe to it ! public static IObservable<Unit> ObserveSizeChanged(this FrameworkElement element) { return Observable.FromEventPattern<SizeChangedEventHandler, SizeChangedEventArgs>( o => element.SizeChanged += o, o => element.SizeChanged -= o) .Select(_ => Unit.Default); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The GetParentOfType extension method just retrieve the first parent of type (it’s a common extension method that every Windows 8 developer should have created !). You can of course tweak to control (for example if you want to center the content to the button or anything else) to fit your needs. How to use this control? It’s very simple, in an AppBar control just add it and define the PopupContent property. <ic:AppBarPopupButton Style="{StaticResource RefreshAppBarButtonStyle}" HorizontalAlignment="Left"> <ic:AppBarPopupButton.PopupContent> <Grid> [...] </Grid> </ic:AppBarPopupButton.PopupContent> </ic:AppBarPopupButton> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When the button is clicked the popup is displayed. When the popup is closed, the app bar is closed too. I hope this will help you !

    Read the article

  • Implementing an Interceptor Using NHibernate’s Built In Dynamic Proxy Generator

    - by Ricardo Peres
    NHibernate 3.2 came with an included proxy generator, which means there is no longer the need – or the possibility, for that matter – to choose Castle DynamicProxy, LinFu or Spring. This is actually a good thing, because it means one less assembly to deploy. Apparently, this generator was based, at least partially, on LinFu. As there are not many tutorials out there demonstrating it’s usage, here’s one, for demonstrating one of the most requested features: implementing INotifyPropertyChanged. This interceptor, of course, will still feature all of NHibernate’s functionalities that you are used to, such as lazy loading, and such. We will start by implementing an NHibernate interceptor, by inheriting from the base class NHibernate.EmptyInterceptor. This class does not do anything by itself, but it allows us to plug in behavior by overriding some of its methods, in this case, Instantiate: 1: public class NotifyPropertyChangedInterceptor : EmptyInterceptor 2: { 3: private ISession session = null; 4:  5: private static readonly ProxyFactory factory = new ProxyFactory(); 6:  7: public override void SetSession(ISession session) 8: { 9: this.session = session; 10: base.SetSession(session); 11: } 12:  13: public override Object Instantiate(String clazz, EntityMode entityMode, Object id) 14: { 15: Type entityType = Type.GetType(clazz); 16: IProxy proxy = factory.CreateProxy(entityType, new _NotifyPropertyChangedInterceptor(), typeof(INotifyPropertyChanged)) as IProxy; 17: 18: _NotifyPropertyChangedInterceptor interceptor = proxy.Interceptor as _NotifyPropertyChangedInterceptor; 19: interceptor.Proxy = this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id, entityMode); 20:  21: this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy, id, entityMode); 22:  23: return (proxy); 24: } 25: } Then we need a class that implements the NHibernate dynamic proxy behavior, let’s place it inside our interceptor, because it will only need to be used there: 1: class _NotifyPropertyChangedInterceptor : NHibernate.Proxy.DynamicProxy.IInterceptor 2: { 3: private PropertyChangedEventHandler changed = delegate { }; 4:  5: public Object Proxy 6: { 7: get; 8: set;} 9:  10: #region IInterceptor Members 11:  12: public Object Intercept(InvocationInfo info) 13: { 14: Boolean isSetter = info.TargetMethod.Name.StartsWith("set_") == true; 15: Object result = null; 16:  17: if (info.TargetMethod.Name == "add_PropertyChanged") 18: { 19: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 20: this.changed += propertyChangedEventHandler; 21: } 22: else if (info.TargetMethod.Name == "remove_PropertyChanged") 23: { 24: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 25: this.changed -= propertyChangedEventHandler; 26: } 27: else 28: { 29: result = info.TargetMethod.Invoke(this.Proxy, info.Arguments); 30: } 31:  32: if (isSetter == true) 33: { 34: String propertyName = info.TargetMethod.Name.Substring("set_".Length); 35: this.changed(this.Proxy, new PropertyChangedEventArgs(propertyName)); 36: } 37:  38: return (result); 39: } 40:  41: #endregion 42: } What this does for every interceptable method (those who are either virtual or from the INotifyPropertyChanged) is: For methods that came from the INotifyPropertyChanged interface, add_PropertyChanged and remove_PropertyChanged (yes, events are methods ), we add an implementation that adds or removes the event handlers to the delegate which we declared as changed; For all the others, we direct them to the place where they are actually implemented, which is the Proxy field; If the call is setting a property, it fires afterwards the PropertyChanged event. In order to use this, we need to add the interceptor to the Configuration before building the ISessionFactory: 1: using (ISessionFactory factory = cfg.SetInterceptor(new NotifyPropertyChangedInterceptor()).BuildSessionFactory()) 2: { 3: using (ISession session = factory.OpenSession()) 4: using (ITransaction tx = session.BeginTransaction()) 5: { 6: Customer customer = session.Get<Customer>(100); //some id 7: INotifyPropertyChanged inpc = customer as INotifyPropertyChanged; 8: inpc.PropertyChanged += delegate(Object sender, PropertyChangedEventArgs e) 9: { 10: //fired when a property changes 11: }; 12: customer.Address = "some other address"; //will raise PropertyChanged 13: customer.RecentOrders.ToList(); //will trigger the lazy loading 14: } 15: } Any problems, questions, do drop me a line!

    Read the article

  • Code Structure / Level Design: Plants vs Zombies game level dissection

    - by lalan
    Hi Friends, I am interested in learning the class structure of Plants vs Zombies, particularly level design; for those who haven't played it - this video contains nice play-through: http://www.youtube.com/watch?v=89DfdOIJ4xw. How would I go ahead and design the code, mostly structure & classes, which allows for maximum flexibility & clean development? I am familiar with data driven design concepts, and would use events to handle most of dynamic behavior. Dissection at macro level: (Once every Level) Load tilemap, props, etc -- basically build the map (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) Show Enemies you'll face during present level (Once every Level) Unit Selection Window/Panel - selection of defensive plants (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) HUD Creation - based on unit selection (Level Loop) Enemy creation - based on types of zombies allowed (Level Loop) Sun/Resource generation (Level Loop) Show messages like 'huge wave of zombies coming', 'final wave' (Level Loop) Other unique events - Spawn gifts, money, tombstones, etc (Once every Level) Unlock new plant Potential game scripts: a) Level definitions: Level_1_1.xml, Level_1_2.xml, etc. Level_1_1.xml :: Sample script <map> <tilemap>tilemapFrontLawn</tilemap> <SpawnPoints> tiles where particular type of zombies (land vs water) may spawn</spawnPoints> <props> position, entity array -- lawnmower, </props> </map> <zombies> <... list of zombies who gonna attack by ids...> </zombies> <plants> <... list by plants which are available for defense by ids...> </plants> <progression> <ZombieWave name='first wave' spawnScript='zombieLightWave.lua' unlock='null'> <startMessages time=1.5>Ready</startMessages> <endMessages time=1.5>Huge wave of zombies incoming</endMessages> </ZombieWave> </progression> b) Entities definitions: .xmls containing zombies, plants, sun, lawnmower, coins, etc description. Potential classes: //LevelManager - Based on the level under play, it will load level script. Few of the // functions it may have: class LevelManager { public: bool load(string levelFileName); bool enter(); bool update(float deltatime); bool exit(); private: LevelData* mLevelData; } // LevelData - Contains the details of level loaded by LevelManager. class LevelData { private: string file; // array of camera,dialog,attackwaves, etc in active level LevelCutSceneCamera** mArrayCutSceneCamera; LevelCutSceneDialog** mArrayCutSceneDialog; LevelAttackWave** mArrayAttackWave; .... // which camera,dialog,attackwave is active in level uint mCursorCutSceneCamera; uint mCursorCutSceneDialog; uint mCursorAttackWave; public: // based on cursor, get the next camera,dialog,attackwave,etc in active level // return false/true based on failure/success bool nextCutSceneCamera(LevelCutSceneCamera**); bool nextCutSceneDialog(LevelCutSceneDialog**); } // LevelUnderPlay- LevelManager class LevelUnderPlay { private: LevelCutSceneCamera* mCutSceneCamera; LevelCutSceneDialog* mCutSceneDialog; LevelAttackWave* mAttackWave; Entities** mSelectedPlants; Entities** mAllowedZombies; bool isCutSceneCameraActive; public: bool enter(); bool update(float deltatime); bool exit(); } I am totally confused.. :( Does it make sense of using class composition (have flat class hierarchy) for managing levels. Is it a good idea to just add/remove/update sprites (or any drawable stuff) to current scene from LevelManager or LevelUnderPlay? If I want to make non-linear level design, how should I go ahead? Perhaps I would need a LevelProgression class, which would decide what to do based on decision tree. Any suggestions would be appreciated very much. Thank for your time, lalan

    Read the article

  • Maintaining packages with code - Adding a property expression programmatically

    Every now and then I've come across scenarios where I need to update a lot of packages all in the same way. The usual scenario revolves around a group of packages all having been built off the same package template, and something needs to updated to keep up with new requirements, a new logging standard for example.You'd probably start by updating your template package, but then you need to address all your existing packages. Often this can run into the hundreds of packages and clearly that's not a job anyone wants to do by hand. I normally solve the problem by writing a simple console application that looks for files and patches any package it finds, and it is an example of this I'd thought I'd tidy up a bit and publish here. This sample will look at the package and find any top level Execute SQL Tasks, and change the SQL Statement property to use an expression. It is very simplistic working on top level tasks only, so nothing inside a Sequence Container or Loop will be checked but obviously the code could be extended for this if required. The code that actually sets the expression is shown below, the rest is just wrapper code to find the package and to find the task. /// <summary> /// The CreationName of the Tasks to target, e.g. Execute SQL Task /// </summary> private const string TargetTaskCreationName = "Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask.ExecuteSQLTask, Microsoft.SqlServer.SQLTask, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; /// <summary> /// The name of the task property to target. /// </summary> private const string TargetPropertyName = "SqlStatementSource"; /// <summary> /// The property expression to set. /// </summary> private const string ExpressionToSet = "@[User::SQLQueryVariable]"; .... // Check if the task matches our target task type if (taskHost.CreationName == TargetTaskCreationName) { // Check for the target property if (taskHost.Properties.Contains(TargetPropertyName)) { // Get the property, check for an expression and set expression if not found DtsProperty property = taskHost.Properties[TargetPropertyName]; if (string.IsNullOrEmpty(property.GetExpression(taskHost))) { property.SetExpression(taskHost, ExpressionToSet); changeCount++; } } } This is a console application, so to specify which packages you want to target you have three options: Find all packages in the current folder, the default behaviour if no arguments are specified TaskExpressionPatcher.exe .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find all packages in a specified folder, pass the folder as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\ .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find a specific package, pass the file path as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\Package.dtsx The code was written against SQL Server 2005, but just change the reference to Microsoft.SQLServer.ManagedDTS to be the SQL Server 2008 version and it will work fine. If you get an error Microsoft.SqlServer.Dts.Runtime.DtsRuntimeException: The package failed to load due to error 0xC0011008… then check that the package is from the correct version of SSIS compared to the referenced assemblies, 2005 vs 2008 in other words. Download Sample Project TaskExpressionPatcher.zip (6 KB)

    Read the article

  • Write your Tests in RSpec with IronRuby

    - by kazimanzurrashid
    [Note: This is not a continuation of my previous post, treat it as an experiment out in the wild. ] Lets consider the following class, a fictitious Fund Transfer Service: public class FundTransferService : IFundTransferService { private readonly ICurrencyConvertionService currencyConvertionService; public FundTransferService(ICurrencyConvertionService currencyConvertionService) { this.currencyConvertionService = currencyConvertionService; } public void Transfer(Account fromAccount, Account toAccount, decimal amount) { decimal convertionRate = currencyConvertionService.GetConvertionRate(fromAccount.Currency, toAccount.Currency); decimal convertedAmount = convertionRate * amount; fromAccount.Withdraw(amount); toAccount.Deposit(convertedAmount); } } public class Account { public Account(string currency, decimal balance) { Currency = currency; Balance = balance; } public string Currency { get; private set; } public decimal Balance { get; private set; } public void Deposit(decimal amount) { Balance += amount; } public void Withdraw(decimal amount) { Balance -= amount; } } We can write the spec with MSpec + Moq like the following: public class When_fund_is_transferred { const decimal ConvertionRate = 1.029m; const decimal TransferAmount = 10.0m; const decimal InitialBalance = 100.0m; static Account fromAccount; static Account toAccount; static FundTransferService fundTransferService; Establish context = () => { fromAccount = new Account("USD", InitialBalance); toAccount = new Account("CAD", InitialBalance); var currencyConvertionService = new Moq.Mock<ICurrencyConvertionService>(); currencyConvertionService.Setup(ccv => ccv.GetConvertionRate(Moq.It.IsAny<string>(), Moq.It.IsAny<string>())).Returns(ConvertionRate); fundTransferService = new FundTransferService(currencyConvertionService.Object); }; Because of = () => { fundTransferService.Transfer(fromAccount, toAccount, TransferAmount); }; It should_decrease_from_account_balance = () => { fromAccount.Balance.ShouldBeLessThan(InitialBalance); }; It should_increase_to_account_balance = () => { toAccount.Balance.ShouldBeGreaterThan(InitialBalance); }; } and if you run the spec it will give you a nice little output like the following: When fund is transferred » should decrease from account balance » should increase to account balance 2 passed, 0 failed, 0 skipped, took 1.14 seconds (MSpec). Now, lets see how we can write exact spec in RSpec. require File.dirname(__FILE__) + "/../FundTransfer/bin/Debug/FundTransfer" require "spec" require "caricature" describe "When fund is transferred" do Convertion_Rate = 1.029 Transfer_Amount = 10.0 Initial_Balance = 100.0 before(:all) do @from_account = FundTransfer::Account.new("USD", Initial_Balance) @to_account = FundTransfer::Account.new("CAD", Initial_Balance) currency_convertion_service = Caricature::Isolation.for(FundTransfer::ICurrencyConvertionService) currency_convertion_service.when_receiving(:get_convertion_rate).with(:any, :any).return(Convertion_Rate) fund_transfer_service = FundTransfer::FundTransferService.new(currency_convertion_service) fund_transfer_service.transfer(@from_account, @to_account, Transfer_Amount) end it "should decrease from account balance" do @from_account.balance.should be < Initial_Balance end it "should increase to account balance" do @to_account.balance.should be > Initial_Balance end end I think the above code is self explanatory, treat the require(line 1- 4) statements as the add reference of our visual studio projects, we are adding all the required libraries with this statement. Next, the describe which is a RSpec keyword. The before does exactly the same as NUnit's Setup or MsTest’s TestInitialize attribute, but in the above we are using before(:all) which acts as ClassInitialize of MsTest, that means it will be executed only once before all the test methods. In the before(:all) we are first instantiating the from and to accounts, it is same as creating with the full name (including namespace)  like fromAccount = new FundTransfer.Account(.., ..), next, we are creating a mock object of ICurrencyConvertionService, check that for creating the mock we are not using the Moq like the MSpec version. This is somewhat an interesting issue of IronRuby or maybe the DLR, it seems that it is not possible to use the lambda expression that most of the mocking tools uses in arrange phase in Iron Ruby, like: currencyConvertionService.Setup(ccv => ccv.GetConvertionRate(Moq.It.IsAny<string>(), Moq.It.IsAny<string>())).Returns(ConvertionRate); But the good news is, there is already an excellent mocking tool called Caricature written completely in IronRuby which we can use to mock the .NET classes. May be all the mocking tool providers should give some thought to add the support for the DLR, so that we can use the tool that we are already familiar with. I think the rest of the code is too simple, so I am skipping the explanation. Now, the last thing, how we are going to run it with RSpec, lets first install the required gems. Open you command prompt and type the following: igem sources -a http://gems.github.com This will add the GitHub as gem source. Next type: igem install uuidtools caricature rspec and at last we have to create a batch file so that we can execute it in the Notepad++, create a batch like in the IronRuby bin directory like my previous post and put the following in that batch file: @echo off cls call spec %1 --format specdoc pause Next, add a run menu and shortcut in the Notepad++ like my previous post. Now when we run it it will show the following output: When fund is transferred - should decrease from account balance - should increase to account balance Finished in 0.332042 seconds 2 examples, 0 failures Press any key to continue . . . You will complete code of this post in the bottom. That's it for today. Download: RSpecIntegration.zip

    Read the article

  • Dynamically switching the theme in Orchard

    - by Bertrand Le Roy
    It may sound a little puzzling at first, but in Orchard CMS, more than one theme can be active at any given time. The reason for that is that we have an extensibility point that allows a module (or a theme) to participate in the choice of the theme to use, for each request. The motivation for building the theme engine this way was to enable developers to switch themes based on arbitrary criteria, such as user preferences or the user agent (if you want to serve a mobile theme for phones for example). The choice is made between the active themes, which is why there is a difference between the default theme and the active themes. In order to have a say in the choice of the theme, all you have to do is implement IThemeSelector. That interface is quite simple as it only has one method, GetTheme, that takes the current RequestContext and returns a ThemeSelectorResult or null if the implementation of the interface does not want to participate in the current request (we'll see an example in a moment). ThemeSelectorResult itself is just a ThemeName string property and an integer Priority. We're using a priority so that an arbitrary number of implementations of IThemeSelector can contribute to the choice of a theme. If you look for existing implementations of the interface in Orchard, you'll find four: AdminThemeSelector: selects the TheAdmin theme with a very high priority (100) if the current request is for a page that is part of the admin. Otherwise, null is returned, which enables other implementations to choose the theme. PreviewThemeSelector: selects the preview theme if there is one, with a high priority (90), and null otherwise. This enables administrators to view the site under a different theme while everybody else continues to see the current default theme. SiteThemeSelector: this is the implementation that is doing what you expect most of the time, which is to get the current theme from site settings and set it with a priority of –5. SafeModeThemeSelector: this is the fallback implementation, which should almost never win. It sets the theme as the safe mode theme, which has no style and just uses the default templates for everything. The priority is very low (-100). While this extensibility mechanism is great to have, I wanted to bring that level of choice into the hands of the site administrator rather than just developers. In order to achieve that, I built the Vandelay Theme Picker module. The module provides administration UI to create rules for theme selection. It provides its own extensibility point (the IThemeSelectionRule interface) and one implementation of a rule: UserAgentThemeSelectorRule. This rule gets the current user agent from the context and tries to match it with a regular expression that the administrator can configure in the admin UI. You can for example configure a rule with a regular expression that matches IE6 and serve a different subtheme where the stylesheet has been tweaked for such an antique browser. Another possible configuration is to detect mobile devices from their agent string and serve the mobile theme. All those operations can be done with this module entirely from the admin UI, without writing a line of code. The module also offers the administrator the opportunity to inject a link into the front-end in a specific zone and with a specific position that enables the user to switch to the default theme if he wishes to. This is especially useful for sites that use a mobile theme but still want to allow users to use the full desktop site. While the module is nice and flexible, it may be overkill. On my own personal blog, I have only two active themes: the desktop theme and the mobile theme. I'm fine with going into code to change the criteria on which to switch the theme, so I'm not using my own Theme Picker module. Instead, I made the mobile theme a theme with code (in other words there is a csproj file in the theme). The project includes a single C# file, my MobileThemeSelector for which the code is the following: public class MobileThemeSelector : IThemeSelector { private static readonly Regex _Msie678 = new Regex(@"^Mozilla\/4\.0 \(compatible; MSIE [678]" + @"\.0; Windows NT \d\.\d(.*)\)$", RegexOptions.IgnoreCase); private ThemeSelectorResult _requestCache; private bool _requestCached; public ThemeSelectorResult GetTheme(RequestContext context) { if (_requestCached) return _requestCache; _requestCached = true; var userAgent = context.HttpContext.Request.UserAgent; if (userAgent.IndexOf("phone", StringComparison.OrdinalIgnoreCase) != -1 || _Msie678.IsMatch(userAgent) || userAgent.IndexOf("windows live writer", StringComparison.OrdinalIgnoreCase) != -1) { _requestCache = new ThemeSelectorResult { Priority = 10, ThemeName = "VuLuMobile" }; } return _requestCache; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The theme selector selects the current theme for Internet Explorer versions 6 to 8, for phones, and for Windows Live Writer (so that the theme that is used when I write posts is as simple as possible). What's interesting here is that it's the theme that selects itself here, based on its own criteria. This should give you a good panorama of what's possible in terms of dynamic theme selection in Orchard. I hope you find some fun uses for it. As usual, I can't wait to see what you're going to come up with…

    Read the article

  • Subterranean IL: Constructor constraints

    - by Simon Cooper
    The constructor generic constraint is a slightly wierd one. The ECMA specification simply states that it: constrains [the type] to being a concrete reference type (i.e., not abstract) that has a public constructor taking no arguments (the default constructor), or to being a value type. There seems to be no reference within the spec to how you actually create an instance of a generic type with such a constraint. In non-generic methods, the normal way of creating an instance of a class is quite different to initializing an instance of a value type. For a reference type, you use newobj: newobj instance void IncrementableClass::.ctor() and for value types, you need to use initobj: .locals init ( valuetype IncrementableStruct s1 ) ldloca 0 initobj IncrementableStruct But, for a generic method, we need a consistent method that would work equally well for reference or value types. Activator.CreateInstance<T> To solve this problem the CLR designers could have chosen to create something similar to the constrained. prefix; if T is a value type, call initobj, and if it is a reference type, call newobj instance void !!0::.ctor(). However, this solution is much more heavyweight than constrained callvirt. The newobj call is encoded in the assembly using a simple reference to a row in a metadata table. This encoding is no longer valid for a call to !!0::.ctor(), as different constructor methods occupy different rows in the metadata tables. Furthermore, constructors aren't virtual, so we would have to somehow do a dynamic lookup to the correct method at runtime without using a MethodTable, something which is completely new to the CLR. Trying to do this in IL results in the following verification error: newobj instance void !!0::.ctor() [IL]: Error: Unable to resolve token. This is where Activator.CreateInstance<T> comes in. We can call this method to return us a new T, and make the whole issue Somebody Else's Problem. CreateInstance does all the dynamic method lookup for us, and returns us a new instance of the correct reference or value type (strangely enough, Activator.CreateInstance<T> does not itself have a .ctor constraint on its generic parameter): .method private static !!0 CreateInstance<.ctor T>() { call !!0 [mscorlib]System.Activator::CreateInstance<!!0>() ret } Going further: compiler enhancements Although this method works perfectly well for solving the problem, the C# compiler goes one step further. If you decompile the C# version of the CreateInstance method above: private static T CreateInstance() where T : new() { return new T(); } what you actually get is this (edited slightly for space & clarity): .method private static !!T CreateInstance<.ctor T>() { .locals init ( [0] !!T CS$0$0000, [1] !!T CS$0$0001 ) DetectValueType: ldloca.s 0 initobj !!T ldloc.0 box !!T brfalse.s CreateInstance CreateValueType: ldloca.s 1 initobj !!T ldloc.1 ret CreateInstance: call !!0 [mscorlib]System.Activator::CreateInstance<T>() ret } What on earth is going on here? Looking closer, it's actually quite a clever performance optimization around value types. So, lets dissect this code to see what it does. The CreateValueType and CreateInstance sections should be fairly self-explanatory; using initobj for value types, and Activator.CreateInstance for reference types. How does the DetectValueType section work? First, the stack transition for value types: ldloca.s 0 // &[!!T(uninitialized)] initobj !!T // ldloc.0 // !!T box !!T // O[!!T] brfalse.s // branch not taken When the brfalse.s is hit, the top stack entry is a non-null reference to a boxed !!T, so execution continues to to the CreateValueType section. What about when !!T is a reference type? Remember, the 'default' value of an object reference (type O) is zero, or null. ldloca.s 0 // &[!!T(null)] initobj !!T // ldloc.0 // null box !!T // null brfalse.s // branch taken Because box on a reference type is a no-op, the top of the stack at the brfalse.s is null, and so the branch to CreateInstance is taken. For reference types, Activator.CreateInstance is called which does the full dynamic lookup using reflection. For value types, a simple initobj is called, which is far faster, and also eliminates the unboxing that Activator.CreateInstance has to perform for value types. However, this is strictly a performance optimization; Activator.CreateInstance<T> works for value types as well as reference types. Next... That concludes the initial premise of the Subterranean IL series; to cover the details of generic methods and generic code in IL. I've got a few other ideas about where to go next; however, if anyone has any itching questions, suggestions, or things you've always wondered about IL, do let me know.

    Read the article

  • Maintaining packages with code - Adding a property expression programmatically

    Every now and then I've come across scenarios where I need to update a lot of packages all in the same way. The usual scenario revolves around a group of packages all having been built off the same package template, and something needs to updated to keep up with new requirements, a new logging standard for example.You'd probably start by updating your template package, but then you need to address all your existing packages. Often this can run into the hundreds of packages and clearly that's not a job anyone wants to do by hand. I normally solve the problem by writing a simple console application that looks for files and patches any package it finds, and it is an example of this I'd thought I'd tidy up a bit and publish here. This sample will look at the package and find any top level Execute SQL Tasks, and change the SQL Statement property to use an expression. It is very simplistic working on top level tasks only, so nothing inside a Sequence Container or Loop will be checked but obviously the code could be extended for this if required. The code that actually sets the expression is shown below, the rest is just wrapper code to find the package and to find the task. /// <summary> /// The CreationName of the Tasks to target, e.g. Execute SQL Task /// </summary> private const string TargetTaskCreationName = "Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask.ExecuteSQLTask, Microsoft.SqlServer.SQLTask, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; /// <summary> /// The name of the task property to target. /// </summary> private const string TargetPropertyName = "SqlStatementSource"; /// <summary> /// The property expression to set. /// </summary> private const string ExpressionToSet = "@[User::SQLQueryVariable]"; .... // Check if the task matches our target task type if (taskHost.CreationName == TargetTaskCreationName) { // Check for the target property if (taskHost.Properties.Contains(TargetPropertyName)) { // Get the property, check for an expression and set expression if not found DtsProperty property = taskHost.Properties[TargetPropertyName]; if (string.IsNullOrEmpty(property.GetExpression(taskHost))) { property.SetExpression(taskHost, ExpressionToSet); changeCount++; } } } This is a console application, so to specify which packages you want to target you have three options: Find all packages in the current folder, the default behaviour if no arguments are specified TaskExpressionPatcher.exe .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find all packages in a specified folder, pass the folder as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\ .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find a specific package, pass the file path as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\Package.dtsx The code was written against SQL Server 2005, but just change the reference to Microsoft.SQLServer.ManagedDTS to be the SQL Server 2008 version and it will work fine. If you get an error Microsoft.SqlServer.Dts.Runtime.DtsRuntimeException: The package failed to load due to error 0xC0011008… then check that the package is from the correct version of SSIS compared to the referenced assemblies, 2005 vs 2008 in other words. Download Sample Project TaskExpressionPatcher.zip (6 KB)

    Read the article

  • Architect Day: Boston - Agenda Update

    - by Bob Rhubart
    Here's the latest information on the session schedule and content for Oracle Technology Network Architect Day in Boston, MA on September 12, 2012. Registration is open, but seating is limited. When: September 12, 2012 8:30am – 5:00pm Where: Boston Marriott Burlington One Burlington Mall Road Burlington, MA 01803 Register now Agenda Time Session Title Room 8:30 am - 9:00 am Registration and Continental Breakfast Salon E Foyer 9:00 am - 9:15 am Welcome and Opening Comments | Bob Rhubart Salon E 9:15 am - 10:00 am Engineered Systems: Oracle's Vision for the Future | Ralf Dossmann Oracle's Exadata and Exalogic are impressive products in their own right. But working in combination they deliver unparalleled transaction processing performance with up to a 30x increase over existing legacy systems, with the lowest cost of ownership over a 3 or 5 year basis than any other hardware. In this session you'll learn how to leverage Oracle's Engineered Systems within your enterprise to deliver record-breaking performance at the lowest TCO. Salon E 10:00 am - 10:30 am Securing Public and Private Clouds | Anton Nielsen Long before the term "Cloud Computing" existed, Oracle technologies supported and promoted the concept. Centralized data with remote users has been at the core of these technologies for decades. The public cloud, and extending private clouds to the internet, though, has added security challenges never imagined decades ago. This presentation will examine a real life security breach and introduce architecture, technologies and policies to secure public and private clouds.  Salon E 10:30 am - 10:45 am Break 10:45 am - 11:30 am Breakout Sessions (pick one) Cloud Computing - Making IT Simple | Scott Mattoon The road to Cloud Computing is not without a few bumps. This session will help to smooth out your journey by tackling some of the potential complications. We'll examine whether standardization is a prerequisite for the Cloud. We'll look at why refactoring isn't just for application code. We'll check out deployable entities and their simplification via higher levels of abstraction. And we'll close out the session with a look at engineered systems and modular clouds. Salon E Innovations in Grid Computing with Oracle Coherence | Rob Misek Learn how Coherence can increase the availability, scalability and performance of your existing applications with its advanced low-latency data-grid technologies. Also hear some interesting industry-specific use cases that customers had implemented and how Oracle is integrating Coherence into its Enterprise Java stack. Salon C 11:30 am - 12:15 pm Breakout Sessions (pick one) Enterprise Strategy for Cloud Security | Dave Chappelle Security is high on the list of concerns for many organizations as they evaluate their cloud computing options. This session will examine security in the context of the various forms of cloud computing. We'll consider technical and non-technical aspects of security, and discuss several strategies for cloud computing, from both the consumer and producer perspectives. Salon E Oracle Enterprise Manager | Avi Huber Much more than a DB management tool, Oracle Enterprise Manager provides management and monitoring coverage for the entire Oracle stack, and beyond. This session will concentrate on the middleware management functionality in OEM, starting with Real User Experience monitoring, through AppServer management, and into deep-dive Java diagnostics. We’ll discuss Business Driven Application Management (BDAM) and the benefits of top-down monitoring. Lastly, we’ll demonstrate how to trace a specific user experience problem, through a multitier SOA application, to its root cause, deep in the JVM. Salon C 12:15 pm - 1:15 pm Lunch Salon E Foyer 1:15 pm - 2:00 pm Panel Discussion - Q&A with session speakers Salon E 2:00 pm - 2:45 pm Breakout Sessions (pick one) Oracle Cloud Reference Architecture | Anbu Krishnaswamy Cloud initiatives are beginning to dominate enterprise IT roadmaps. Successful adoption of Cloud and the subsequent governance challenges warrant a Cloud reference architecture that is applied consistently across the enterprise. This presentation will answer the important questions: What exactly is a Cloud, why you need it, what changes it will bring to the enterprise, and what are the key capabilities of a Cloud infrastructure are - using Oracle's Cloud Reference Architecture, which is part of the IT Strategies from Oracle (ITSO) Cloud Enterprise Technology Strategy (ETS). Salon E 21st Century SOA | Peter Belknap Service Oriented Architecture has evolved from concept to reality in the last decade. The right methodology coupled with mature SOA technologies has helped customers demonstrate success in both innovation and ROI. In this session you will learn how Oracle SOA Suite's orchestration, virtualization, and governance capabilities provide the infrastructure to run mission critical business and system applications. And we'll take a special look at the convergence of SOA & BPM using Oracle's Unified technology stack. Salon C 2:45 pm - 3:00 pm Break 3:00 pm - 4:00 pm Roundtable Discussion Salon E 4:00 pm - 4:15 pm Closing Comments & Readouts from Roundtables Salon E 4:15 pm - 5:00 pm Networking / Reception Salon E Foyer Note: Session schedule and content subject to change.

    Read the article

  • Using a Predicate as a key to a Dictionary

    - by Tom Hines
    I really love Linq and Lambda Expressions in C#.  I also love certain community forums and programming websites like DaniWeb. A user on DaniWeb posted a question about comparing the results of a game that is like poker (5-card stud), but is played with dice. The question stemmed around determining what was the winning hand.  I looked at the question and issued some comments and suggestions toward a potential answer, but I thought it was a neat homework exercise. [A little explanation] I eventually realized not only could I compare the results of the hands (by name) with a certain construct – I could also compare the values of the individual dice with the same construct. That piece of code eventually became a Dictionary with the KEY as a Predicate<int> and the Value a Func<T> that returns a string from the another structure that contains the mapping of an ENUM to a string.  In one instance, that string is the name of the hand and in another instance, it is a string (CSV) representation of of the digits in the hand. An added benefit is that the digits re returned in the order they would be for a proper poker hand.  For instance the hand 1,2,5,3,1 would be returned as ONE_PAIR (1,1,5,3,2). [Getting to the point] 1: using System; 2: using System.Collections.Generic; 3:   4: namespace DicePoker 5: { 6: using KVP_E2S = KeyValuePair<CDicePoker.E_DICE_POKER_HAND_VAL, string>; 7: public partial class CDicePoker 8: { 9: /// <summary> 10: /// Magical construction to determine the winner of given hand Key/Value. 11: /// </summary> 12: private static Dictionary<Predicate<int>, Func<List<KVP_E2S>, string>> 13: map_prd2fn = new Dictionary<Predicate<int>, Func<List<KVP_E2S>, string>> 14: { 15: {new Predicate<int>(i => i.Equals(0)), PlayerTie},//first tie 16:   17: {new Predicate<int>(i => i > 0), 18: (m => string.Format("Player One wins\n1={0}({1})\n2={2}({3})", 19: m[0].Key, m[0].Value, m[1].Key, m[1].Value))}, 20:   21: {new Predicate<int>(i => i < 0), 22: (m => string.Format("Player Two wins\n2={2}({3})\n1={0}({1})", 23: m[0].Key, m[0].Value, m[1].Key, m[1].Value))}, 24:   25: {new Predicate<int>(i => i.Equals(0)), 26: (m => string.Format("Tie({0}) \n1={1}\n2={2}", 27: m[0].Key, m[0].Value, m[1].Value))} 28: }; 29: } 30: } When this is called, the code calls the Invoke method of the predicate to return a bool.  The first on matching true will have its value invoked. 1: private static Func<DICE_HAND, E_DICE_POKER_HAND_VAL> GetHandEval = dh => 2: map_dph2fn[map_dph2fn.Keys.Where(enm2fn => enm2fn(dh)).First()]; After coming up with this process, I realized (with a little modification) it could be called to evaluate the individual values in the dice hand in the event of a tie. 1: private static Func<List<KVP_E2S>, string> PlayerTie = lst_kvp => 2: map_prd2fn.Skip(1) 3: .Where(x => x.Key.Invoke(RenderDigits(dhPlayerOne).CompareTo(RenderDigits(dhPlayerTwo)))) 4: .Select(s => s.Value) 5: .First().Invoke(lst_kvp); After that, I realized I could now create a program completely without “if” statements or “for” loops! 1: static void Main(string[] args) 2: { 3: Dictionary<Predicate<int>, Action<Action<string>>> main = new Dictionary<Predicate<int>, Action<Action<string>>> 4: { 5: {(i => i.Equals(0)), PlayGame}, 6: {(i => true), Usage} 7: }; 8:   9: main[main.Keys.Where(m => m.Invoke(args.Length)).First()].Invoke(Display); 10: } …and there you have it. :) ZIPPED Project

    Read the article

  • Extending Blend for Visual Studio 2013

    - by Chris Skardon
    Originally posted on: http://geekswithblogs.net/cskardon/archive/2013/11/01/extending-blend-for-visual-studio-2013.aspxSo, I got a comment yesterday on my post about Extending Blend 4 and Blend for Visual Studio 2012 asking if I knew how to get it working for Blend for Visual Studio 2013.. My initial thoughts were, just change the location to get the blend dlls from Visual Studio 11.0 to 12.0 and you’re all set, so I went to do that, only to discover that the dlls I normally reference, well – they don’t exist. So… I’ve made a presumption that the actual process of using MEF etc is still the same. I was wrong. So, the route to discovery – required DotPeek and opening a few of blends dlls.. Browsing through the Blend install directory (./Microsoft Visual Studio 12.0/Blend/) I notice the .addin files: So I decide to peek into the SketchFlow dll, then promptly remember SketchFlow is quite a big thing, and hunting through there is not ideal, luckily there is another dll using an .addin file, ‘Microsoft.Expression.Importers.Host’, so we’ll go for that instead. We can see it’s still using the ‘IPackage’ formula, but where is that sucker? Well, we just press F12 on the ‘IPackage’ bit and DotPeek takes us there, with a very handy comment at the top: // Type: Microsoft.Expression.Framework.IPackage // Assembly: Microsoft.Expression.Framework, Version=12.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a // MVID: E092EA54-4941-463C-BD74-283FD36478E2 // Assembly location: C:\Program Files (x86)\Microsoft Visual Studio 12.0\Blend\Microsoft.Expression.Framework.dll Now we know where the IPackage interface is defined, so let’s just try writing a control. Last time I did a separate dll for the control, this time I’m not, but it still works if you want to do it that way. Let’s build a control! STEP 1 Create a new WPF application Naming doesn’t matter any more! I have gone with ‘Hello2013’ (see what I did there?) STEP 2 Delete: App.Config App.xaml MainWindow.xaml We won’t be needing them STEP 3 Change your application to be a Class Library instead. (You might also want to delete the ‘vshost’ stuff in your output directory now, as they only exist for hosting the WPF app, and just cause clutter) STEP 4 Add a reference to the ‘Microsoft.Expression.Framework.dll’ (which you can find in ‘C:\Program Files\Microsoft Visual Studio 12.0\Blend’ – that’s Program Files (x86) if you’re on an x64 machine!). STEP 5 Add a User Control, I’m going with ‘Hello2013Control’, and following from last time, it’s just a TextBlock in a Grid: <UserControl x:Class="Hello2013.Hello2013Control" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300"> <Grid> <TextBlock>Hello Blend for VS 2013</TextBlock> </Grid> </UserControl> STEP 6 Add a class to load the package – I’ve called it – yes you guessed – Hello2013Package, which will look like this: namespace Hello2013 { using Microsoft.Expression.Framework; using Microsoft.Expression.Framework.UserInterface; public class Hello2013Package : IPackage { private Hello2013Control _hello2013Control; private IWindowService _windowService; public void Load(IServices services) { _windowService = services.GetService<IWindowService>(); Initialize(); } private void Initialize() { _hello2013Control = new Hello2013Control(); if (_windowService.PaletteRegistry["HelloPanel"] == null) _windowService.RegisterPalette("HelloPanel", _hello2013Control, "Hello Window"); } public void Unload(){} } } You might note that compared to the 2012 version we’re no longer [Exporting(typeof(IPackage))]. The file you create in STEP 7 covers this for us. STEP 7 Add a new file called: ‘<PROJECT_OUTPUT_NAME>.addin’ – in reality you can call it anything and it’ll still read it in just fine, it’s just nicer if it all matches up, so I have ‘Hello2013.addin’. Content wise, we need to have: <?xml version="1.0" encoding="utf-8"?> <AddIn AssemblyFile="Hello2013.dll" /> obviously, replacing ‘Hello2013.dll’ with whatever your dll is called. STEP 8 We set the ‘addin’ file to be copied to the output directory: STEP 9 Build! STEP 10 Go to your output directory (./bin/debug) and copy the 3 files (Hello2013.dll, Hello2013.pdb, Hello2013.addin) and then paste into the ‘Addins’ folder in your Blend directory (C:\Program Files\Microsoft Visual Studio 12.0\Blend\Addins) STEP 11 Start Blend for Visual Studio 2013 STEP 12 Go to the ‘Window’ menu and select ‘Hello Window’ STEP 13 Marvel at your new control! Feel free to email me / comment with any problems!

    Read the article

  • Trying to implement fling events on an object

    - by Adam Short
    I have a game object, well a bitmap, which I'd like to "fling". I'm struggling to get it to fling ontouchlistener due to it being a bitmap and not sure how to proceed and I'm struggling to find the resources to help. Here's my code so far: https://github.com/addrum/Shapes GameActivity class: package com.main.shapes; import android.app.Activity; import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.os.Bundle; import android.view.GestureDetector; import android.view.MotionEvent; import android.view.SurfaceHolder; import android.view.SurfaceView; import android.view.View.OnTouchListener; import android.view.Window; public class GameActivity extends Activity { private GestureDetector gestureDetector; View view; Bitmap ball; float x, y; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); //Remove title bar this.requestWindowFeature(Window.FEATURE_NO_TITLE); view = new View(this); ball = BitmapFactory.decodeResource(getResources(), R.drawable.ball); gestureDetector = new GestureDetector(this, new GestureListener()); x = 0; y = 0; setContentView(view); ball.setOnTouchListener(new OnTouchListener() { @Override public boolean onTouch(android.view.View v, MotionEvent event) { // TODO Auto-generated method stub return false; } }); } @Override protected void onPause() { super.onPause(); view.pause(); } @Override protected void onResume() { super.onResume(); view.resume(); } public class View extends SurfaceView implements Runnable { Thread thread = null; SurfaceHolder holder; boolean canRun = false; public View(Context context) { super(context); holder = getHolder(); } public void run() { while (canRun) { if (!holder.getSurface().isValid()) { continue; } Canvas c = holder.lockCanvas(); c.drawARGB(255, 255, 255, 255); c.drawBitmap(ball, x - (ball.getWidth() / 2), y - (ball.getHeight() / 2), null); holder.unlockCanvasAndPost(c); } } public void pause() { canRun = false; while (true) { try { thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } break; } thread = null; } public void resume() { canRun = true; thread = new Thread(this); thread.start(); } } } GestureListener class: package com.main.shapes; import android.view.GestureDetector.SimpleOnGestureListener; import android.view.MotionEvent; public class GestureListener extends SimpleOnGestureListener { private static final int SWIPE_MIN_DISTANCE = 120; private static final int SWIPE_THRESHOLD_VELOCITY = 200; @Override public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY) { if (e1.getX() - e2.getX() > SWIPE_MIN_DISTANCE && Math.abs(velocityX) > SWIPE_THRESHOLD_VELOCITY) { //From Right to Left return true; } else if (e2.getX() - e1.getX() > SWIPE_MIN_DISTANCE && Math.abs(velocityX) > SWIPE_THRESHOLD_VELOCITY) { //From Left to Right return true; } if (e1.getY() - e2.getY() > SWIPE_MIN_DISTANCE && Math.abs(velocityY) > SWIPE_THRESHOLD_VELOCITY) { //From Bottom to Top return true; } else if (e2.getY() - e1.getY() > SWIPE_MIN_DISTANCE && Math.abs(velocityY) > SWIPE_THRESHOLD_VELOCITY) { //From Top to Bottom return true; } return false; } @Override public boolean onDown(MotionEvent e) { //always return true since all gestures always begin with onDown and<br> //if this returns false, the framework won't try to pick up onFling for example. return true; } }

    Read the article

  • Master Page: Dynamically Adding Rows in ASP Table on Button Click event

    - by Vincent Maverick Durano
    In my previous post here, I wrote an example that demonstrates how are we going to generate table rows dynamically using ASP Table on click of the Button control. Now based on some comments in my previous example and in the forums they wanted to implement it within Masterpage. Unfortunately the code in my previous example doesn't work in Masterpage for the following main reasons: The Table is dynamically added within the Form tag and so the TextBox control will not be generated correcty in the page. The data will not be retained on each and every postbacks because the SetPreviousData() method is looking for the Table element within the Page and not on the MasterPage. The Request.Form key value should be set correctly since all controls within the master page are prefixed with the naming containter ID to prevent duplicate ids on the final rendered HTML. For example the TextBox control with the ID of TextBoxRow will turn to ID to this ctl00$MainBody$TextBoxRow. In order for the previous example to work within Masterpage then we will have to correct those three main reasons above and this post will guide you how to correct it. Suppose we have this content page declaration below:   <asp:Content ID="Content1" ContentPlaceHolderID="MainHead" Runat="Server"> </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainBody" Runat="Server"> <asp:PlaceHolder ID="PlaceHolder1" runat="server"> <asp:Button ID="BTNAdd" runat="server" Text="Add New Row" OnClick="BTNAdd_Click" /> </asp:PlaceHolder> </asp:Content> As you notice I've added a PlaceHolder control within the MainBody ContentPlaceHolder. This is because we are going to generate the Table in the PlaceHolder instead of generating it within the Form element. Now since issue #1 is already corrected then let's proceed to the code beind part. Here are the full code blocks below:     using System; using System.Web.UI; using System.Web.UI.WebControls; public partial class DynamicControlDemo : System.Web.UI.Page { private int numOfRows = 1; protected void Page_Load(object sender, EventArgs e) { //Generate the Rows on Initial Load if (!Page.IsPostBack) { GenerateTable(numOfRows); } } protected void BTNAdd_Click(object sender, EventArgs e) { if (ViewState["RowsCount"] != null) { numOfRows = Convert.ToInt32(ViewState["RowsCount"].ToString()); GenerateTable(numOfRows); } } private void SetPreviousData(int rowsCount, int colsCount) { Table table = (Table)this.Page.Master.FindControl("MainBody").FindControl("Table1"); // **** if (table != null) { for (int i = 0; i < rowsCount; i++) { for (int j = 0; j < colsCount; j++) { //Extracting the Dynamic Controls from the Table TextBox tb = (TextBox)table.Rows[i].Cells[j].FindControl("TextBoxRow_" + i + "Col_" + j); //Use Request object for getting the previous data of the dynamic textbox tb.Text = Request.Form["ctl00$MainBody$TextBoxRow_" + i + "Col_" + j];//***** } } } } private void GenerateTable(int rowsCount) { //Creat the Table and Add it to the Page Table table = new Table(); table.ID = "Table1"; PlaceHolder1.Controls.Add(table);//****** //The number of Columns to be generated const int colsCount = 3;//You can changed the value of 3 based on you requirements // Now iterate through the table and add your controls for (int i = 0; i < rowsCount; i++) { TableRow row = new TableRow(); for (int j = 0; j < colsCount; j++) { TableCell cell = new TableCell(); TextBox tb = new TextBox(); // Set a unique ID for each TextBox added tb.ID = "TextBoxRow_" + i + "Col_" + j; // Add the control to the TableCell cell.Controls.Add(tb); // Add the TableCell to the TableRow row.Cells.Add(cell); } // And finally, add the TableRow to the Table table.Rows.Add(row); } //Set Previous Data on PostBacks SetPreviousData(rowsCount, colsCount); //Sore the current Rows Count in ViewState rowsCount++; ViewState["RowsCount"] = rowsCount; } }   As you observed the code is pretty much similar to the previous example except for the highlighted lines above. That's it! I hope someone find this post usefu! Technorati Tags: Dynamic Controls,ASP.NET,C#,Master Page

    Read the article

  • Loosely Coupled Tabs in Java Editor

    - by Geertjan
    One of the NetBeans Platform 7.1 API enhancements is the @MultiViewElement.Registration annotation. That lets you add a new tab to any existing NetBeans editor. Really powerful since I didn't need to change the sources (or even look at the sources) of the Java editor to add the "Visualizer" tab to it, as shown below: Right now, the tab doesn't show anything, that will come in the next blog entry. The point here is to show how to set things up so that you have a new tab in the Java editor, without needing to touch any of the NetBeans IDE sources: And here's the code, take note of the annotation, which registers the JPanel for the "text/x-java" MIME type: import javax.swing.Action; import javax.swing.JComponent; import javax.swing.JPanel; import javax.swing.JToolBar; import org.netbeans.core.spi.multiview.CloseOperationState; import org.netbeans.core.spi.multiview.MultiViewElement; import org.netbeans.core.spi.multiview.MultiViewElementCallback; import org.openide.awt.UndoRedo; import org.openide.loaders.DataObject; import org.openide.util.Lookup; import org.openide.util.NbBundle; import org.openide.windows.TopComponent; @MultiViewElement.Registration(displayName = "#LBL_Visualizer", iconBase = "org/java/vis/icon.gif", mimeType = "text/x-java", persistenceType = TopComponent.PERSISTENCE_NEVER, preferredID = "JavaVisualizer", position = 3000) @NbBundle.Messages({     "LBL_Visualizer=Visualizer" }) public class JavaVisualizer extends JPanel implements MultiViewElement {     private JToolBar toolbar = new JToolBar();     private DataObject obj;     private MultiViewElementCallback mvec;     public JavaVisualizer(Lookup lkp) {         obj = lkp.lookup(DataObject.class);         assert obj != null;     }     @Override     public JComponent getVisualRepresentation() {         return this;     }     @Override     public JComponent getToolbarRepresentation() {         return toolbar;     }     @Override     public Action[] getActions() {         return new Action[0];     }     @Override     public Lookup getLookup() {         return obj.getLookup();     }     @Override     public void componentOpened() {     }     @Override     public void componentClosed() {     }     @Override     public void componentShowing() {     }     @Override     public void componentHidden() {     }     @Override     public void componentActivated() {     }     @Override     public void componentDeactivated() {     }     @Override     public UndoRedo getUndoRedo() {         return UndoRedo.NONE;     }     @Override     public void setMultiViewCallback(MultiViewElementCallback mvec) {         this.mvec = mvec;     }     @Override     public CloseOperationState canCloseElement() {         return CloseOperationState.STATE_OK;     } } It's a fair amount of code, but mostly pretty self-explanatory. The loosely coupled tabs are applicable to all NetBeans editors, not just the Java editor, which is why the "History" tab is now available to all editors throughout NetBeans IDE. In the next blog entry, you'll see the integration of the Visual Library into the panel I embedded in the Java editor.

    Read the article

< Previous Page | 187 188 189 190 191 192 193 194 195 196 197 198  | Next Page >